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The transmission line is the most vulnerable element of any electrical power 

system due to its large physical dimension. This paper focused on 

identification of simple power system fault using wavelet based analysis of 

transmission line parameter disturbances for quick and reliable operation of 

protection schemes. The fault detection is disbursed by the assay of the detail 

coefficients activity of appearance currents. Discrete Wavelet Transform 

(DWT) examination of the transient aggravation created as an aftereffect of 

event shortcomings is performed. The result shows that the proposed method 

detects the fault very quickly and accurately. Simulation results are presented 

showing the selection of proper threshold value for fault detection. An 

embedded intelligence is inserted into the power-electronics to facilitate the 

reconfiguration of the system, and thereby ensuring security. 
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1. Introduction  

The Smart Grid is an evolution of the electrical grid to a flexible power network through distributed 

intelligence, automated control systems, and communication technologies. The electric power transmission 

network has been dynamically created in excess of one century, from the initial designed local DC network in 

low voltage level, to three-phase high voltage AC network, and to present day mass interconnected systems 

with different voltage levels and bounty of complex electrical components. The power management 

techniques must yield sustainable energy; although there is increasing power blackouts due to the excessive 

power consumption. The demerits in the existing power grid models occur at the system level and local level. 

The control area operators in the power grid cannot, obtain the real-time information about the transmission 

devices, respond quickly to emergency events (or) blackouts, and perform the functions in an automated and 

coordinated manner.  

The conventional hardware used in the electrical grid lacks the frequency and voltage control according to 

the increasing system requirements, and cannot secure the system quickly during emergency events. A real-

time coordination scheme enhances the coordination among the geographically separated devices during 

power blackouts. The energy resources in the transmission systems must be efficiently utilized over the 

conventional high-energy resources to increase the reliability of the power system. The security of a power 

grid is mainly focused on dynamic and transient stability issues. The attacks on the power grids may partially 

compromise the secure communication or fully control some of the system components.  
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Transmission lines presented to different deficiencies are outlined with distance protection scheme. The 

computation of line impedance has been done in contrast mathematical statements [1],[2] or utilizing phasor 

got by Fourier calculations [3],[4].Wavelet analysis as a capable tool for signal transforming can be connected 

to adequately overcome troubles of the travelling wave protection procedures. The execution time of the 

resource scheduling is decreased by the optimization of wavelet analysis. This method performs better than 

the existing power grid models in terms of fault detection, degree of power saving due to power optimization, 

memory usage, consumer computational overhead, and critical time. The existing methods taken for 

comparative analysis are Fault detection and classification using Efficient and Privacy-Preserving 

Aggregation (EPPA) scheme, Lightweight Message Authentication (LMA) scheme, Multi-terminal DC Wind 

farm collection Internal Fault Analysis (MDWIFA), and traditional scheme (TRAD) without any data 

aggregation. 

2. Related work  

 This section deals with the existing secure and optimized 

power grid models. Also basics of fast detecting, isolating, locating and repairing of the different faults are 

critical in maintaining a reliable power system operation [5]. On the other hand, classification of the different 

fault types plays very important role in digital distance protection of the transmission lines [6].  A smart grid 

is a modern electrical grid infrastructure for higher efficiency and reliability via automated control, modern 

communications, sensing, high power converters, metering technologies, and energy management schemes 

[7]. The recent smart grid management and protection systems were surveyed by [8] and [9]. The suitability of 

Attribute Based Encryption (ABE) was analyzed for the security of smart grids [10].Miao and Junshan 

proposed a dependency graph based fault detection and localization towards secure smart grid [11].Fouda, et 

al designed a lightweight message authentication technique for smart grids [12]. The smart meters were 

distributed at various hierarchical smart grid networks. Young-Jin, et al formed a data-centric, decentralized 

and secure information infrastructure for smart grid [13]. The secure middleware architecture can coexist with 

both LAN and WAN. Rodri, et al used a grid synchronization algorithm for three-phase grid-connected power 

networks [14].Chouder and Silvestre implemented automatic and supervisory fault detection technique on the 

Photo-Voltaic (PV) systems of the smart grid [15]. Vijayakumar et al have proposed an enhanced ACO and 

PSO based fault identification and rectification approaches for smart gird. In this approach, the smart grid 

configuration is not discussed[16].Huimin, et al designed a protection scheme for smart MVDC (Medium-

Voltage DC) grid[17].  

 

Rongxing, et al proposed an efficient and privacy-preserving aggregation methodology for securing the 

smart grid communications [18]. Calderaro, et al detected and localized the failures in smart grids using petri 

net (PN) modeling [19]. The detection of faults was modeled as matrix operations. This method enabled the 
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fault identification the strong effect of distributed generation. Chanda et al. [20] have proposed an algorithm 

with Daubechies eight (Db8) wavelet for fault classification in transmission line using 3rd level output of 

multi-resolution analysis (MRA) detail signals of currents. But in that algorithm the phases involved in the 

fault does not explicitly determined and time duration considered in the analysis comes out to 40.96 ms, which 

is about two cycles after post fault. Recently, Upendar et al. [21] have presented an algorithm based on the 

wavelet transform of three phase currents and the PNN and the classification and regression tree (CART) 

methods. The accuracy of the fault classification method has been reported over 99% upon 1,209,960 test 

cases. Also, the fault identification algorithm is low speed. Vijayakumar et al [22] have proposed a real time 

management and evolutionary optimization scheme for a secure and flexible smart grid through a modern 

configuration environment. In this approach, smart grid infrastructure is made it easy and power overheads are 

introduced. 

3. Real Time Management And Transformation Scheme For A Flexible Smart Grid (RMTSFS)  

 A resilient and reconfigurable electrical grid is designed using fault-tolerant real-time controls to handle 

Instantaneous and intentional attacks in the grid. The power grid is integrated with centralized system-level 

adaptation and embedded intelligence based load actuation to form an efficient smart grid. 

3.1 Hybrid architecture for distribution control  

A distributed control mechanism is considered, where the distributed controllers communicate the 

information with the primary peers to guarantee the reliability and safety of local operations. Distributed 

control is required because the higher distributed power generation, transmission, and distribution necessitates 

the distributed command and control. The hybrid architecture is shown in Fig.1. The embedded controllers are 

shown in filled circles and squares. 

This hybrid architecture supports distributed control which differs from the conventional power grid in the 

following perspectives: 

 The generator and transmission devices are integrated with a controller to make executions based on 

collaborative information. 

 The collaboration levels at generator and transmission sides prevent isolated and coordinated 

attacks. 

 A distributed state estimator (DSE) is used at each substation to decrease SE execution time and 

furnish the feedback on local faults. 

 3.2 Enhancing Security through reconfiguration of system  

The power grid is transformed into a reconfigurable grid by the incorporation of power electronic devices 

with control and sensing functions. Reactive power control and management is necessary for efficient voltage 

control/stability. The aim of intelligent controllers is to determine the quantity of real and reactive power to 

the employed in the grid under specific variations in detection of current, frequency, or voltage. 

The power grid is partitioned into several microgrids containing generators and loads separated from the 

primary grid. The microgrids can provide power at least to sensitive loads during contingency and system 

attacks. Normally, the generators operate in a current control mode where they are tightly synchronized with 

the primary grid. But, when there is power failure due to component attacks or the microgrid is disconnected 

from the primary grid, the generators need to transform to voltage control mode for providing constant voltage 

to at least the local sensitive loads. The need for an intelligent load shedding scheme relies on the 

determination of local voltage and frequency transients for each generator.Consider a microgrid with three 
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generators and four sensitive loads. The total quantity of active and reactive power required by the load is 

given in (1) and (2) respectively. 

                                 (1)                            (2) 

 

The total quantity of active and reactive power released by the generators is given in (3) and (4) 

respectively. 

                                     (3)                                 (4) 

 

The micro grid operates constantly even after power failure by balancing the conditions given in (5). 

           ;                (5)  

The normal range for the operation of microgrids according to IEEE Std. 1547 is 0.88 pu – 1.1 pu. The 

switching of the generator inverter system to voltage control mode is a major issue. When the speed of voltage 

variation is detected once the facility failure, the number of load shedding or reduction in generation is 

determined before switch to voltage control mode. The local frequency and voltage is monitored to accelerate 

the responsiveness to changes within the system state. The controllers within the multiple generators crash as 

a result of there's no info exchange between the generators, that doesn't accurately estimate the state of the 

microgrid. This problem is issued by the following alliance algorithm. 

3.3  Alliance algorithm  

When a controller is integrated with a power electronic device, the communication links to the controllers 

from the field remote terminal units (RTUs) can be damaged. This results in loss of data or false data. The 

local controllers need to execute correct decisions that do not affect the grid reliability or stability. A 

distributed interval integration algorithm [23] is used, where the generator is chosen to collect the device 

output and develop an overlap function. The significance of this algorithm is the decreased width of the output 

interval for a case of a large number of devices. The following conditions are considered to determine the 

alliance of the local controller with its neighbors: 

1) The overlap function possesses its maximum values from [sn – fi, sn], where sn  represents the total 

number of sensors and i represents the total number of faulty device inputs. 

2) The mid-value of the integration has to be equal to or greater than the median of the estimated 

interval. 

3) Both the conditions 1) and 2) have to be fulfilled in two consecutive integrations excluding the first 

round so that decision stability is enhanced. 
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3.4 Reactive power management and scheduling  

 An important want for an influence grid system is that the ability to security attacks and unpredictable 

variations. A control-theoretic module is employed to realize the dynamicity to quality-of-service (QoS) 

attacks. The facility grid system is sculptured as controlled variables primarily based dynamic system. The 

QoS attributes like time period time interval and output ought to monitor the QoS specifications. once 

disturbances occur as a result of the QoS attacks, the devices could get broken as a result of abnormal voltage, 

current, or frequency. A real-time scheduling algorithm is designed based on control theory for scheduling the 

energy resources in the grid and assuring the end-to-end real-time constraints. The goal of the short-term 

energy resource management is to minimize the operational costs.  

The reactive power management process is sculpted as a constrained, large-scale, mixed, non-linear, and 

optimization problem as depicted in (6) and (7).                                   (6) 

  s.t.                              (7) 

In (6) and (7),        represents the objective function,        consists of the equality constraints, and        consists of the inequality constraints. 

3.5 Mathematical model 

The primary factor for voltage instability is the inefficiency in the maintenance of an appropriate voltage 

level and reactive power management. The energy resource scheduling is modeled according to the following 

mathematical model identified as a non-linear mixed-integer problem. The objective function f(s, c) in (8) is 

formulated to determine the minimum operational costs in each period t. The constraint for consideration is 

given in (9).                                                                                                                                                                            

                                                            ….. (8) 

In (8), m represents the number of energy resources, E1, E2 … Em represents the various energy resources, 

T1, T2 … Tm represents the unit energy value of various energy resources,     represents the number of type-1 

resources,     represents the number of type-2 resources,     represents the number of type-m resources, P 

represents the active power generation and g represents the generation cost. The power in (8) must be 

balanced in each period t. 

                                                                                                                                                                                                                                                                                                    
                                                        ….. (9) 

In (9), Load(L, t) represents the active power requirement of load L in period t and Ploss represents the total 

power losses in the distribution lines which is the 5% value of the former parameter. nL represents the number 

of loads. 
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4. Wavelet Transforms for Fault Analysis  

4.1 Wavelet transformation and entropy calculation 

 Lots of fault info is enclosed within the transient parts. Thus it will be accustomed determine the fault or 

abnormality of equipments or power grid. This fashion the dependableness of the facility system are going to 

be significantly improved. Transient signals have some characteristics like high frequency and instant break. 

The wavelet decomposition and entropy calculations are done on each phase to identify the faults in each 

phase and presence of ground fault can be identified based on the wavelet transform and entropy calculation 

on zero sequence currents.  A frequency-independent real transformation matrix will be accustomed acquire 

somewhat decoupled signals which will be advantageous in transient primarily based fault detection.  

 

4.2 Extraction of Transient Energy Using Wavelet Transform 

 The simulated transient signals are obtained from high voltage transmission line Simulink model and are 

analyzed for various conditions of single line to ground fault. Using wavelet multi resolution analysis the 

detail components at level 1 and level 3 have been taken into account. A moving data window of one cycle 

width has been taken for analysis. The fault signals are discretized for analysis and so they are called discrete 

time signals. The sampling frequency is 320 kHz, thus one data window contains 6400 samples. A 220 kV 

power system is simulated using MATLAB®/Simulink, Sim Power System toolbox, wavelet toolbox and 

neural network toolbox for different fault conditions on the line. The details of power system model are as 

given in Table-1. The line voltage signals from both the ends of are used for fault analysis on the transmission 

line. Daubechies „db3‟ wavelet is employed since it has been demonstrated to perform well. The details of the 
Wavelet and associated parameters are given in Table -2. Using multi resolution wavelet analysis of all the 

voltage signals their detail D1 and D3 components are extracted. The third level detail D3 contains harmonics 

ranging from 5 kHz-10 kHz and the first level detail D1 contains harmonics ranging from 80 kHz-160 kHz. It 

has been observed that variations within the detail information of the voltage signal contains useful fault 

signature. All the single line to ground faults were studied with different fault conditions. Fault is simulated to 

appear in second cycle. 

 

Table 1 Parameters of the power system 

Generator 1 
220Kv,Y-gX/R=10, 

Phase Angle=0 

Generator 2 
220Kv,Y-gX/R=10, 

Phase Angle=75 

Load 1 20 kW Active, 900 W Reactive 

Load 2 
125 kW Active, 900  W 

Reactive 

Transmission line 

(Distributed) 

Length = 200 km 

R=0.01273ohms/km, 

Ro=0.3864 ohms/km 

L= 0.9337e-3H/M, 

Lo= 4.1264e-3H/km 

C=12.74e-9F/km,            

Co=7.751e-9 F/km 

 

Table 2 Details of wavelet and associated parameters 
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Mother wavelet Doubechies, db3 

Sampling 

Frequency 

320 kHz 

Information 

analyyzed 

Detail at level 3 and level 1, 

D3, D1 

Frequency band of 

D3 

5 kHz-10 kHz 

Frequency band of 

D1 

160 kHz-80kHz 

Number of samples 

per cycle 

6400 

Occurrence of fault Second cycle 

Data windoe length 

analysed 

One cycle/20msec 

 

The transient energy is calculated for first three data window and were used for further analysis. The 

simulation results of Wavelet transformation for the detection of three phase faults. The three phase fault is 

occurred for the duration of time 0.02 to 0.08 s. The measured and saved values of the line currents were 

exported in MATLAB for further data processing.  

The simulation results obtained using db3 analysis of wavelet transformations are shown in figure.3. In 

that figure, red colored line indicates the threshold limit, which is obtained by comparing the wavelet packets. 

 After threshold has been identified, a final step for the detection algorithm is to calculate their repetition 

rate. Based on the repetition rate, a step waveform is obtained and the final settling step value is the fault 

detection time 0.154 s and it is shown in figure.4  
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Figure 2 Optimization process based on wavelet  

 

5 Performance Analysis  

 The real-time management and transformation scheme for a flexible smart grid (RMTSFS) towards 

sustainable energy is analyzed in terms of fault detection, memory usage, consumer computational overhead, 

and critical time. The voltage of the transmission line is considered as 35kV. The existing methods considered 

for comparative analysis are Fault detection and classification using Efficient and Privacy-Preserving 

Aggregation (EPPA) scheme[18], Lightweight Message Authentication (LMA) scheme[12], Multi-terminal 

DC Wind farm collection Internal Fault Analysis (MDWIFA)[25], and traditional scheme (TRAD) without 

any data aggregation[24]. 
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Figure 3 Occurrence of fault in the transmission line the gap between the waveform(0.02-0.08s)is depicted  as 

fault 

 

 

Figure 4. Fault Detection Time for RMTSFS 

 

Figure 5. Memory usage of LMA and RMTSFS 
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Figure 6. Consumer computational overhead of EPPA, TRAD and  RMTSFS 

 

 

Figure 7. Critical time of MDWIFA and RMTSFS 
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5.1 Fault detection  

The occurrence and detection of fault in the transmission is shown in Fig.4. The X-axis represents time in 

seconds and the Y-axis represents the amplitude of voltage (mV) and current (mA). The blue colored 

waveform represents the fault reference line. The gap between the waveforms (0.02s – 0.08s) is depicted as a 

fault. The fault detection time is analysed by RMTSFS and detect the fault instantly as around t=0.15s. 

5.2 Memory usage  

The memory usage of LMA scheme and RMTSFS is analyzed and compared with respect to time in Fig.5. 

It is observed that RMTSFS consumes lesser memory than LMA scheme. 

5.3 Consumer computational overhead  

The consumer computational overhead of EPPA scheme, TRAD scheme and RMTSFS is analyzed and 

compared with respect to the number of data dimensions in Fig.6. It is observed that RMTSFS consumes 

lesser overhead in terms of computations than EPPA and TRAD schemes. 

5.4 Influence of fault distance on critical time  

Critical time is the limit for the total switchgear operation time. It should be small for the faster operation 

of the power grid. The critical time for MDWIFA and RMTSFS is analyzed and compared with respect to 

fault distance in Fig.7. It is seen that RMTSFS performs the switchgear operations even when the faults are 

detected increasing distances from the control center. 

6 Conclusion  

Sustainable energy is very important for the future energy generation and management technologies. A 

real-time management and transformation scheme for a flexible smart grid towards sustainable energy is 

designed in this paper. The existing power grid models cannot obtain the real-time information about the 

transmission devices, perform the functions in an automated and coordinated manner, and respond quickly to 

emergency events (or) blackouts. This method consists of a location hybrid architecture following a alliance 

algorithm to address the faulty and incomplete information. The system reconfiguration via power-electronics 

and switches is used for the real-time accessibility control, local state maintenance, and security enhancement. 

An wavelet transformation is used to address the reactive power management and optimum transmission 

device placement. The execution time of the resource scheduling is decreased by the optimization of wavelet 

transformation. This technique performs better than the existing power grid models in terms of fault detection, 

memory usage, consumer computational overhead, and critical time. 

 The future work consists of real-time implementation using hardware toolkits to verify the practical 

energy consumption and optimization performance. 
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