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One of the most suitable methods for the mass production of complicated shapes is injection molding due to its superior
production rate and quality. The key to producing higher quality products in injection molding is proper injection speed, pressure,
and mold design. Conventional methods relying on the operator’s expertise and defect detection techniques are ineffective in
reducing defects. Hence, there is a need for more close control over these operating parameters using various machine learning
techniques. Neural networks have considerable applications in the injection molding process consisting of optimization, pre-
diction, identification, classification, controlling, modeling, and monitoring, particularly in manufacturing. In recent research,
many critical issues in applying machine learning and neural network in injection molding in practical have been addressed. Some
problems include data division, collection, and preprocessing steps, such as considering the inputs, networks, and outputs,
algorithms used, models utilized for testing and training, and performance criteria set during validation and verification. This
review briefly explains working on machine learning and artificial neural network and optimizing injection molding in industries.

1. Introduction

Injection molding is one of the widely used manufacturing
processes for manufacturing plastic products [1]. More than
30% of the weight of all plastic products is manufactured
using the injection molding process. Besides plastic prod-
ucts, injection molding is mainly used in the automotive,
medical, and electronics industries [2]. High production rate
and quality are some of the significant advantages of in-
jection molding. The finished products from injection
molding require minor finishing operations, which is an-
other advantage [3]. However, the equipment used in in-
jection molding can be quite expensive and sophisticated, so

injection molding is not suitable for small-scale production
[4-7].

Injection molding is melting plastic consisting of two
types of thermoplastic polymers and thermosetting poly-
mers. The machine injects the pressure onto the mold cavity
that fills and solidifies the molten plastic to produce an end
product. A whole injection molding process consists of three
stages that are filling, postfilling, and mold opening. Some of
the interesting properties of plastic are as follows: trans-
parency, ability to make complex sizes and shapes quickly,
ability to integrate with other materials easily with an ex-
cellent thermal and electrical insulator, lightweight, and
anticorrosion. Some of the issues regarding the quality are
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flow marks, volumetric shrinkage, jetting, weld lines, flash,
sink marks, dimension shrinkage variation, and warpage.
Recently, neural network and machine learning have grown
drastically to solve problems that will possibly occur in the
injection molding process to improve its characteristics
[8-11].

Injection molding consists of four stages: filling stage,
holding stage, cooling stage, and demolding stage [12]. The
material is fed into the injection molding machine and is
then heated. The molten material is forced under pressure
into the mold and then cooled and hardened inside the
mold. It is then ejected out of the mold. The cycle starts from
the filling stage and ends at the demolding stage. As shown in
Figure 1, a significant portion of the total time is taken by the
cooling and recovery stage. Many industries are working on
reducing the cooling time by implementing modifications in
mold design [13]. Cooling channels in mold helps to reduce
the cooling time and decrease the cycle time. More pro-
duction cycles can be completed by decreasing cycle time,
improving the industry’s productivity [14]. Injection
molding is prone to defects, and some of the common
defects are flow lines, weld lines, flash, and sink marks.
Injection speed, pressure, and mold design are essential in
reducing defects [15]. Most of the defects are caused by
improper injection pressure and temperature control. So,
control over these parameters is crucial in reducing defects
[16]. Traditional methods rely on the operator’s expertise
and conventional defect detection techniques. These tech-
niques are unreliable and time-consuming, and hence they
increase the lead time and reduce the industries’ produc-
tivity. So, there is a need for faster monitoring [17].
Implementing machine learning techniques in injection
molding can be a better alternative to traditional methods.
Although establishing a machine learning network can be
expensive, it is profitable in the long run. Machine learning
techniques can also be used in optimizing the mold design to
reduce the cooling rate and improve the quality of the final
product [18-20].

Machine learning is an excellent application in the
present era, which provides systems the ability to auto-
matically learn and improve from previous training given to
them without being explicitly hard coded or programmed.
Machine learning explicitly emphasizes the computer pro-
gram’s improvement, which runs the data, using it for their
learning.

A significant intention of machine learning is to allow
the systems or computers to learn correctly without any
human intervention. This review intends to accumulate all
the ML models implemented in injection molding.

2. Injection Molding

Injection molding is a manufacturing process in which
molten material is injected into a mold to produce parts
(Figure 2) [22]. Different materials can be molded into
desired shapes using injection molding. Some widely used
materials are polyvinyl chloride (PVC) (Figure 3), nylon,
polyamide, polyester, and acrylic [23]. Except for aluminum
and magnesium, almost all metals can be molded using the
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FIGURE 1: Total cycle time in injection molding.

metal injection molding process. The adherent oxide film on
the surface of aluminum and magnesium powder hinders
the sintering step in the molding process. Titanium alloys,
low alloy steels, cobalt alloys, and stainless steel are widely
used in metal injection molding. So, injection molding offers
an excellent material choice.

One of the significant advantages of injection molding is
its higher production rate [24]. The injection process can be
automated, and as a result, the production capacity can be
tremendously improved. Usually, injection molding is uti-
lized in the production of smaller parts [25]. More extensive
parts required more giant molds and more material to fill the
mold, impacting its production rate and efficiency. So, the
speed of injection molding depends on the size and com-
plexity of the mold. Labor costs are also drastically reduced
due to the automation of injection molding. Another ad-
vantage of injection molding is that complex parts can also
be molded. Thus, injection molding offers design flexibility
[26]. Injection molding is capable of producing accurate
parts, maintaining good dimensional stability. So, as a result,
the scrap resulting from production is meager [27]. Since
injection molding is mainly used to produce parts from non-
biodegradable materials like plastics and polymers, keeping
the scrap rate minimum is essential. The postproduction or
finishing work required after production is also low as high
dimensional stability is maintained, and surface finish is also
good.

2.1. Stepsin Injection Molding. The main parts of an injection
molding machine are mold, clamping unit, hydraulic sys-
tem, control system, hopper, cooling channels, injection
unit, and drive unit. Injection molding consists of four
stages.
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FIGURE 3: Pictures of (a) injection mold and (b) mold made from PVC pellets (taken in Composite Lab, VIT University, Vellore.).
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FIGURE 4: Stages of injection molding.

From Figure 4, in the first stage, the material is heated
until it is melted, and it is then injected into a mold under
pressure. Material is fed from the hopper and is then melted
[28]. A screw is used to transfer the molten material to the
injection site. The melted material takes the shape of the
mold, and it is allowed to cool to solidify the material [29].
Different methods are used in the preparation of ceramic
powders and metallic powders. Carbonyl synthesis, high-
pressure water atomization, and atomization using gas are
standard methods for preparing metal powders. The median
particle size obtained from these three processes is shown in
Table 1.

The purity of gas atomized powder is superior to those
prepared using water atomization [33]. Silicon nitride is
obtained by nitriding of silicon, and aluminum oxide is
obtained from the leaching of bauxite. Different chemical

TaBLE 1: Median particle size obtained from various processes.

Process Median particle size (in micrometers) Ref.
Water atomization 100 [30]
Gas atomization 50-300 [31]
Carbonyl synthesis 1-70 [32]

methods are used in the manufacture of ceramic powders. In
general, ceramic powders are finer than metal powders.
Finer powders offer better strength in comparison to coarse
powders. Binders are used to provide easy separation from
mold and retain the shape and strength of the part formed
[34]. The majority of the defects occur during the molding or
injection phase. Injection pressure, mold temperature, and
mold complexity are significant factors that affect the quality
of the produced parts, so to reduce defects and improve the



quality of the produced parts, reasonable control is required
over these parameters. Hardened steel, aluminum, and
beryllium-copper alloys are used for manufacturing molds.
Steel is used for making molds that require a longer lifespan,
but it is comparatively expensive [35]. Ejection gap, cooling
circuit design, and allowances are considered while de-
signing the mold. A good surface finish is required in the
core, cavity, and runner.

Pressure is applied continuously by the screw, which
melts the material and injects the molten material into the
mold [36]. The screw of the injection molding machine
moves forward at a slower rate, and the injection rate is also
slower. As the material starts to cool down and solidify, the
gate solidifies. After this, the screw of the injection molding
machine moves back to its original position [37]. To
compensate for shrinkages and ensure the quality of the final
product, the holding pressure is maintained for some time
after the material in the mold completely solidifies. About
60% of the total cycle time of injection molding is in the
cooling phase, as shown in Figure 1 [38]. Cooling channels
are provided in the mold design to accelerate the cooling
process. Incomplete cooling produces defective parts and is
not suitable for the application.

The mold release or demolding is the next and final stage
in injection molding. When the mold reaches a particular
value, the mold is opened by the clamping unit for extracting
the final product. Improper molding methods result in
uneven surface stress and product deformation. So, the
method of the demolding has to be chosen carefully. Stripper
plate demolding and ejector demolding are the most widely
used demolding methods [39]. When ejector pins or pres-
surized air cannot remove a part from the mold core, a
stripper plate is used. A stripper plate is utilized to push the
part from the injection mold core, and complete contact is
made between the outer parts of the part and the stripper
plate for the injection process. It is more reliable than ejector
pins or pressurized air, and it is usually used for thin-wall
injection molding. Incomplete molding can increase cycle
time, incur high costs, and waste material. After demolding,
one cycle of injection molding is completed. Usually, a cycle
time can vary from a couple of seconds to a couple of
minutes.

Many injection molding processes are widely used for
different sets of applications, as shown in Table 2 [33]. The
most commonly used injection molding techniques are
thermoplastic injection molding and metal injection
molding [40]. Thermoplastic injection molding plays a vital
role in manufacturing products from plastic and polymers,
whereas metal injection molding is mainly used for auto-
motive and electronic applications [41]. The other com-
monly used injection molding processes are gas-assisted
injection molding, microinjection, and thin-wall injection
molding. These molding techniques find their use in med-
ical, electronics, and telecommunication fields. There are
various parameters to consider while choosing the desired
injection molding process for a particular application [24].
Some factors to consider are production capacity, product
size, design considerations, and cost of operation and
materials.
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Injection molding also has certain disadvantages [42].
Designing and modeling injection molding components
take much time, and it is a complex process. One such
complicated process is designing the mold. Mold design is
critical to the accuracy and finishing of the final product, and
hence much time is invested in this process. So, this leads to a
temporary increase in lead time and hence affects the
industry’s productivity [43]. The equipment and necessary
apparatus are pretty expensive compared to other
manufacturing processes. So, injection molding is not
suitable for small-scale production. Also, there are limita-
tions in the size of the product because it is challenging to
manufacture large-size products. High tool cost and design
cost are incurred in the manufacture of large-sized products,
and hence it is not feasible. So, these are some of the lim-
itations of injection molding.

2.2. Defects in Injection Molding. Injection molding is also
prone to defects like any other manufacturing process [44].
The majority of the defects can be mitigated by redesigning
the molding process and following design guidelines [45].
Commonly observed defects in injection molding are flow
lines, weld lines, flash, and sink marks. The causes and
prevention of these defects are listed in Table 3.

From Table 3, it can be seen that most of these defects can
be eliminated if we have reasonable control over the op-
erating parameters of the injection molding process. So, to
establish a reasonable control on operating parameters, we
need to implement specific machine learning techniques
into the molding process.

Flow lines are lines or patterns appearing on the final
product, and they are usually off-toned in color. Small
craters formed in dense areas of the final product are called
sink marks [45]. They are mainly caused by the improper
gate and runner design and inadequate cooling time.
Condition in which thin surface layers form on the surface of
the part due to the presence of contaminants is called surface
delamination. Weld lines are similar to flow lines, but they
appear similar to a plane than a line when compared to flow
lines. They are caused by improper bonding and low in-
jection pressure and speed [46]. Non-uniform cooling of
mold causes warping, creating internal stresses within the
part and resulting in distortions. When mold is subjected to
high injection pressure and high screw speed, it can degrade
the mold’s material, which can cause discolorations in the
final product. This type of defect is called a burn mark [16].
Traditional methods of inspection of the parts include visual
inspection and various destructive and non-destructive tests.
However, the main problem with these techniques is that
they are ineflicient and rely on the operator’s experience. It is
time-consuming and increases the product’s production
cycle, affecting the productivity of the industries [47]. Online
monitoring can offer a better alternative than conventional
methods. It utilizes machine learning techniques in defect
detection, and it is more efficient and improves the
industry’s productivity. The initial cost of an online mon-
itoring system can be pretty expensive, but they are prof-
itable in the long run [48].
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TaBLE 2: Applications of different types of injection molding.
Type of injection molding Applications Ref.
Metal injection molding Medical applications, automotive parts, and electronic appliances [33]
Gas-assisted injection molding Household appliances and automotive panels [33]
Microinjection molding Lens, sensors, and optical instruments [33]
Thin-wall injection molding Food packaging, telecommunication applications, and medical applications [33]
Thermoplastic injection molding Plastic industry, medical, electronics, and automotive applications [33]
TaBLE 3: Defects in injection molding.

Defect Causes Prevention Ref.
Warping (i) Inadequate cooling time (i) Improve mold design and increase cooling time [44]
. . .+ (i) Maintain optimum injection pressure and rate
Flow lines (1) A varying ﬂow rate of molten material (i) Modify the design to avoid sudden changes in mold thickness [45]

(ii) Low injection pressure L
and direction
(i) Low injection pressure or speed
. (ii) Low mold temperature (i) Increase injection pressure and speed
Weld lines . [45]
(iii) Gates and runners are not of adequate (ii) Increase temperature of the mold
size
(i) Low clamping force (i) Reduce injection rate
Flash N vre 4 e . . [45]
(ii) High injection pressure (ii) Increase cycle time
Surface (i) Presence of contaminants or foreign (i) Preheat the mold before molding [45]
delamination particles (ii) Increase the mold temperature
(i) High injection pressure (i) Reduce injection pressure and speed
Burn marks (ii) High screw speed (i) Reduce mold temperature [46]
(i) Cooling time is not adequate (i) Lower mold temperature
Sink marks (ii) Small runners or gates (ii) Provide a uniform cooling rate by optimizing the thickness of [47]

(iii) High mold temperature

the mold

3. Machine Learning Models

Machine learning algorithms are mainly categorized into
supervised and unsupervised.

3.1. Supervised Learning. These algorithms can predict the
future or unknown data based on their learning in the
previous training. The comparison will be made with the
expected output and output that the machine has generated,
and then the model can be changed accordingly [49].

3.2. Unsupervised Learning. These algorithms are quite the
opposite of the supervised learning algorithms, where they
will not be trained to classify, but these will get inference
from a function and describe the unlabelled dataset [50].

The following is the list of widely used machine learning
algorithms. The following algorithms can be used for most of
the data problems.

3.3. Linear Regression. It is used to predict the values of one
variable based on the values based on other variables. A
variation in guessing is called a dependent variable. A
variable that we use to predict other variables’ values is called
an independent variable. For example, we use linear re-
gression for understanding that test performance could be
predicted based upon the updated timing of how to use
tobacco based on smoking time [51].

3.4. Logistic Regression. Logistic regression is a supervised
learning set of rules using binary type troubles. Though
“regression” contradicts classifying the point of interest here
in the phrase, logistic refers to the logistic feature doing the
classification assignment on these algorithms. Logistic re-
gression is an easy and productive algorithm, and that is why
it is usually utilized as much as binary class obligation.
Customer churns, e-mail spamming, and website and advert
click prediction are few examples wherein logistic regression
offers a practical answer. A base about logistic regression is
the logistic function, also known as sigmoid function, which
takes into any of the actual value numbers, mapping it to the
values between zero and one [52].

3.5. Decision Tree. A decision tree classifier is a nonpara-
metric supervised learning algorithm that can be used for
classification and regression. A tree is a piecewise constant
approximation. The main element of the decision tree
classifier is its ability to separate intricate, complex, and
dynamic decision-making processes into an assortment of
less complex decisions and, along these lines, provides a
solution that is simpler to interpret [53].

3.6. SVM. Support vector machine intakes data points and
generates the maximum marginal hyperplane (MMH) that
best separates the tags. A line can be an example of MMH in
2 dimensions which can be called as the decision boundary.
This decision boundary classifies both sides of lines with
different classes [54].



3.7. Naive Bayes. Naive Bayes is a supervised set of rules used
for type responsibilities. Therefore, it is known as the Naive
Bayes classifier.

Naive Bayes assumes that capability is independent of
each difference; there is no correlation among features.
However, that is not the case in actual lifestyle. The naive
assumption about capabilities is not correlated which is why
the set of rules is called naive [55].

3.8. KNN. The K-nearest neighbor (KNN) is a nonpara-
metric classification method, which is easy yet powerful in
the vast majority of the cases. The algorithm has a significant
dependency on the value of K. In practice, for every unseen
instance, its K-nearest neighbors within the training set are
first of all recognized. From that point forward, the domi-
nant occurring class on this produced neighborhood set of K
elements is recognized as a label set for the unseen instance.
Predicting was achieved consistently with most of the people
classes. Similarly, KNN regressions take mean values about
five close factors.

3.9. K-Means. K-means clustering is a vector quantization
method that seeks to partition n observations into k
clusters, with each observation belonging to the cluster
with the closest mean cluster centres, which serves as the
cluster’s prototype. As a result, the data space is partitioned
into Voronoi cells. Squared Euclidean distances are
minimised by K-means clustering within cluster variances
[57].

3.10. Random Forest. In this machine learning algorithm, a
combination of tree predictors is used to predict the output
data. These trees depend on the value of a random vector
which is sampled independently and with similar distri-
bution for all the trees in the forest. These are also called
decision forests for classification and regression by con-
structing a multitude of decision trees at training time
[58].

A neural network is a subset of machine learning (ML)
and is the core of deep learning. Neural networks are also
called artificial neural networks or SNN. This neural network
is mainly inspired by the human brain and how the neurons
send the signals to each other. The artificial neural networks
consist of three components: the input layer, the hidden
layer, and finally the output layer. The neural networks
mainly rely on the training data for learning and improving
their accuracy over time [53, 59-62].

(1) Single-layer feed-forward network: in the single-
layer feed-forward network, there will be two layers:
the input layer and the output layer. In the input
layer, computations are not done, so they will not be
counted. When different weights are applied to the
input nodes, the cumulative effect for each node is
taken, and the output layer is formed.

(2) Multilayer feed-forward network: the multilayer
feed-forward network has a hidden layer and does
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not directly contact external layers. Having more
hidden layers makes the neural network computa-
tionally stronger.

(3) Single node with its feedback: in the single node with
its feedback, the output could be directed back like
input to the same layers or the preceding layer node
resulting in a feedback network. Recurrent networks
are the feedback networks with a closed loop.

(4) Single-layer recurrent network: recurrent neural
network is a subset of an artificial neural network in
which the connections between the nodes form a
directed graph with sequence. The neural network
will exhibit dynamic behavior for a time sequence.
The single-layer recurrent network will use the in-
ternal state or memory to process the input
sequences.

(5) Multilayer recurrent network: the processing output
element may be directed to the processing element in
the same and preceding layers in the recurrent
multilayer network. The same task is performed for
all sequence elements, and the output depends on
previous computations. The main feature of RNN is
the hidden state that captures information about the
sequence.

4. Discussion: ML Implementations
and Outcomes

As technology advances, more advanced injection molding
types are invented. Some of the examples include metal
injection molding and ceramic injection molding. In metal
injection molding, powdered metals are fused with alloys of
relatively softer metals injected into the mold. Gas-assisted
injection molding and water-assisted injection molding are
used when the molding parts are very thick and in cases
where making hollow parts is necessary to save both cycle
time and maintain high product quality. Even existing in-
jection molding processes are also developed to improve
performance. For example, in plastic injection molding, new
resin formulations are developed to improve the strength
and decrease the weight of the product. Many injection
molding tools are also developed, which can improve the
quality of the products. These tools use machine learning to
improve the precision and accuracy of the final products.
The paper’s main focus was on the algorithm used, Al
model taxonomy, depth layer sizes, training time, testing
time, dataset, framework, core language, interface, advan-
tages, and disadvantages. Based on the algorithm used,
classification was done if it was a supervised or unsuper-
vised algorithm. Depth layer size is found to determine the
number of layers and the number of neurons in the hidden
layers for the most optimized result. Dataset size is also
considered to determine if the amount of input training
data was sufficient or not to the model to give the most
accurate results and predictions. The framework and soft-
ware also considered which software gives the best visu-
alization and correct prediction of the results. It was found
that the most used software programs were MATLAB and
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C-MOLD. At last, the advantages and disadvantages of the
model proposed in the research works are given to date to
help the future models to be analyzed accurately and chosen
for the right task based on the requirements met by their
advantages and disadvantages.

In machine learning, supervised learning (Figure 5) is when
the machine will be trained on input data using labels to be
given or predict the output with the required accuracy. The
scheme like the supervisor or a teacher first teaches the student
how to solve and then makes the student more accurate. After
training, the model is then tested on test data, which is a part or
subset of the training data in different ratios. Since the machine
is already trained, it gives the output more reliability. The
method in [63] gave the best output by predicting the perfect
time when the machine should be changed to minimize
damage cost by getting trained using multiple supervised al-
gorithms, compared with other obtained results from various
research works shown in Table 4.

Unsupervised learning (Figure 6) is a section of machine
learning used in many real-world problems in which the labels
are not mentioned, and the hidden patterns from the dataset
should be found out. The model by itself tries to generate a
pattern from all the datasets without supervision. Based on the
similarities in the dataset, the machine tries to find common
elements and group or cluster those data together. This method
is similar to how a normal human being learns on his or her
own. The method in [72] shows the best results using unsu-
pervised cluster analysis that finds the molds wearing out and
predicts in real-time, and it has an excellent early warning
system which predicts before they wear out and cause trouble.
The comparison of such models with other obtained results
from various research works is given in Table 5.

Reinforcement learning (Figure 7) is a segment of machine
learning where the machine learns the classification of the
dataset by the trial and error method like getting rewards for
giving correct output and penalties for wrong output to the
machine. Using this concept, the model finds how it should be
doing a task to maximize rewards and minimize penalties by
starting with random data trials. The paper [77] used rein-
forcement learning by predicting the operating conditions and
molding conditions in a short period and performing molding
with less consumption power, compared with other obtained
results from various research works shown in Table 6.

The artificial neural network (Figure 8) is a segment of
artificial intelligence used to simulate or replicate the
working of human brain functionality. The ANN consists of
processing units that contain inputs and outputs. Through
the input, the ANN learns and then produces the required
output. The method in [43] gives the best result using ANN
by predicting high accuracy and recommending the injec-
tion molding process condition on the real and correct time
in fix material condition. Table 7 compares research works
done in ANN implementation in injection molding.

Backpropagation algorithms (Figure 9) are rules used to
guide artificial neural networks (ANNs). It is the most basic
block in the neural network. This algorithm can effectively
train the neural network by chain rule technique. The
backpropagation performs a back pass after every forward
pass, which adjusts the model parameter. Here, the method

Supervised
Learning

Naive Bayes

Logistics
Regression

Decision Tree

FIGURE 5: Supervised learning.

in [13] using the backpropagation algorithm predicts the
faults even with less important variables than desired,
causing an ANN system to diagnose faults that can be
successfully built, compared with other obtained results
from various research works shown in Table 8.

The hybrid algorithms in the artificial neural network use
different algorithms like swarm optimization, greedy gra-
dient, and backpropagation and combine them to get an
improved hybrid algorithm for prediction. The research
works have shown that using the hybrid algorithm for ANN
gave high process reliability.

They are cost-effective due to reduced production costs
and high-quality parameters. Here, the method in [18] gave
the best result by predicting the parameters ideally at the test
run without consuming and wasting many resources,
compared with other obtained results from various research
works shown in Table 9.

A genetic algorithm (Figure 10) is a segment of neural
network algorithms which are based on nature-inspired
property of natural selection. It is a subset of evolutionary
computation. This tedious process follows the Darwinian
theory. This algorithm’s main advantage is that it is faster
and efficient than many traditional methods and has an
excellent list of solutions rather than just one solution. In the
papers using many parameters and increasing the search
space, the genetic algorithms fit the best. The method in
[108] gives the best result using genetic algorithms by taking
the time needed to determine the starting process parameter
for injection molding which could be significantly reduced
compared with other obtained results from various research
works shown in Table 10.

Recurrent neural networks (Figure 11) are a subset of
neural networks mainly used for their sequential data al-
gorithm in the famous Apple Siri and the Google search by
voice. It contains an internal memory due to which it can
remember its inputs that help significantly solve the
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Un-Supervised
Learning ARG
FIGURE 6: Unsupervised learning.
TaBLE 5: Unsupervised Learning Cases in Injection Molding.
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TasLE 5: Continued.
Depth 1
Algorithm Al model sizeef ttra?r}llierf Framework, core
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Cycle time is f L . .
rom many injection good quality for ~ The whole artificial
. 37 seconds, . . .
AT models Supervised - molding cycles by product generated  intelligence-based
. and inject . Python language R . [76]
are used learning time is 3 using temp sensors by the injection control system is
and pressure caused molding through not ready
seconds : .
by the cavity. real-time
monitoring.
BEST ACTION
REWARD
i i . "
STATE SELECTION OF ALGORITHM
FIGURE 7: Reinforcement learning.
TaBLE 6: Reinforcement learning models in injection molding.
A model  size e Framework, core
Algorithm used - & Dataset language, and Advantages Disadvantages Ref.
taxonomy time, and .
S interface
testing time
Easily possible to adjust
. . operating conditions and
Remf.orcement Remforc.e ment NA Sensor NA molding conditions in a short NA [77]
learning learning dataset

period and perform molding
with less consumption power

sequential data problems. In the research by Nagorny et al.
[113], the recurrent network gave the best result by showing
the best performance about the LSTM layer architectures,
compared with other obtained results from various research
works shown in Table 11.

5. Summary and Conclusions

For reducing defects in injection molding, control on
operating parameters is required [48]. These operating
parameters include injection speed and pressure, mold

temperature, and mold design [16]. Traditional defect
detection methods are unsuitable for detecting defects
and controlling operating parameters. They mostly rely
on the operator’s expertise, and they are unreliable at
times and are not efficient [47]. We can establish rea-
sonable control over the operating parameters with
machine learning techniques and reduce errors. One such
application of machine learning techniques is in mold
design [14]. The mold design takes a great deal of time,
and it is a very complex process. Mold design can affect
the quality and strength of the final product. Machine
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COMPETITIVE
NETWORKS

RECURRENT
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ART MODEL

HOPFIELD NETWORK
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ANN —
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FORWARD PERCEPTION
RADIAL BASIS
FUNCTION
NETWORKS
FIGURE 8: Artificial neural networks.
TaBLE 7: ANN models in injection molding.
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TasLE 7: Continued.
Depth layer Framework,
. AT model izes, traini .
Algorithm used mode SIZes, fraiing Dataset core Advantages Disadvantages  Ref.
taxonomy time, and language, and
testing time interface
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. on the real and quickly to new
36 various molds L
correct time in fix products.
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cost deduction
TARGET
OUTPUT
NEURAL
—— INPUT VECTOR NETWORKS
TRAINING
ERROR MSE

PROCESS

ERROR BACK-PROPAGATED

FIGURE 9: ANN backpropagation algorithm.

learning can be applied in designing and optimizing mold
design. It helps to save a lot of time and preproduction
delays [47]. The initial setup cost for implementing
machine learning to injection molding can be costly, and
it is not suitable in low production applications [2].
However, in high production, applications can be prof-
itable in the long run and improve productivity
[118-123]. However, in injection molding, there is a
constraint on the size of the product. For manufacturing
large products, the equipment required is costly and takes
a lot of floor space. So, it is not feasible for the manu-
facture of large products [20, 124-127].

These are some of the significant conclusions that can be
drawn from the recent research works which may benefit
researchers:

(1) Machine learning algorithms can be used in in-
jection molding processes, starting from the
molding process until the final step stages.

(2) Multiple regression equations that were obtained
through design of experiments can help the re-
quirement of many train datasets for ANN.

(3) Machine learning counters the drawback of the
simulation by reducing repetitive processes signif-
icantly and reducing substantial computational
power, amount, and time, which replaces the need
for professionals to interpret results that again help
in the implementation.

(4) The most commonly used simulation programs
were MATLAB and C-MOLD.
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F1GURrE 10: ANN genetic algorithm.

(5) Neural network is a perfect model that can be used
in the modeling complex interactions among many
inputs and outputs along with high prediction with
excellent accuracy.

(6) The only drawback is the need for a good amount of
training data and computational power, time, and
cost.

(7) The best selection of the hidden layer architecture is
not correctly decided because it fails for other
applications.

(8) A minimal quantity of datasets has been used by
many during training. Large datasets should be used
to avoid overfitting.

(9) The neural networks can be applied for many ap-
plications like control, identification, modeling
prediction,  optimization, = monitoring, and
classification.

(10) ANN can be used to develop a reverse process
model effectively.

(11) The best predictor was Gaussian process regression
with the highest coefficient of determination of
0.995.

(12) Even the multiple linear regression is a simple
model structure, and it did not perform worst on
many datasets.

(13) K-nearest neighbor astonishingly produced results
below expectation as compared to rest of the al-
gorithms studied

(14) Some other algorithms like neural networks, sup-
port vector machine, and decision tree have average
predictive quality.

6. Future Directions

The future directions to guide the researchers ahead are as
follows:

(1) The future work for this review concentrates on ap-
plying the different methodologies in machine
learning and neural networks to many different types
of machine data comprising contrasting values. In the
future, more machine learning techniques may be
made which are best suited for a particular injection
molding machine for corresponding variables that
gives the best results after analyzing with different test
datasets. The self-made customized learning model
might give a better result for a particular injection
molding machine and its parameters. In this manner,
future work might be continued on this review.

(2) In the future, the model’s scalability should be taken
into consideration. The study’s main aim was to find
the prediction models that can find out good and bad
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STATE
FIGURE 11: Recurrent neural networks.
TaBLE 11: Recurrent neural networks in injection molding.
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values for injection molding parameters. Many
different parameters have been taken into consid-
eration while feeding the models with data, and
multiple machine learning models, including su-
pervised and unsupervised learning, have been
considered. Their outputs were compared with re-
spect to the best and worst predictions to find the
best models that give the most accurate results.

While feeding and training the model, the dataset
ratio should be balanced between several good and
bad parts. The data size should also be considered; it
should not cause overfitting or underfitting, which
might result in wrong predictions in the future.

(3) For the future, the work can concentrate mainly on

integrating more and more factors or parameters af-
fecting the performance of injection molding
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machines. It is strongly believed that the optimization
strategy is effective. Many materials might be included
in the future, and different molds might also be used for
the workpieces to give a great application where au-
tomated machines are primarily used in the industries.
More stress can be given on the parameter optimiza-
tion and the tolerance design, which are essential ac-
tivities related to quality; by considering different
molds, the scalability of the model increases.

(4) In the future, the work corresponding to this review
study can prepare or generate various kinds of
learning models and algorithms. It includes the
complete implementation of machine learning-
based models or artificial intelligence-based models
or control systems to manufacture different objects
using injection molding. It should also involve the
validation part of the injection molding machine
with different kinds of data (including the edge cases
and exceptions) and experiments that make the
model complete for usage in terms of prediction and
validation of the injection molding machine output
using given process control parameters.
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