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Abstract

Artificial intelligence has illustrated drastic changes in radiology and medical imaging techniques which in turn led to
tremendous changes in screening patterns. In particular, advancements in these techniques led to the development of
computer aided detection (CAD) strategy. These approaches provided highly accurate diagnostic reports which served as
a “second-opinion” to the radiologists. However, with significant advancements in artificial intelligence strategy, the
diagnostic and classifying capabilities of CAD system are meeting the levels of radiologists and clinicians. Thus, it shifts
the CAD system from second opinion approach to a high utility tool. This article reviews the strategies and algorithms
developed using artificial intelligence for the foremost cancer diagnosis and classification which overcomes the chal-
lenges in the traditional method. In addition, the possible direction of AI in medical aspects is also discussed in this

study.
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1. Introduction

C ancer being one of the non-communicable
diseases is ranked at the foremost for being
the blockade of survival rate among the global
population. For instance 1.8 million new cases
and 9.6 million deaths were estimated worldwide
in 2018. Among them 59.5% of global cancer
deaths had occurred in Asia. Moreover cancer in
lung, breast, pancreatic, gastric and skin were the
significant contributors for the highest incidence
rate in 2018 [1]. Due to the rise of cancer incidence
rate, diagnosing of disease using conventional
tools at early stage had become difficult. More-
over, these traditional methods experienced
diagnostic errors including missed, wrong and
delayed cases [2]. On the other hand, under-
standing the perplexity of cancer at different
stages has complicated the research further. The

perplexity of cancer includes early detection, ac-
curacy, tumor evolution, metastasis pattern,
recurrence, tumor aggressiveness and determi-
nation of tumor margins [3]. To overcome the
limitations mentioned above and to diagnose
cancer at the earliest, advancement in artificial
intelligence (AI) had been raised for quantifying
the imaging data.

Deep learning, a section in Al, plays a promising
role in automated recognition of features from
sample medical images beyond human's role in
particular tasks [4]. For instance automated appli-
cations of Al enhanced the qualitative potentials of
clinicians, which includes tracing numerous lesions
at a time, prediction of the resultant tumor by
referring to the various databases within a short
period, translation of phenotypic variations to
genotypic and persistent monitoring of patients.
Despite the need for a large quantity of data for
training, deep learning had illustrated relative
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Fig. 1. Overall process involved in tumor diagnosis and classification.

stability against random fluctuations in the ground
truth features [5]. Furthermore it generalizes disease
imaging techniques with minimal errors which in
turn lead to earlier and significant diagnosis of
diseases.

Besides deep learning, artificial neural network
(ANN) is also used to classify cancer more precisely.
It is a mathematical model postulated from the
human nervous system comprising of inter-
connected neurons. Connectionist strategy is
implemented in this technique for computational
processing of information. Eventually to illustrate
the adaptive system, neural network plays a signif-
icant role by modifying its structure based on the
training data and by detecting patterns in the data.
ANN can be designed through learning process for

any particular application [6]. On learning the data
during its training time, it organizes itself to proceed
further. Moreover many networks can be performed
simultaneously and also bears fault tolerance by
preventing degradation of structures [7]. Though
these studies are intensively applicable in pre-clin-
ical studies, the automated approach of tumor
diagnosis and classification discriminates the cancer
period of time. The overall process involved in
tumor diagnosis and classification were briefed in
Fig. 1.

At the light of these evidences, current studies and
future applications of Al to medical imaging in top
incidental cancers were reviewed during this
investigation. This paper highlights the application
of Al that generated a drastic transformation in
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Fig. 2. Schematic representation illustrating overall view of our study.

cancer diagnosis and treatment. In particular, the
study includes case studies which enlightens
application of Al in diagnosis and classification of
three cancers (lung, breast and gastric cancer). The
evolution of Al in cancer imaging described in this
study also provides the significance of Al in cancer
diagnosis and treatment. Moreover this study also
provides potential applications of Al overcoming
the limitations in cancer imaging including presence

of denser tissues during diagnosis and classification
of cancerous samples from non-tumor samples. The
number of case studies concerning Al technology in
lung, breast and gastric cancer clarifies the other
characteristics of this latest technology. Overall, the
study shows the significant application of Al tech-
nology which in turn improves the cancer care in
the society. Moreover, this paper also suggests that
artificial intelligence application in cancer imaging
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needs further evaluation and validation for
improved reliability and generalizability of ap-
proaches in clinical practices [8]. The tree diagram
provided in Fig. 2 illustrates the structure of the
paper for better understanding.

2. Theoretical background

Al in oncology imaging process includes three
major clinical tasks: Diagnosis, characterization and
monitoring. In general, detection involves observa-
tion of pathologists over variations in image in-
tensities or complex patterns to understand the
aberrations in the patients. Advanced computa-
tional technology-assisted pathologists to predict
and identify cancer with more accuracy and fewer
errors. This strategy of detection is known as
Computer Aided Detection (CAD) [9]. Al based
tools assisted in identification of missed cancer pa-
tients as well as detection with high accuracy and
sensitivity [10]. The second task characterization
includes diagnosis, segmentation and staging of
cancer. This task quantifies abnormality of features
including size and texture. Segmentation measures
extent of abnormalities in a two dimensional (2D)
plane. Manual segmentation process in clinical
practice limits itself with minimal accuracy, inter-
rater bias, high time and labor consumption and
inconsistent reproducibility [11]. In contrast, Al
based approach provided automated segmentation
with increased quality, reproducibility and
efficiency.

Further expansion of technology leads to an inte-
grated method in which separate segmentation
process is not required. This task also includes
staging of disease in which the cancer is explained
based on predefined features and are classified
based on TNM classification [12]. Ensemble
methods were employed in traditional staging task
whereas automated staging relies on tumor size,
metastasis and neighboring lymph node data for
classification [13].

On the other hand ANN had become a significant
strategy for cancer classification. It consists of three
consecutive layers namely input layers, hidden
layers and output layer. ANN can be classified into
single layer feed forward network, single node with
its own feedback, multi-layer feed forward network
and multi-layer recurrent network. In addition, it
also uses three different learning strategy for
generating neural network which includes super-
vised learning, unsupervised learning and rein-
forcement learning. Among them supervised
learning has higher accuracy and precision as it
develops output based on the pattern of each input
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[7]. Hence automated staging is more reliable than
traditional approach. Despite the complexity of data,
artificial intelligence is remarkable in identifying the
features from large volume of medical data which in
turn is used to assist clinicians [14]. It also identifies
complicated patterns and supports in transforming
images into valuable quantitative information. It is
to be noted that these information are not recog-
nized by humans, thus makes clinical decisions
easier.

Besides, detection and classification of cancers
were the major challenges in the medical field.
Artificial intelligence assists clinicians in interpret-
ing cancer images, including cancer stages, tumor
delineations, detection of mutations, the impact of
anti-cancer treatment, and the influence of disease
on other organs. For instance, Khan et al. had pro-
posed an integrated convolution neural network
algorithm to classify the breast tumor as benign and
malignant, which in turn reduced the burden of
pathologists in tumor classification [15]. Similarly, a
deep learning model developed by Kim et al. and
his co-workers assisted the clinicians in predicting
the survival rate of the oral cancer patients, which in
turn helped the medical practitioners to provide
appropriate and effective treatments to the patients
[16].

Moreover, medical input data varies beyond im-
aging techniques, which include blood biomarkers,
molecular signatures, and statistical data. It is to be
noted that Al is one of the integrative tools that
parallel and normalizes various streams of infor-
mation. Also, advancements in Al approach assists
human experts to visualize, understand, and
analyze the results [17]. Besides medical imaging,
the application of Al in health monitoring enhances
efficiency with reduced cost.

Despite radiation dose, subsequent measure-
ments, and scan — time, advancements in phase-
contrast imaging techniques can assists radiologists

Application of Al in cancer imaging
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Fig. 3. Graph explaining the significance of Al in the field of cancer
imaging.



Table 1. Recently proposed algorithms for early diagnosis and classification of lung cancer.

S. No Paper Year Input images Dataset Purpose Classifier Results
1 ALzubi et al. [28] 2019 Thoracic surgery 1200 Lung cancer diagnosis Weight Optimized NN with Feature selection rate - 90%
dataset Maximum Likelihood
Boosting classification
2 Pandiangan et al. [29] 2019 X-ray images 40 Lung cancer detection ANN Accuracy - 99%
3 Nasser et al. [30] 2019 Lung cancer dataset NA Lung cancer detection Feed forward back Accuracy - 96.67%
propagation neural network
4 Roy et al. [31] 2019 Lung CT images 100 Lung cancer detection SVM and Random forest Efficacy - 94.5%
algorithm Sensitivity - 74.2%
Specificity - 77.6%
5 Bhalerao et al. [32] 2019 Lung CT images 90 Lung cancer detection Maxpooling and ReLU Accuracy — 94.34%
algorithm Sensitivity — 91.755
Specificity — 95.7%
Precision — 91.75%
6 Senthil et al. [26] 2018 Lung cancer image dataset NA Early detection of lung Partial swarm optimization Accuracy - 97.8%
cancer Sensitivity - 94.8%
7 Perumal et al. [33] 2018 Lung CT images 100 Lung cancer detection and Artificial bee colony Sensitivity - 92%
classification optimization True positivity rate - 92%
False error rate - 7.6%
8 Xin Li et al. [34] 2018 Chest CT images NA Stage 1 diagnosis CNN Sensitivity - 96.4%
Specificity - 95.6%
9 Wang et al. [25] 2018 Histopathology images 539 Discovery of tumor shape and CNN Accuracy - 89.8%
boundary
10 Coudray et al. [27] 2017 Histopathology images 1175 Classification and mutation Inception v3 Sensitivity - 97%

predication in NSCLC

Specificity - 97%

NN — Neural Network, ANN —Artificial Neural Network, SVM — Support Vector Machine, CNN — Convolution Neural Network, NSCLC — Non Small Cell Lung Cancer.
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Table 2. Recently proposed algorithms for early diagnosis and classification of breast cancer.

HIOLLAV MAIATY

S. No Paper Year Input Data type Dataset Purpose classifier Results
1 Batra et al. [48] 2020 Mammograms 161 Breast cancer detection Max pooling Accuracy (Tensorflow) -
87.98%
Accuracy (Matlab) -
84.02%
2 Ali et al. [49] 2020 Mammograms 50 Breast cancer classification Tetrolet transform based k- Accuracy -92%
means classifier Sensitivity - 88%
Specificity - 96%
3 Kim et al. [50] 2020 Mammograms 17230 Detection of breast cancer CNN Accuracy - 95.9%
4 Wadkar et al. [51] 2019 Mammograms 5000 Breast cancer detection ANN and SVM Accuracy (artificial neural
network) - 97%
Accuracy (Support Vector
Machine) - 91%
5 Alejandro et al. [52] 2019 Mammograms 240 Detection and classification CNN Accuracy - 89%
of breast cancer Sensitivity - 86%
Specificity - 79%
6 Alickovic et al. [53] 2019 Breast cancer dataset 699 Detection and classification Perceptron neural network Accuracy - 99.27%
of breast cancer
7 Rodriguez-Ruiz et al. [54] 2019 Mammograms and breast 9000 Detection of calcifications Features classifier Accuracy - 84%
tomosynthesis and soft lesions
8 Watanabe et al. [55] 2019 Breast cancer dataset 317 Breast cancer detection Artificial intelligence-based Accuracy - 90%
computer-aided detection
9 Wang et al. [56] 2019 Mammograms 400 Breast cancer detection Unsupervised extreme Accuracy of Single feature
learning machine classifier model - 76.25%
Double feature model -
80.75%
Multi feature model -
84.5%
10 Huang et al. [57] 2017 Breast cancer dataset 102993 Breast cancer prediction SVM Accuracy - 99.41%

CNN — Convolution Neural Network, ANN —Artificial Neural Network, SVM — Support Vector Machine.
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Table 3. Recently proposed algorithms for early diagnosis and classification of gastric cancer.

S.No  Paper Year Input data type Dataset Purpose Classifier Results

1 Aslam et al. [69] 2020  Saliva 220 Classification of gastric SVM Accuracy - 97.18%
cancer into early and Sensitivity - 96.88%
advanced stage Specificity - 97.44%

2 Li et al. [70] 2019  Endoscopic images 2429 Early diagnosis of gastric Inception v3 Accuracy - 90.91%
cancer Sensitivity - 91.18%

Specificity - 90.64%

3 Guimaraes et al. [71] 2019  OGDE images 200 Detection of gastric CNN Accuracy - 93%
precancerous condition

4 Wang et al. [72] 2019  Gastroscopy images 104864 Screening of gastric cancer CNN and SVM Accuracy - 92.10%

5 Gao et al. [73] 2019  tomography images 1371 Detection of metastatic Faster region based CNN Accuracy 95.45%
lymph nodes for gastric
cancer classification

6 Leon et al. [74] 2019  Histopathological images 40 Detection of gastric cancer CNN Accuracy - 89.72%

7 Cho et al. [75] 2019  Endoscopic images 5017 Detection of gastric Inception Resnet v2 model Accuracy - 84.6%
neoplasms

8 Wu et al. [63] 2018  OGDE images 24549 Early detection of gastric Deep CNN Accuracy - 92.5%
cancer Sensitivity -94%

Specificity - 91%

9 Sakai et al. [76] 2018  Endoscopic images 926 Automatic detection of Transferring CNN Accuracy - 82.8%
gastric cancer

10 Zhu et al. [67] 2018  Endoscopic images 790 Prediction of invasion depth CNN - computer aided Accuracy - 89.66%

for endoscopic resection

detection system

Sensitivity - 76.47%
Specificity - 95.56%

OGDE images - Oesophagogastroduodenoscopic images, SVM — Support Vector Machine, CNN - Convolution Neural Network.

REVIEW ARTICLE
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in detecting tumors. This improvement in combi-
nation with Al analysis prevents the revisiting of
patients with decreased false-positive rates [4,18].
Moreover, advancements in digital pathology will
be more quantitative than radiology [19]. With more
advancements in Al, we expect designing of FDA
approved standard protocols for cancer diagnosis,
classification, and management.

3. Methodology

In order to manifest the potential of artificial in-
telligence in cancer imaging, the following case
studies were described in this paper:

e Application of artificial intelligence techniques detection and
classification of
o lung cancer
o Breast cancer
o Gastric cancer

Furthermore, to show the advancements of Al in
the field of cancer, the following search terms were
used in the advanced search tool [20]:

o Application of artificial intelligence in lung cancer imaging
technique

o Application of artificial intelligence in breast cancer imaging
technique

e Application of artificial intelligence in gastric cancer imaging
technique

The evolution of artificial intelligence in cancer
imaging was carried out for a period of five years
(January 2015 to May 2020). In order to understand
the significance of Al in cancer, the graphical anal-
ysis of the evolution of Al in cancer imaging in the
corresponding cancer type is illustrated in Fig. 3. In
particular, the recent development of Al in cancer
imaging techniques after 2017 is briefly discussed in
this study. Selective research works having valuable
contributions in the lung, breast and gastric cancer
diagnosis and classification is tabulated in Table 1, 2
and 3 respectively.

4. Results and Discussion

Recent statistical analysis had reported a drasti-
cally increased death rate in lung cancer, breast
cancer and gastric cancer worldwide [21]. Hence,
early detection and classification with high accuracy
had become essential. In turn, the contribution of
researchers towards detection and classification had
been increased. Fig. 3 shows the significance of Al in
cancer imaging by researchers.

BioMedicine
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4.1. Current trends in lung cancer diagnosis and
classification using artificial intelligence

Lung adenocarcinoma (LADC) being the foremost
cause of death in humans among all other cancers.
The morphological features of LADC are heteroge-
neous in nature, thus provides variation during
diagnosis. Depending on the tumor size and lymph
location, lung cancer is classified into four stages:
stage 1 to stage 4. The survival of victim depends on
stages of the cancer which enhances the survival
rate of the victim [22]. Hence early diagnosis plays a
crucial role in lung cancer.

The preliminary diagnosis of lung cancer depends
on the detection of pulmonary nodules. The
computed tomography of both benign and malig-
nant tumors contains pulmonary nodules. Hence
differentiating those into benign and malignant
using visual assessments by the radiologists had
become challenging [23]. Moreover, nodule size is
the most reliable prognosticator of malignancy in
lung cancer. Hence nodule detection had become
crucial in early diagnosis.

Till now, the tissue imaging process is playing an
essential role in lung cancer prognosis. This strategy
depends on morphological features such as tumor
size, shape, and invasion of the tumor cells. It is also
to be noted that these techniques lack a systematic
approach of correlating the features to disease
diagnosis [24]. Additionally, other diagnosing sys-
tems such as magnetic resonance imaging (MRI),
sputum cytology, and chest radiography resulted in
poor patient survival due to its lower classification
accuracy and higher classification error rate. Hence
the application of Al emerged as an effective tool in
lung cancer diagnosis and classification.

Recently artificial intelligence is playing a promi-
nent role in tumor detection, segmentation and clas-
sification as well as nodule detection in lung cancer.
Moreover, tumor classification and metastasis detec-
tion from H&E images have been facilitated using
deep learning strategies. For instance, Wang et al. and
his co-workers developed a shape-based diagnostic
model based on features such as age, gender, smoking
status, and disease stage. The ultimate aim of the work
to characterize the shape of the tumor, which is closely
associated with disease prognosis. A convolution
neural network was developed using 539 pathology
images of lung adenocarcinoma patients obtained
from NLST and TCGA repository. The generated
model was validated using a subset of 389 images and
the tumors were detected. The shape features of the
tumor were extracted and analyzed. In addition, the
risk score was used to group the people into low risk
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and high risk respectively. Moreover Kaplan — Meier
method was to predict the survival rate of the patients.
Around 89.8% accuracy was obtained for the predic-
tion of tumor [25]. This study significantly proves the
application of Al in lung cancer diagnosis.

Recently, a combined technique of neural network
was proposed by Senthil et al. and his research
scholar to enhance the classification accuracy with
minimal error rate. They combined particle swarm
optimization (PSO) algorithm to the neural network
classifier. PSO is a highly cost-effective computa-
tional strategy with high speed. The accuracy,
specificity and sensitivity of the proposed PSO-
neural network (PSO-NN) was compared with the
standard neural networks such as k-means neural
network (KNN), Bayes network (BN), neural
network (NN) and support vector machine (SVM).
Accuracy of PSO-NN was about 97.8%, whereas the
accuracy of KNN, BN, NN and SVM was found to be
68.9%, 74.6%, 85.4% and 91.5% respectively [26]. The
proposed network suggests that Al can be effec-
tively implemented for lung cancer diagnosis.
Moreover it assists doctors in diagnosing and
medicate patients at the earliest.

Besides the classification of lung cancer patients,
the identification of mutations plays an important
role in targeted therapy. The deep learning con-
volutional neural network model built using 1634
histopathology images from TCGA repository
assisted the experts in treating patients through
targeted therapy. In this study, Nicolas et al. used v3
convolutional neural network to classify disease and
to identify the mutations from the images. Using the
proposed model, he achieved around 97% of spec-
ificity and sensitivity for classifying the samples and
86% accuracy for identifying the mutations from the
samples. His findings suggested the experts to
cancer types and mutation with high accuracy and
less expensive strategy [27]. Thus this proposed
work can provide a promising treatment for lung
cancer patients. Additionally, some research works
contributed to lung cancer diagnosis, and classifi-
cation were tabulated in Table 1.

4.2. Artificial Intelligence in diagnosis and
classification of breast cancer

Breast cancer holds the second position amongst
overall cancer death worldwide. It occurs due to
uncontrolled and abnormal growth of tissues
resulting in lump formation in the breast. Thus it
consequently leads to tumor growth which can be
treated successfully at their early stages [35].
Recently, the most prominent tool “mammography”
has been developed for early diagnosis of breast
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cancer. Regardless mammography had reduced
mortality rate by 30%, it contained certain limita-
tions, including high false-positive rates, unnec-
essary biopsies, overdiagnosis, and treatment [36].

In addition, analyzing of a mammogram differs
based on the experience and is always found to be
biased due to dense breast tissues [37]. Subse-
quently, this leads to interval cancers that are
detected prior to biennial screening [38].

Similarly, the presence of masses and micro-
calcification (calcium deposition) interferes with the
quality of mammograms. Moreover, the detection of
masses is more challenging than microcalcification
due to its variation in size and shape, which in turn
produces poor contrast images during mammog-
raphy. This made the radiologists challenging to
classify them as benign and malignant [39]. Thus
automated image detection and classification is
playing a vital role nowadays.

ANN is one of the most widely used tools for
interpreting and decision making of mammography
as well as biopsy screenings. The two major appli-
cations of Al in breast cancer are feature analysis
from the images and to implement classifiers over
the desired target [40].

In general, morphology of cells and its compo-
nents are regulated by biological mechanisms such
as differentiation, growth, and development. Earlier
pathologists performed tedious visual approaches
for tumor grading and morphological assessment of
samples. This created larger variations amongst the
senior pathologists [41]. Hence many strategies were
developed for automated image analysis which in-
cludes CAD till AL Recently, Al based strategies
were found to be outperforming in pathology image
analysis [42]. For instance, Rakhlin and his research
group drawn attention for image feature extraction
and their classification. Deep convolution neural
network was implemented for extraction of image
features, and gradient boosted trees classified them
into 2 class as well as 4 class classifications respec-
tively. Their study reported about 93.8% accuracy
and 97.3% AUC with respect to 2-class classification
tasks, whereas the 4-class classification reported
only about 87.2% accuracy. Their strategy imple-
mented unsupervised learning for feature extraction
and supervised learning for classification. This
study shows a significant result for feature extrac-
tion and classification during pathology image
analysis [43].

In addition, the presence of highly dense breasts
acts as a risk marker during imaging process. It
describes the measure of intensity of fibro-glandular
tissue in the breast. Moreover presence of dense
breast masks cancer and thus reduces the sensitivity
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during imaging. Besides, the manual classification
of dense breast images into four qualitative cate-
gories based on Breast Imaging and Reporting Data
Systems (BI-RADS) by the radiologists was found to
be more difficult [44]. Several studies using deep
learning have been investigated in mammography
imaging processes. Mohamed et al. and his group
investigated a novel Convolution Neural Network
(CNN) for classifying mammograms into scattered
density and heterogeneously dense samples. The
classification performance of CNN was also tested
using the refined mammograms during their
investigation. The AUC of the CNN model was
94.2%. They observed that increasing the number of
mammogram images increased their accuracy from
94.2% to 98.8%. Hence their study demonstrated the
classification accuracies between the two groups,
which subsequently enhances clinical assessment of
breast densities [45].

Despite the advancements in breast imaging
techniques, interpreting the patterns have become
more challenging. Besides, it required specialization
and experience. However, the performance by the
radiologists has been depleted due to the high
incidence rate of breast cancer. At the same time,
increased false-positive and recall rates had criti-
cized the application of mammography for imaging
and screening. Regardless of their drawbacks,
mammograms have the property of being single-
slice projection images which can be trained easily
using ANN [46]. Becker et al. illustrated a combi-
natorial approach of deep learning with CNN (d —
CNN) for diagnosing the images with higher accu-
racy and shorter period of time. They compared the
accuracy of d — CNN with the experienced radiol-
ogists. The study reported about 82% AUC for the
model and about 79% AUC for radiologists respec-
tively. The suggested model for analyzing general
mammograms of breast cancer was higher than the
radiologists. In a similar manner, the study sug-
gested that improving the models will assist radi-
ologists and makes clinical assessments easier [47].
Further, the contributions of other researchers are
tabulated in Table 2.

4.3. Recently proposed artificial intelligence
strategies in gastric cancer diagnosis and
classification

Gastric cancer positions third as a fatal disease
and fifth for its high incidence rate in the world [58].
The patients with early gastric cancer rarely bear the
symptoms, but later on, the symptoms progress
gradually. Moreover, the symptoms are much
similar to gastric ulcers, thus it makes it difficult for

BioMedicine
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the patients to differentiate them. This pre-requi-
sites the need for early diagnosis of gastric cancer.
The advancement in endoscopy assists in early
diagnosis and substantially reduces the mortality
rate of gastric cancer. Further, early detection helps
us to remove the lesions using endoscopic resection,
which significantly improves the patient's health
quality [59]. Therefore it is essential to attain early
diagnosis with high accuracy for identifying lesions
to prevent and treat gastric cancer.

Magnifying endoscopy with narrow band imaging
(M-NBI) is used to inspect glandular epithelium by
observing microsurface structure and microvascular
architecture. It has better accuracy than light
endoscopy to distinguish non-cancerous and gastric
cancer lesions [60]. Several investigations had re-
ported that the sensitivity and specificity of identi-
fying gastric cancer lesions using M-NBI was 85.7-
97.3% and 84.4-96.8% respectively [61]. However,
the differentiation ability between cancerous and
non-cancerous lesions using M-NBI by non-experts
was disappointing. To prevail over the limitations
above, Al was implemented to enhance the accuracy
of medical diagnosis.

Endoscopy is a widely used tool for diagnosing
early stage of gastric cancer, among which 7.2% of
patients were misdiagnosed. The meager changes in
mucosa are often not detected during endoscopic
analysis. This requires trained endoscopists with
well-armed knowledge [62]. Hence Deep Convolu-
tion Neural Network (DCNN) gained attention for
predicting and analyzing endoscopic images. Wu
et al. detected early gastric cancer lesions with 92.5%
accuracy and 94% specificity using DCNN. The
diagnosing accuracy and stability were higher than
the trained endoscopists. The time taken by DCNN
model for diagnosing the lesions was comparatively
lower than the endoscopists. Additionally, his study
supported the generation of grid model over the
stomach which covers the suspicious lesion regions
too [63].

DL technology was initially implemented by Hir-
asawa et al. for the diagnosis of early gastric cancer
in the year 2018. Researchers used images from
conventional endoscope rather than from FICE and
magnifying NBI. Single-shot multi-box pattern was
used for the construction of CNN model. About
13,000 images were used as training set and 2296
images as test set for validating the performance of
the model. Around 77 images in the test set were
found with the lesions. The model categorized the
test set in 47 seconds by finding 71 lesions con-
taining images accurately with 92% overall sensi-
tivity of the system. The CNN model detected and
processed a stockpile of endoscopic images [64].
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Endoscopic submucosal dissection is another
approach for treating gastric cancer with minimal
invasive depth. This technique is highly preferable
by the patients since it requires shorter stay at
hospitals [65]. However, endoscopic submucosal
dissection are performed to the patients with inva-
sive depth till submucosal layer of stomach based
on the guidelines. In addition, the invasion depth
can also be determined using endoscopic in-
terventions for early gastric cancer by spraying in-
digo carmine dye. Moreover, the conventional
endoscopy resulted in 69% to 79% accuracy [66].
This shows that there is no reliable tool available for
measuring the invasive depth in gastric cancers.
Recently CAD has been implemented for differen-
tial diagnosis of diseases. In 2018, Zhu et al. deter-
mined the invasive extent using CNN — CAD
through transfer learning. About 89.16% accuracy
was achieved in measuring the invasive depth with
76.47% sensitivity and 95.56% specificity. The
developed CNN — CAD model differentiated earlier
gastric cancer from submucosal invasion. This study
also reduced misconception of invasion depth,
which reduces trivial gastrectomy procedures [67].
Other contributions in gastric cancer imaging are
consolidated in Table 3.

Another investigation by Kanesaka et al
improved the strategy by developing software to
identify and delineate the boundaries between
cancerous and non-cancerous regions. Support
vector machines were implemented in this study to
analyze the gray-level matrix features of narrow-
band images. One hundred twenty-six images were
used as a training set, and 81 images were used as a
test set for constructing the model. The sensitivity
and specificity of the model for cancer from non-
cancerous imaged were validated and found to be
97% and 95%, respectively. Similarly, the sensitivity
and specificity of area concordance were 66% and
81%, respectively [68].

5. Conclusion

Artificial intelligence has emerged as a powerful
tool in cancer prognosis and management. Ad-
vancements in Al can be effectively implemented in
personalized treatment and monitoring patient's
health leading to a higher quality of care. Other
areas in cancer such as follow up of patient's health,
biochemical tests require the assistance of Al to help
clinicians. Although the application of Al is benefi-
cial, correct steps must be taken for framing the
workflow in concern with the medical context to
prevent undesired side effects in patients. Over
time, this strategy may become a standard approach
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for human incidental disease diagnosis, evaluation,
and reporting of data.

For bioinformaticians, image computing and ma-
chine learning assists in discovering prominent fea-
tures for diagnosis and treatment, overcoming the
aforementioned opportunities and challenges. It also
assists researchers in developing new algorithms for
disease characterization using radiology, molecular,
and histology data. In this study, the limitations in the
diagnosis and management of cancer diagnosis and
classification was addressed. Also, the application of
Al in tumor detection and classification using diag-
nostic images was discussed. A constant increase in
the number and complexity of cancer images has
reduced the time for evaluating the images by the ra-
diologists. Due to the massive volume of images,
prediction of tumors at the earliest has become one of
the significant areas to be influenced by artificial in-
telligence. Moreover, progress in Al research will
provide more solutions to the radiologists for pre-
dicting cancers. In the mere future, artificial intelli-
gence will transcend as a prominent tool in clinical
research.
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