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Abstract: The two most critical deciding factors for power consumption are energy efficiency and

cost. Power electronic circuits are widely used and play an important role in achieving high efficiency

in power distribution to customers and power transfer from source to load. Furthermore, solar energy

is abundant, sustainable, and pollution-free in nature. Power electronic circuits are used in high-

power applications with voltages ranging from a few millivolts to thousands of volts and wattages

ranging from a few mW to megawatts. This paper examines a variety of inverter topologies and their

modeling, as well as a comparison of single-stage and multi-stage/inverter topologies depending on

the application. The main aim of control techniques is to keep Total Harmonic Distortion (THD) to a

minimum and the switching frequency within the permissible range so that inverters for renewable

energy sources, electric vehicles, uninterruptible power supply (UPS) systems, and hybrid energy

storage systems can work efficiently. Plug-and-play, adaptability, self-awareness, and other features

should all be included in a smart inverter. Based on the findings of this comparative analysis,

selection criteria are established. This comparative analysis can be used to develop selection criteria

for choosing inverter circuits for the various applications described in this paper.

Keywords: energy storage system; stand-alone systems; photovoltaic; grid-connected inverters;

smart inverters

1. Introduction

Renewable energy sources, such as solar, wind, and tidal, play a significant role in
the energy market, supplying the majority of energy in the modern era. Because of the
need for energy, the decline of fossil fuels, and the greenhouse effect, the usage of solar
power has risen rapidly. Furthermore, the usage of solar photovoltaic (PV) systems has
risen significantly, owing to the lower environmental impact and maintenance costs as
compared to wind energy. In recent years, more solar PV plants have been built, which
have been used in a variety of mini and mega projects. In this situation, power electronic
converters, which are interfaced between the source and the grid, can play a significant role
in regulating the extraction of full power from the PV plant. Despite the multiple benefits
of solar, due to its non-linear characteristics, tracking maximum power from solar PV is a
challenging task [1–3].

Existing grid-following inverter controllers are based on the presumption that device
voltage and frequency are controlled by inertial sources. However, current control ap-
proaches cannot ensure device reliability in a zero-inertia environment and are unlikely to
support an inverter-dominated infrastructure. The introduction of stabilizing grid-forming
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controllers for distributed inverter networks that effectively regulate voltage and frequency
is needed in the future.

However, since the installation cost of solar PV is very high and the life cycle of solar
panels is reduced, maximum power point tracking (MPPT) implementation is critical in
solar PV systems. Electronic converters, which are interfaced between the source and the
load, play a key role in achieving this capacity. These converters are controlled by an MPPT
controller to extract maximum power. As a result, scholars and practitioners have used
a variety of converter topologies to achieve this MPPT. The authors of this review article
focused on the various inverter topologies that help to increase maximum power extraction
and overall system efficiency. The operating point of converters should be maintained at
a specific position where this can extract full power to enforce the MPPT method. The
inverter can be used extensively in grid-connected systems in real-time applications for
various forms of inverter topologies (Figure 1). The different levels of PV plants, such as
small, medium, and large scale, can be used to classify the inverters. In this article PV
inverter configurations utilized in small-scale applications are presented.

Applications 
of Inverter

Motor
Drives

Wind 
Energy

Solar 
Energy

Power 
Quality

Energy
Storage

Power 
Supplies

Charger 
Stations

Electric 
Vehicle

Traction

Figure 1. Inverter applications.

This paper discusses various single-stage and multi-stage inverters for power shift in a
disseminated era system. Single-stage converters and inverters have a simple structure and
the lowest voltage and current stress. Multi-stage converters, on the other hand, support
a large range of input voltages; however, they have a high cost, a complex structure, and
low effectiveness [4–6]. In the presence of large parasitic capacitors at the ground of the PV
panels, leakage current in the non-isolated PV grid-connected device becomes a critical
and important issue. On the inverter side, various circuit topologies or PWM controller
algorithms can be used to effectively limit leakage current to overcome this effect [7,8]. As
more distributed electricity supplies come online, smart inverters are a more advanced
version of power electronics that can make autonomous decisions to keep the grid safe and
secure. Instead of just feeding power into the grid, smart inverters can communicate with
it in both directions. These inverters are presented in the last section of this article.
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2. Inverter Classifications

An inverter is a device that connects to the converter’s output and converts direct
current (DC) power to alternating current (AC) power. A PV inverter usually has two
stages for shaping the PV array output power before feeding it into the AC load. The first
stage is in charge of increasing PV array voltage and monitoring the MPPT; the second
stage inverters convert usable DC power to AC power. The major classification of the
inverters is discussed in this section.

2.1. Stand-Alone Photovoltaic (PV) Systems

The stand-alone system is used in isolated systems where the inverter draws its DC
from the batteries as shown in Figure 2. The photovoltaic structure comprises a PV panel
coupled with the AC or DC stack through a power conditioning unit (PCU). This kind of
framework is one of the best alternatives for taking care of power requests of the remote
locality, which aid financial advancement. The size of the battery unit defines the period of
the PV device, which is dependent on the time interval during which reinforcement [9,10]
is required during off-peak hours.

 

Figure 2. Block diagram of standalone photovoltaic (PV) system.

This network, which is linked to a PV grid, encourages the generated energy to be
used to generate local load and lacks a capacity unit [11]. The PV system, DC–DC converter
with MPPT, inverter with islanding avoidance, and step-up transformer make up this
framework. The end of the capacity unit lowers the framework for estimating many-sided
efficiency and financial aspects of the solar PV matrix, but problems with power framework
gadgets, such as inverters and transformers, combine to lower the consonant level and
balance the voltage and recurrence with the utility network. A few converter applications
only need bucking or boosting of voltage and can depend on comparing converters. These
converters are subjected to a significant amount of information current swell [12]. This
swell can cause noise, which can rewind a large capacitor in a variety of applications. This
sometimes results in a decrease in productivity [13]. Another thing that can complicate the
use of buck-boost converters is how the voltage is tripped (Figure 3).
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Figure 3. Block diagram of converter and inverter-based on solar PV system.

2.2. Grid-Connected PV Inverter

The grid-connected PV system is connected to the electric grid and is usually used
in areas where solar PV generates a lot of electricity. A PV farm, DC–DC converters with
MPPT controller, and inverter with islanding evasion are all part of this system [14]. The
end of the limit unit reduces the system’s ability to measure various efficiency and cost-
related parts of the PV structure, but it also increases problems with an influence on the
system’s contraptions, such as inverters and transformers, to reduce consonant twisting
and match the voltage levels repeating with utility system circuits. Controlling the input to
specific sub-circuits is crucial for fulfilling design requirements [15].

Inverters are one of the essential components of the solar PV system; they can be
thought of as the system’s brain. The inverter’s position is increasing as it converts DC
power to AC. Installers, and owners will look at the output and power generation capacity
of the PV plant using an inverter monitoring system. Furthermore, the testing facility
provides diagnostic data to assist (Operation & Maintenance) O&M crews in detecting and
addressing system problems [16]. A description of the various forms of solar inverters is
given in Figure 4.

String inverter: each string in a grid-connected string inverter system is connected to
an inverter and then to an AC bus. In the case of halfway shading and obfuscating impacts,
a string inverter has more detailed control over MPP monitoring and, as a result, higher
effectiveness than other inverters [17]. PV plants also ensure optimal energy harvesting
and reliable power generation. Because of their low effort per watt and moderately high
productivity, these types of inverter are commonly used in small and medium-scale PV
systems. String inverters have been in use for a long time, and their only benefit is that
they are ideal for installations in which panels are arranged on a single plane. When an
installation uses string inverters and even single-panel shades, the output of every panel
on the string is reduced [18].

To improve MPPT air conditioning reliability and adaptability, a few strings have been
interfaced with autonomous MPPT DC-DC stages to a standard matrix tied inverter. Be-
cause of its adaptable architecture and provision for extensions, this multi-string innovation
is suitable for both rooftop PV frameworks and medium- and large-scale control plants.
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Figure 4. Comparison of PV inverter.

Central inverter: this type of central inverter is one of the most effective solutions for
large-scale applications. PV string inverters are similar to focal inverters, but focal inverters
are much larger and can support more series of boards. Rather than running directly to the
inverter, as in string models, the strings are linked together in a standard combiner box
that runs the DC electricity to the focal inverter where it is changed over to AC control [19].
Due to shading and blurring effects, the primary disadvantage of this form of PV device is
the lack of a maximum power point condition for each module. While focal inverters need
less part allocation, they require the use of a cushion and combiner box. These are the best
for large establishments with consistent creation in the exhibits.

Micro-inverters: unlike central or string inverters, which are attached to arrays of
several solar panels, micro-inverters can only accommodate one or two panels. Micro-
inverters are normally mounted to the backside of solar PV panels. Micro-inverters, when
connected to a single or two PV panels, can effectively tune the output power of a single or
two panels at all times using the MPPT technique.

When using a micro-inverter, the overall power output of the PV string may not be
decreased due to shading or minor defects in the solar PV panels. When there are yield
issues in a PV plant, it is much easier to monitor which PV panels are generating less and
to correct them as soon as possible; this saves time and lowers the PV plant’s maintenance
costs. Microinverters are less difficult to set up since there is usually only one point of
failure. Microinverters are also becoming a popular option for both private and commercial
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establishments as shown in Figure 5. Microinverters, including power enhancers, are
module-level hardware, so one is mounted on each PV plate. Nonetheless, unlike power
analyzers, which do not shift, microinverters convert DC energy to AC energy, minimizing
the need for a string inverter.

 

Figure 5. Micro-inverter.

The micro inverter interfaces the PV panel to the grid, which consisting of several
control techniques is presented to achieve better output. The control technique is mainly
classified into two types such as voltage control and current control.

3. Transformerless Inverters

In this paper, a comparative review of the existing step-up Transformer less single-
phase inverter topologies are presented. These topologies are classified into three different
groups: two-stage, pseudo-DC link, and single-stage topologies.

3.1. Two-Stage Topologies

The block diagram of a two-stage topology, also known as topology with pseudo-DC
link, is shown in Figure 6. These solutions include a DC–DC converter that amplifies the
low voltage of the PV module to a high level for the second stage while still performing
MPPT [20,21]. The DC–AC stage uses Pulse Width Modulation (PWM) to regulate the high
current that is injected into the grid. The pseudo DC-link capacitor is used to decouple the
electricity. At high voltage levels, the DC connection allows for a lower DC-link capacitance
(Cpv), which extends the inverter’s life cycle. Consequently, Furthermore, the DC link’s
ripple value is not limited, and the DC-link capacitance is not limited [22].

Figure 6. Block diagram of two-stage topology transformerless inverter.
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The authors addressed a transformerless inverter with boost converter topology
in [23,24], which is depicted in Figure 7. A boost converter and a full-bridge inverter are
used in this traditional design. The variations of this design to increase the arrangement’s
efficiency and a time cycle sharing dual-mode inverter are discussed, which is depicted in
Figure 8. A hysteresis current control is also related, which achieves zero voltage switching
(ZVS) in the second-stage switches. Furthermore, the author of the paper [25] attempted to
improve the efficacy of the boost converter dual bridge inverter by using this one and a half
times rather than two times as in previous topologies. At the same time, an improvement
in the DC–DC organization’s voltage pick-up is achieved (Figure 9).

 

Figure 7. Boost converter full bridge transformerless inverter.

 

Figure 8. Period sharing boost converter with full-bridge transformerless inverter. 
Figure 8. Period sharing boost converter with full-bridge transformerless inverter.

 

Figure 9. Soft switched parallel resonant boost converter and full-bridge inverter.
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In addition to the above, the authors [26] used a transformerless half-bridge inverter
in combination with a voltage pick-up DC–DC boost converter. If a half-bridge inverter
is used as the second stage in the traditional setup, the number of semiconductors used
in this configuration can be reduced, as shown in Figure 10 by the authors in [26]. It
is possible that the DC-interface voltage at the DC connection capacitor (C1) should be
twice the matrix voltage crest, and the semiconductors in the principal should block that
voltage. The primary preferred neutral point of these inverter topologies, which are also
half-connected, neutral point connected (NPC), is that the DC inverter’s central function.

 

Figure 10. Boost converter and transformerless half-bridge inverter.

The authors in [27,28], discussed the dual grounded transformerless inverter, and
also it is considered for the establishment with the solar PV system as a source which is
shown in Figure 11. Accordingly, derive the topology in which a portion of the switches is
shared by the two phases. This topology builds the number of diodes and with the quality
of the controller setup. Further high yield current can be analyzed by the total harmonic
distortion (THD) as less than 3%, and high productivity (higher as 94%) are accounted for
the primary elements of the two-stage topology overview is displayed in Table 1.

 

Figure 11. Boost with feedback integrated and dual grounded transformerless inverter. 
Figure 11. Boost with feedback integrated and dual grounded transformerless inverter.

Table 1. Comparative study on ratings of two-stage inverter topologies.

Figure Vin
Vout

(Vrms)
Power
Rating

Frequency
Switching

Timing
Efficiency

Figure 7 160 210 1500 20 0.05 94
Figure 8 140 200 1600 20 0.05 96.5
Figure 9 160 120 270 30 0.033 -
Figure 10 120 230 980 6.26 0.15 -
Figure 11 150 115 930 18 0.055 96.7
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3.2. Single-Stage Topologies

In recent years, the number of power stages has been reduced to improve overall
performance and reliability for the proposed level, as well as increase power density and
lower cost [29–31]. The pseudo-DC-link topologies shown in the previous section are a step
in the right direction. The single-stage topology of step-up transformerless inverters, which
are most significant in medium and large-scale solar PV systems, is depicted in Figure 12.
Furthermore, for a better understanding of inverter technologies, a thorough discussion
used by various researchers has been examined here. In this regard, more information on
single-stage inverter topologies with their ratings and their applications that are used in
solar PV system applications is given below in detail.

 

Figure 12. Block diagram of a single-stage topology for an alternating current (AC) module.

The pseudo-DC-link topologies exhibited in the past segment constitute a stage toward
this pattern. These days, the trend is to integrate all of the converted functionalities pro-
vided by multi-stage topologies into a single-stage converter, as shown in Figure 13 [32,33].
The power decoupling in single-stage topologies is completed by methods for a capacitor in
parallel with the PV module, just as it is in pseudo-DC link topologies. Given either help or,
on the other hand, buck-boost criteria, a few topologies have been suggested (Figure 14).

 

Figure 13. Universal single-stage grid-connected inverter.

 

Figure 14. Integrated boost inverter.

Reference [34] shows a single-stage topology that can be used as a buck, boost, or buck-
boost (Figure 15). This setup will operate for a wide range of input voltages, increasing
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efficiency because it eliminates the need for a separate setup for each working condition.
In [35], the same topology is broken down for separate applications using a hysteresis
control technique, achieving low-voltage add-up to consonant distortion (THD). As a
boost converter cannot generate the required voltages lower than the input voltage, a
zero-crosscurrent bending is natural; the authors deal with subsequent coordination of
the boost converter and the full-connect, as shown in Figure 16. This issue associates
with the lattice two DC–DC converters differentially. Each of the converters produces
a DC-one-sided unipolar sinusoidal voltage 180◦ out of stage one of the next a similar
guideline is utilized as a part of the boost inverter [34]. A similar guideline is utilized as a
part of the boost inverter exhibited and its schematic is shown in Figure 17.

 

Figure 15. Integrated buck-boost inverter.

 

Figure 16. Boost inverter with improved zero crossing.

Figure 17. Differential boost inverter.

As a boost converter cannot generate voltage output lower than the input voltage, a
zero cross current distortion is expected. The boost DC–AC converter introduced in [36–38]
solves this problem by connecting to the grid two DC–DC boost converters differentially.
Each of the converters generates a DC-biased unipolar sinusoidal voltage 180◦ out of phase
one to the other.

The key objective is to improve the current zero intersection. The implementation of
this mechanism requires an additional adjustment to achieve the current freewheeling state



Electronics 2021, 10, 1296 11 of 26

of the inductor. The reconciliation of the boost converter and the full-connect converter is
seen in [39], as previously stated. The combination of the buck-boost converter and the
full-connect inverter is recommended. The authors [40] describe another energy conversion
method, the Z-source inverter, which is often used in three-phase applications. By using
an LC impedance network in the front end of the converter, this family of converters will
improve traditional H-bridge inverters. Single-step topologies for Z-source or modified Z-
source inverters have been proposed in recent years. Two buck-boost converters with their
solar PV board, or two unique segments of a related board, are connected in anti-parallel
in the inverter shown in Figure 18. Any converter uses a discontinuous mode (DCM) for a
portion of the matrix cycle that is compared.

 

Figure 18. Two-sourced anti-parallel buck-boost inverter.

The dual ground capability, desirable in PV applications, has also been studied, and
topologies with lower switch counting are presented in Figure 19 by the authors [41], The
main drawback of these inverters is the limited practical conversion range, which limits
the use of these inverters suitable for AC-module application discussed in [41].

 

φ
φ

Figure 19. Single phase Z-source inverter.

The ratings of single-stage inverter topologies are compared in the table above. Based
on Table 2, the authors concluded that Figure 13 performs better than other topologies.
As a result, for single-stage inverters, the semi quasi-Z-source inverter with continuous
voltage gain is preferable. The leakage current regulation is a major concern in non-isolated
PV grid-connected inverters, so both the grid connection and solar panel specifications are
examined. A benchmark of a standard AC-module framework is set to compare the most
suitable solutions of the reviewed topologies under the same specifications.
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Table 2. Comparative study on ratings of single-stage inverter topologies.

Figure Vin Vout
Power
Rating

Frequency
Switching

Timing
Efficiency

Figure 12 50 100 150 10 0.1 -
Figure 13 16.8 110 200 10 0.1 70
Figure 14 20 230 170 10 0.1 85
Figure 15 200–350 230 1000 - - 93.6
Figure 16 60–75 120 180 15 0.15 -
Figure 17 50 120 200 - - 75
Figure 18 40–50 90–110 500 9.2 0.092 80–90
Figure 19 50–250 120 950 5 0.05 -
Figure 20 150 120 200 20 0.2 94–95

Figure 20. Single stage fly-back inverter.

The performance of the single-stage isolated PV inverters is presented in Table 3.

Table 3. Comparison of single-stage isolated PV inverter.

Figure Power
Mode of

Operation
Number of
Switches

Cost THD Efficiency Life Span

Figure 21 300 DCM 3 Low - 89.1 Short
Figure 22 100 DCM 4 Medium - 70.2 Long
Figure 23 100 DCM 4 Medium <1.7% 90.51 Long

Figure 24 100
Modified

DCM
4 Medium <1.9% 90.12 Long

Figure 25 250
2ϕAnd

1ϕDCM
3 Low - 94.1 Short

Figure 26 200 DCM 6 Medium <3.79% 94.21 Short
Figure 27 200 CCM 6 Medium <4% 95.1 Short
Figure 28 200 BCM 6 Medium <2.46% 94.2 Short
Figure 29 250 DCM 8 Medium - 95.1 Short

 

Figure 21. Single stage fly-back inverter with decoupling circuit.
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Figure 22. Three port fly-back inverter with coupling circuit-1.

 

Figure 23. Three port fly-back inverter with coupling circuit-2.

 

Figure 24. Single stage fly-back inverter with soft switching.

 

Figure 25. Single phase two-phase interleaved fly-back converter.
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Figure 26. CCM control interleaved fly-back converter.

 

Figure 27. Interleaved fly-back inverter with soft switching.

 

Figure 28. Primary parallel secondary series multi-core inverter.
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Figure 29. Double stage fly-back inverter with soft switching.

4. Grid-Connected Isolated Inverters

Isolated PV inverters play a critical role, include achieving high performance, long life,
and low manufacturing costs. Microinverters include high-frequency transformers, and
carelessness and switching losses are the main concerns for increased performance. Recent
research has demonstrated a variety of methods for increasing production. Microinverters
are categorized into single-stage and multi-stage topologies, as previously mentioned.
Fly-back converters with a low number of power semiconductor devices are widely used
in single-stage converters.

In multi-stage topologies, the DC–DC converters are cascaded with the inverters
providing a DC link to place the decoupling capacitor [42]. Here, different topologies are
explained as below. A fly-back converter with a center-tapped transformer is proposed in
below Figure 20.

By estimating PV current and PV voltage, the maximum power can be monitored
from the MPPT service. The ability to combine the energy storage system inductor with
the transformer defined in [43] is a benefit of the fly-back topology. The use of these
two components in a fly-back topology removes the need for a DC sensor, which saves
money. At a switching frequency of 9.6 kHz, this inverter’s measured efficiency is about
89%. To ensure the injection of high-quality current into the utility grid, this switching
frequency necessitates a loose and bulky operation output filter. DCM control fly-back
type single-stage micro-inverter was presented in [44], as shown in Figure 21, in which the
decoupling of power pulsation is achieved by an additional circuit.

The additional switch S2 is controlled to release the energy of the primary side winding
to the decoupling capacitor. The stored energy of the decoupling capacitor is then fed to the
grid through the secondary winding. Thus, the additional circuit enables the replacement
of the short lifetime electrolytic capacitor, to film capacitors of small capacitance. The
maximum reported efficiency is only 70% because of the double-conversion of energy and
power loss on the Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET). The
merits and demerits of the various single-stage topologies are summarized in Table 4.

Table 4. Merits and demerits of the various single stage topologies.

Topology Merits Demerits Reference

Boost High gain, low Total Harmonic Distortion
Less efficiency, high switching losses, and high

voltage and current stresses
[32,33]

Buck-Boost
High gain, the dead time during Pulse
Width Modulation (PWM) eliminated,

common-mode leakage current removed

Increased inductor size, High current stress on
inductors

[34,36,39]

Z source High gain
high conduction losses and voltage stresses,

expensive
[41]

Fly-back
Availability of galvanic isolation, eliminate

power pulsation,
High Electro Magnetic Interference (EMI), low

efficiency, increased cost, size, and weight
[43]
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In Figures 22 and 23 authors specified the three-port power coupling, decoupling
circuits where the third port is an extra switch for power decoupling. The surplus power
is stored in a power decoupling circuit and stored in a transformer to compensate for the
deficit power respectively to the grid. The coupling capacitor value is reduced due to the
presence of high voltage and voltage ripples across the grid presented in [45].

Hence, because of life span and low power density, film capacitors can be used instead
of electrolytic capacitors, which have a shorter life span. Therefore, the efficiency of these
inverters is around 90% due to their frequent switching losses in the primary side and
conduction losses in the diode [46,47]. The authors described a single fly-back inverter
with soft-switching in Figure 24. The bi-directional switches are mounted on the secondary
side of the circuit, providing negative current to the primary switch on the grid side.

These negative current discharges the output capacitor of MOSFET through the
primary switch to attain ZVS. For this circuit, the efficiency is up to 95% with the reduced
number of switches [48]. In Figure 25, the authors specified the interleaved fly-back
converter with single-phase and to phase interleaved micro inverter presented in [49].

To improve the efficiency at heavy load conditions, a two-phase DCM operation
displays the current and reduces the current between two interleaved phases. Thus,
it reduces the conduction as well as turnoff losses of MOSFET, diodes and the copper
loss of the transformer. The single-phase DCM operation of the gate driving losses of
power MOSFET. The efficiency of this system is about 94% by taking advantage of both
operations. In Figure 26 the authors specified the Continuous Conduction Mode (CCM)
control interleaved fly-back converter. To operate the system in CCM mode, fourth-order
system modeling is shown. When operating in CCM mode, it was affected by an effect
called the resonant peak effect.

This effect can be overcome by using a PI controller because the CMM mode has the
advantage of high-power density, low voltage, and low current stresses. But it is difficult
to operate in DCM mode. The interleaved fly-back microinverter with an active clamp
circuit is shown in Figure 27. It has three different modes of service. When the PV output
power is less than the PV module power and the voltage spikes around the switch S1
are less, the converter works without its clamping circuit in the first mode. If the output
power is less than half of the PV module power, the two phases with their active clamp
circuit operate simultaneously. The efficiency is about 95.1%. In author [50] suggested a
closed-loop interleaving phase synchronization control system.

The magnetizing inductances mismatch between two interleaved converters may
create a current oscillations problem and increase switching losses [51]. Thus, the switching
period of the slave will be equal to the master without any switching phase error. The
maximum efficiency improvement was reported to be about 58% concerning the open-loop
system.

In Figure 28, the authors specified the primary-parallel secondary series multicore-
inverter presented in [52,53]. Because of parallel connection, the current stress at primary
switches is reduced. The grid voltage is easily achieved on the secondary winding due to
the series relation and lower turn ratio. As a result, the leakage inductance is reduced, and
the transformer’s primary to secondary coupling is strengthened. Electrolytic capacitors
may be replaced with low-profile ceramic capacitors. Because of converter switching and
transformer failure, the efficiency of a multicore transformer is about 92% [54].

5. Multi-Stage Isolated Micro-Inverter

In Figure 29, the authors specify the double stage fly-back microinverter with soft
switching. The first stage is to boost the DC voltage level and the second stage fed AC
power to the AC grid. The energy stored in coupling capacitor C2 is released to primary
winding through switch S2 and delivered to a grid-connected system. The voltage level
caused is presented at the first stage of capacitor C2 and reduces the value of the capacitor.
The efficiency of the system is up to 85% [55].
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In Figure 30 the authors specified the three-stage power inverter. In this topology, the
circuit consists of a full-bridge with a combined buck converter through a high-frequency
transformer presented in [56]. The buck converter is assigned to form the grid current
injection on the inverter side to achieve the rectified sine wave. The phase shift PWM
controller achieves ZVS by minimizing switching losses. Long-life film capacitors are
being used in place of unreliable aluminum electrolytic capacitors in the high voltage
DC connection. The overall efficiency is approximately 89%, with an MPPT efficiency of
approximately 99%.

 

Figure 30. Three stage fly-back inverter with soft switching.

In Figure 31 authors specified the boost half-bridge converter with full-bridge inverter
presented in [57]. The current controller based on a linear phase Infinite Impulse Response
(IIR) filter is realized to obtain the high-power factor and low THD of voltage and current.
The efficiency of this converter is about 97–98%, and the overall efficiency is reduced due
to its frequent switching losses.

 

Figure 31. Boost half-bridge converter with full bridge inverter.

In Figure 32 the authors present the dual-boost converter with a full-bridge inverter
in [58]. The PV voltage is directly fed to the input of interleaved dual boost converter.
Energy obtained from the PV is first stored in inductors L1 and L2 and delivered to the
voltage doubler capacitor via a transformer.

 

Figure 32. Dual boost converter with full bridge inverter.
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The energy stored in buck inductor Lb is realized to diode Db when the AC grid
voltage is lesser than the input voltage. The overall efficiency is about 93%, with an MPPT
accuracy of 0.93. The overall cost of the system is high due to the usage of a large number
of components. In Figure 33 authors proposed the current-push pull converter with a full
bride inverter [59].

Figure 33. Current fed push-pull converter with full bridge inverter.

The parallel capacitor and transformer secondary leakage reactance form an LC
resonance circuit. Soft-switching is achieved by turn-on ZVS and turn off ZCS for certain
operating conditions. This system has an efficiency of 97.5% at high power. In Figure 34
authors proposed the new Hybrid resonant DC-DC converter with soft switching. Hybrid
DC–DC converter consisting of bi-directional GAN switch parallel to the high-frequency
transformer and DC link capacitors [60].

 

Figure 34. Hybrid resonant DC–DC converter with soft switching.

The converter operates in three modes pure buck-boost series resonant modes. With
the proper design of transformer inductance Lm under certain operating conditions, the
primary side of MOSFETs can achieve ZVS near zero current switching (ZCS). The overall
efficiency of the system is about 97% at high power. In Figure 35 the authors propose an
active clamp DC–DC converter with a single switch modulated inverter. It can achieve
ZVS by recycling the energy stored in the leakage inductance of the transformer [61].

 

Figure 35. Active clamp DC–DC converter with single switch modulated inverter.
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The series resonant voltage doubler at the secondary side achieves ZCS turnoff of the
rectifier diode, and reverse recovery loss can be eliminated. Because of a single switch
module, higher efficiency and reliability can be achieved. The overall efficiency can be
obtained up to 96% with a THD of 3.8%. In Figure 36, the authors propose the fly-back
inverter with HFAC-link and active decoupling circuit. In this system, the active decoupling
circuit replaces the electrolytic capacitor with a film capacitor proposed. This proposed
model achieves the ZCS of the transistor in the decoupling circuit and output stage of
converter. Due to hard switching on the primary side and fly back in the decoupling circuit
may reduce the overall performance of the system presented in [62].

 

Figure 36. Fly-back converter with High Frequency AC linked active decoupling circuit.

In Figure 37 the authors specify the full-bridge resonant converter with a three-phase
inverter circuit. In the first stage, full-bridge LLC (inductor–inductor–capacitor) resonant
DC–DC converter with MPPT, and in the second stage DC link capacitor, a three-phase
inverter with the resonant circuit is presented in [63,64]. Thus, a bi-directional inductor
current can achieve the ZVS, and the converter does not require any auxiliary circuit for
soft switching. The efficiency is about 96%. Due to the use of a thin DC-link film capacitor,
the life span is long and which makes the system good is suitable for three-phase solar PV
farms. The comparison of multi-stage isolated PV micro-inverter summarized in Tables 5
and 6 shows the different single phase inverter control techniques and their features.

 

Figure 37. Full bridge resonant converter with three phase inverter.

Table 5. Comparison of multi-stage isolated PV micro inverter.

Figure Power
Mode of

Operation
Number of
Switches

Cost THD Efficiency
Life
Span

Figure 32 500 DCM 4 Medium <1.7% 90.1 Long
Figure 33 150 - 9 High <1.9% 90 Long
Figure 34 210 - 6 High - 94.1 Long
Figure 35 250 - 7 High <3.79% 94.1 Short
Figure 36 250 - 6 High <4% 95.4 Short
Figure 37 400 - 6 High <2.46% 94.1 Short
Figure 38 100 - 6 High - 95.1 Short
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Figure 38. Smart inverter features.

Table 6. Control techniques and their features.

Topology Controller Application

Full bridge Deadbeat
Uninterrupted Power Supply

(UPS)

Two-stage half-bridge inverter
Proportional-Resonant (PR)

current control
Fuel cell

Z source inverter

Repetitive, PR current control,
Selective compensator,

Capacitor current, Droop
control, Fractional-order

repetitive control

Distributed Generation (DG),
UPS, PV and Wind

6. Smart Inverter

The smart inverter has increased in popularity in the field, and it now demands a
digital architecture, multimodal communications functionality, and reliable computing
infrastructure. The device starts with silicon-centric hardware that is stable, rugged,
and powerful and can be managed by a flexible software interface with comprehensive
performance management capabilities. A smart inverter must be adaptable and capable
of easily sending and receiving messages, as well as sharing granular data with the user,
utility, and other stakeholders. Installers and repair technicians may use such systems
to detect operating and maintenance concerns, as well as anticipate potential inverter
or module issues and remotely update those parameters in seconds. These intelligent
power electronics systems must also have a robust application programming interface
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(API) that allows fleet owners and other collaborators to integrate their applications and
build effective enterprise-level tools.

Although the digital architecture, bidirectional connectivity, and software infrastruc-
ture technology that underpin smart inverters are crucial, the organizations that deliver
such advanced solutions must also work on modern utility specifications and standards
in a smart way (Figure 38). Such collaborative projects as the continuing UL/ANSI 1741
and IEEE 1547 standards progress work, as well as the Smart Inverter Working Group, will
help ensure the proper deployment of advanced grid functionality needed for the more
solarized energy mix of the not-too-distant future.

The smart online tracking and fault detection system is compatible with intelligent
Internet of Things (IoT) devices and can be accessed from a personal computer (PC) or
an Android/iOS app. Users can capture real-time data, analyze historical data, compare
patterns across various dimensions, and export graphs. Furthermore, users will be alerted
via SMS/email if the platform detects any faults, trouble areas, or breakdowns. Users and
suppliers may use these intelligent management platforms to efficiently and effectively
track errors in real time, ensuring optimal results. It helps you solve efficiency problems by
achieving full power output against faulty and dusty panels. The alarms created by the
panel are a true lifesaver in situations like the output below simple limits or a specific type
of misfiring (Figure 39).

Figure 39. Smart PV system with inverter.
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Smart inverters have a positive impact on both the residential sector and the national
power grid because they operate independently. The traditional grid needs constant
maintenance, but smart inverters may be able to help fix these localized issues and increase
the system flexibility. The smart inverter functions such as fault detection, islanding
detection, and power flow control [65–68]. Figure 40 illustrated the main function smart
inverter.

 

Figure 40. Smart inverter functions.

Smart inverters are a combination of conventional inverters that are interfaced with
renewable energy sources such as PV, wind, and plug-in electric vehicles with advanced
controllers for performing ancillary services such as reactive power-sharing and Var man-
agement. As a result, it is also known as a multifunctional or intelligent hybrid inverter. The
role of a multifunctional inverter exceeds the basic functionalities of traditional inverters,
such as power conversion, maximum power point tracking, and islanding detection. The
government, utilities, industries, and standard bodies have collaborated to create common,
standardized control functionalities for integrating renewable energy sources with the
power system. The smart inverter standards are given in Figure 41.

 

Figure 41. Smart inverter standards and grid codes.
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The distributed energy resources penetration level directly links power quality to the
smart inverter, with higher penetration levels resulting in a stronger coupling between
grid power quality and the smart inverter. The smart inverter may operate in a different
mode of operation such as isochronous operation, droop control mode, grid following the
operation, and micro-grid operation. The following are the specific changes in the power
quality-related limits that are effective for smart inverters such as rapid voltage change,
flicker, harmonic current distortion, and overvoltage contribution.

7. Conclusions

A study of inverter structure was discussed, with an emphasis on state-of-the-art
configurations such as single-stage and double-stage inverters. In addition, transformerless
inverter configurations play a prominent part in PV-based power generation. These inverter
types are discussed together with a qualitative assessment of the inverters. The structural
and practical advantages/issues of each topology are discussed in depth. There was also a
comparison of such architectures. For the efficient integration of PVs with the utility grid
in the future, a simple perception of power converters would be needed. Meeting the grid-
connected specifications becomes a big obstacle as well. As a result, the synchronization
between the inverter and the grid was explored in this article, to highlight core principles
in grid synchronization. Finally, smart inverters were surveyed and explored from various
developed works. An analysis of numerous studies in the literature has been given to
provide researchers with a detailed description of all potential inverter architectures.

From the above review, it has been concluded that the average efficiency of a solar
PV system is likely to increase in the coming years and the price will also be reduced.
This analysis will assist technicians in choosing the best and correct control and inverter
configuration, as per basic power specifications, position, and the ability for grid com-
munication. The study is also projected to benefit designers, analysts, suppliers, and
consumers involved in the area of solar energy for the improvement of the exploitation
and grid incorporation of solar energy. It also lets you choose the right configuration for
your specific system.
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