
Abstract
Objectives: Data visualization, the use of images to represent information, is now becoming properly appreciated due to 
the benefits it can bring to business. This paper focuses on the general background of data visualization and visualization 
techniques. Methods: Data visualization has the prospective to assist humans in analysing and comprehending large 
volumes of data, and to detect patterns, clusters and outliers that are not obvious using non-graphical forms of presentation. 
For this reason, data visualizations have an important role to play in a diverse range of applied problems, including data 
exploration and mining, Information retrieval and intelligence analysis. In real time various techniques have been used of 
which Geometric projection techniques, Iconographic display techniques, Pixel-oriented, Hierarchical techniques, Graph-
based techniques are discussed. Findings: The major difficultly in big data visualization is to preserve any of the original 
dimensional information. The taxonomy detailed here show that the local and global structure of the data can be visualized 
in an interactive manner and has a massive advantage. 
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1.  Introduction
Big data is categorised by 5 V’s, which are volume, vari-
ety (different forms of data sources) velocity (speed of 
change), veracity (uncertainty of data and incomplete-
ness) and value. Reports say data from the U.S. healthcare 
system alone reached, in 2011, 150 exabytes. At this rate 
of growth, big data for U.S. healthcare will soon reach 
the zettabyte (1021  gigabytes) scale and, not long after, 
the yottabyte (1024 gigabytes) in the near future. The real 
issue is not that you are acquiring large amounts of data. 
It’s what you do with the data that counts. The hopeful 
vision is that organizations will be able to take data from 
any source, harness relevant data and analyse it to find 
answers that enable the following 1. Reduction in the cost, 
2. Reduction in the time, 3. Development of new prod-
uct and optimized offerings, and 4. decision making in 
smarter business. For instance, by combining big data and 
high-powered analytics, it is possible to:

•	 Determine root causes of failures, issues and defects 
in near-real time, potentially saving billions of dollars 
annually.

•	 Optimize routes for many thousands of package deliv-
ery vehicles while they are on the road.

•	 Generate retail coupons at the point of sale based on 
the customer’s current and past purchases.

•	 Send tailored recommendations to mobile devices 
while customers are in the right area to take advantage 
of offers.

•	 Recalculate entire risk portfolios in minutes.
•	 Quickly identify customers who matter the most.
•	 Use clickstream analysis and data mining to detect 

fraudulent behaviour

2.  Big Data: Challenges
The challenges that researchers face across the globe 
and as well as in India are related to data inundation 
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pertaining to Fundamental Science, Computational 
Biology, Bioinformatics, Astrophysics, Materials Science, 
Atmospheric and Earth observations, Energy and 
Medicine, Engineering and Technology, GIS and Remote 
Sensing, Cognitive Science and Statistical data. These 
challenges require development of innovative algorithms, 
visualization techniques, visualization tools, data stream-
ing methodologies and analytics. The overall constraints 
that community facing are

•	 The IT Challenge: Computational , loading and stor-
age power

•	 The computer science: Design of algorithms, visual-
ization, scalability (Data mining, network and Graph 
analysis, streaming of data and text mining), distrib-
uted data, architectures, data dimension reduction 
and implementation.

•	 The mathematical science: Statistics, Optimisation, 
uncertainty quantification, model development analy-
sis and systems theory.

•	 The multi-disciplinary approach: Appropriate prob-
lem solving.

3.  Why Data Visualization?
Data visualization is the presentation of data in a pictorial 
or graphical format. For centuries, people have depended 
on visual representations such as charts and maps to 
understand information more easily and quickly.

As more and more data is collected and analysed, 
decision makers at all levels welcome data visualiza-
tion software that enables them to see analytical results 
presented visually, find relevance among the millions of 
variables, communicate concepts and hypotheses to oth-
ers, and even predict the future.

3.1  Visualization Pipeline
Figure 1 describes the step-wise process of creating visual 
representations of data.

•	 Data Analysis:  data are pre-processed and prepared 
for visualization (e.g., by applying filter, interposing 
missing values, or correcting erroneous measure-
ments) -- usually computer-centered, little or no user 
interaction.

•	 Filtering: Portions of data selected to be visualized -- 
usually user-centered.

•	 Mapping:  emphasised data are mapped to geometric 
primitives (e.g., points, lines) and their attributes (e.g., 

color, position, size); this is the most critical step for 
achieving expressiveness and effectiveness.

•	 Rendering: Geometric data are converted into image 
data.

Visualization tools have become indispensable for explor-
ing and identifying trends hidden within data. The data 
sources, such as satellite imagery for brushfires or real-time 
traffic information from Google, are critical to making 
good analysis and driving good decision-making.

3.2  What is Visual Analytics?
Visual Analytics is a subset of Data Visualisation which 
deals with actually making inferences using visual inter-
faces1.  Visual Analytics is the discipline of analytical 
reasoning supported by interactive visual interfaces. 
Nowadays, data is produced at an unbelievable rate and 
the ability to collect and store the data is increasing at a 
faster rate than the ability to analyse it. Visual Analytics 
approaches allow decision makers to combine their human 
flexibility, imagination, and background knowledge with 
the enormous storage and processing capacities of today’s 
computers to gain insight into complex problems. 

Visual analytics is more than only visualization. It can 
rather be seen as an integral approach combining visualiza-
tion, human factors and data analysis. Figure 2 illustrates 
the detailed scope of visual analytics. Concerning the field 
of visualization, visual analytics integrates methodology 
from information analytics, geospatial analytics, and 
scientific analytics. Especially human factors (e.g., inter-

Figure 1.  Visualization pipeline.
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action, cognition, perception, collaboration, presentation, 
and dissemination) play a key role in the communication 
between human and computer, as well as in the decision-
making process. 

3.3  The Visual Analytics Process
The Visual Analytics Process showed in Figure 3 com-
bines visual analysis and automatic methods with a tight 
coupling through human interface in order to gain knowl-
edge from data. The figure shows an intellectual overview 
of the different stages (represented through ovals) and 
their transitions (arrows) in the Visual Analytics Process.

The first step is often to pre-process and transform the 
data to derive different representations for further explo-
ration. Other typical pre-processing tasks include data 
cleaning, standardization, grouping, or integration of het-
erogeneous data sources.

After step 1, the analyst may choose between apply-
ing visual or automatic analysis methods. If an automated 
analysis is used first, Machine learning techniques are 
applied to generate models of the original data. Once a 
prototype is created the analyst has to assess and improve 
the models, which can best be done by interacting with the 
data. Visualizations allow the analysts to interact with the 
automatic methods by modifying parameters or selecting 
other analysis algorithms. Model visualization can then 
be used to evaluate the findings of the generated models. 
Ambiguous results in an intermediate step can thus be 
discovered at an early stage, leading to better results. If a 
visual data exploration is performed first, the user has to 
confirm the generated hypotheses by an automated analy-

sis. User interaction with the visualization is needed to 
reveal insightful information, for instance by shooting up 
on different data areas or by considering different visual 
opinions on the data. Findings in the visualizations can be 
used to direct model building in the automatic analysis. 
In summary, in the Visual Analytics Process knowledge 
can be gained from visualization, automatic analysis, as 
well as the preceding interactions between visualizations, 
models, and the human analysts.

4.  Visualization Techniques
Many techniques used for data visualization. They are like 
geometric, parallel coordinate, stick figure, icon based, 
hierarchical, graph based (line graph) and pixel oriented 
visualization techniques. Some techniques are very spe-
cific to a certain application and some combine several 
ideas. In this section, three classifications of visualization 
techniques are discussed. We look at an overview on clas-
sifications by2-4. 

4.1 � Classification of Visualization 
Techniques2

A multidimensional multivariate visualization tech-
nique has been ordered in the light of 2-variate displays, 
multivariate displays and animations2. 2-variate shows 
incorporates box plot, disseminate plot and so on. A 
standout amongst the most well-known multidimensional 
multivariate visualization techniques is the scatterplot 
matrix which exhibits all mix sets of all dimensions and 
compose them by a matrix5. They decide linear correlation 
between different variables. In a scatterplot matrix, each 
variety is dealt with indistinguishably. The possibility of 
pairwise adjacencies of variables is likewise a premise for 
the hyperbox6, the hierarchical axis7 and the hyperslide8.

Figure 2.  Scope of visual analytics.

Figure 3.  The visual analytics process.
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Multivariate presentations are the establishment for 
some as of late created multidimensional multivariate 
visualization techniques, the greater part of which utilize 
vivid design made by high-speed graphics computations. 
Xmdv Tool incorporates four of the current mdmv visu-
alization tools: dimension stacking, scatterplot matrix, 
glyphs, and parallel coordinates into one framework with 
improved n-dimensional brushing. These procedures can 
comprehensively be classified into five sub-groups:

•	 Brushing permits direct control of a multidimensional 
multivariate visualization display. This method is 
depicted for scatterplot matrices6.

•	 Panel matrix includes pairwise two-dimensional plots 
of neighbouring varieties. These strategies incorporate 
hyperslide8 and hyperbox6.

•	 Iconography utilizes varieties to decide estimations of 
parameters of small graphical objects. The mappings of 
data values to graphical parameters are normally pro-
duced texture patterns that ideally bring knowledge 
into the information. Some iconographic techniques 
are Chernoff face9, stick figure icon10, autoglyph11 and 
colour icon12.

•	 Hierarchical displays map a subset of variates into 
various hierarchical levels of the presentation. 
Hierarchical axis13, dimensional stacking14 and world 
within world14 visualization techniques have a place 
with this gathering. 

•	 dimension stacking
•	 Non-Cartesian displays map data into non-Cartesian 

axes. They incorporate parallel coordinates14-16 and 
visdb17 .

Animation is a capable strategy for envisioning multidi-
mensional multivariate scientific data. Different movie 
animation techniques on multidimensional multivari-
ate data and a scalar visualization animation models are 
introduced. The most prevalent animation technique is the 
grand tour technique, in which multidimensional multi-
variate data is projected into two dimensional planes.

4.2  Taxonomy of Visualization Techniques3

Four approaches have been introduced by to encode 
conceptual information, a typical event in information 
visualization: 1D, 2D, 3D alludes to orthogonal visual-
ization that encodes information by positioning marks 
on orthogonal axes3. Multiple dimensions allude to the 
more difficult issue of multidimensional visualization 

where the data has such a large number of variables that 
an orthogonal visual structure is not adequate. Typical 
tasks that must be bolstered by such situations include 
getting knowledge from the data, such as discovering pat-
terns, relationships, clusters, gaps and outliers, or finding 
specific items using interaction, such as zooming, filter-
ing, and selection. Trees refer to utilizing association and 
enclosure to encode connections among cases. Networks 
refer to utilizing associations to encode connections 
among cases.

4.3  Taxonomy of Visualization Techniques4

Information visualization techniques have been classified 
by their essential visualization principle by4: geometric 
projection, iconographic, pixel-oriented, hierarchies, 
graph based and hybrid.

Geometric projection techniques support users in 
the assignment of discovering information projections 
of multidimensional multivariate data18-20. The article 
by21,22 presents the results of using the parallel coordi-
nate representation for high-dimensional data analysis. 
Along these lines, a high number of dimensions can be 
visualized. An integrated approach has been incorporated 
in23,24 to preserve the original dimensional information. 
Typical examples here are star coordinates25,26 and paral-
lel coordinates and techniques are incorporated into the 
accompanying Table 1.

Iconographic display techniques map each multidi-
mensional data item to an icon (or glyph) whose visual 
features differ contingent upon the data values27,28. The 
quantity of displayable dimensions is not restricted with 
this methodology.

Be that as it may, they are not utilized regularly for 
high-dimensional data sets, since a quick information 

Table 1.  Geometric projection techniques of 
visualization techniques

Category Visualization technique
References

Geometric 
projection

Scatterplot matrices
Hyperslice

Parallel coordinates
Andrews’ plots

Projection pursuit
Prosection views

Landscapes
Radviz

Star coordinates

[5]
[8]

[15, 16, 21]
[18]

[19, 20]
[22]
[23]
[24]

[25, 26]
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exploration is risky. The iconographical techniques are 
given in the 

Pixel-oriented - in pixel-based techniques, a pixel is 
utilized to speak to data values29-31. Pixels are grouped by 
dimension, the item it belongs to, and are organized on 
the screen suitable to various purposes. In general, one 
pixel is utilized per data value, so the quantity of display-
able values is fairly high. The techniques are further sorted 
as “query independent” or “query dependent”. In the query 
independent techniques, the arrangement of the pixels in 
the sub-windows is fixed, independently of the data values 
themselves. In the query dependent techniques, a query 
item is given and distances from the data values to the given 
query value are computed utilizing some metrics. The map-
ping of hues to pixels depends on the computed distances for 
every attribute and pixels in each sub-window are orches-
trated according to their overall distances to the query data 
item. The Table 3 displays the pixel-oriented techniques.

Hierarchical techniques subdivide the m-dimensional 
data space and represent subspaces in a hierarchical man-
ner. The hierarchical techniques termed as Dimensional 
stacking32-34 and tree representation35-37 are appeared in 
the Table 4.

Graph-based techniques envision large graphs using 
particular layout algorithms, query languages, and 
abstraction techniques to convey on their significance 
obviously and rapidly38,39. The graph-based techniques are 
given in the Table 5.

4.4  Star Coordinates
In star coordinates, each dimension is spoken to as a vec-
tor emanating from the centre point of a unit circle in a 
two-dimensional plane. At first, all axes have the same 
length and are consistently placed on the circle. Data 
points are scaled to the length of the axes, with the base 
being mapped to the beginning and the greatest to the 
next end of the axes on the unit circle.
In mathematics, the Cartesian coordinate framework is 
utilized to decide every point uniquely in a plane through 
two numbers, as a rule called the x-coordinate and the 
y-coordinate. A point P = (x, y) in the plane can be spo-
ken to by a vector P = O+ xi + yj, where i = (1, 0), j = (0, 1) 
are the two basis vectors of the Cartesian coordinates and 
O = (0, 0) is the beginning. A multidimensional point is 
represented in a plane like the Cartesian coordinates. The 
2D star coordinates system is used for representing a point 
in m dimensions incorporating m vectors in a plane V = 
{v1, . . . , vm}.Here vi = (vix, viy) = (cos2πi/m,sin2πi/m) 
is representing the ith dimension, i = 1, . . . ,m, and the 
inception is Om = (Ox,Oy). A mapping of a point (p1, . . . 
, pm) to a point P = (Px, Py) in two-dimensional Cartesian 
coordinates is controlled by the sum of basic vectors vi = 
(vix, viy) on every axis multiplied by the estimation of the 
point. Further precisely, the equation is given by:

P = O +

Table 2.  Iconographic techniques of visualization 
techniques

Category Visualization technique
References

Iconographic

Chenoff faces
Stick figures

Shape coding
Color icons

[9,28]
[10,27]

[11]
[12]

Table 3.  Pixel-oriented techniques of visualization 
techniques

Category
Visualization 

technique
References

Pixel-oriented

Circle segment
Spiral and axes 

techniques
Recursive pattern

[29]
[30]
[31]

Table 4.  Hierarchical techniques of visualization 
techniques

Category
Visualization 

technique
References

Hierarchies

Dimensional stacking
Worlds within worlds 

(n-vision)
Hierarchies Conetrees

Treemap
Infocube

[32]
[33]
[34]

[35, 36]
[37]

Table 5.  Graph-based techniques of visualization 
techniques

Category
Visualization 

technique
References

Graph-based Graph-based Hiernet
Narcissus

[38]
[39]
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Or

In Figure 4, the star coordinates framework has eight 
axes D1, . . . , D8 represent the eight dimensions. These 
axes represent for fundamental vectors of the Cartesian 
coordinates that uniformly put on a unit circle. The point 
P in the two-dimensional space is on representation of the 
point in eight dimensions (p1, . . . , p8). We begin at the 
origin O of a circle, moving along the axis D1 with length 
p1, keep moving parallel to the axis D2 with length p2 and 
so on. The end point of this procedure is the point P.

All coordinates systems are given by a starting point 
and a few vectors. Regularly, the vectors are linearly 
independent, e.g., Cartesian coordinates, and a point is 
exceptionally spoken to. In the star coordinates system, 
the vectors are linearly dependent, and the representation 
of a point is not special. As a rule, the mapping from mul-
tidimensional space into a low-dimensional space is not 
one of a kind. Just with a guide of interactive dynamic 
transformations such as rotations and translations one 

can understand the data representation. Star coordinates 
essentially endeavours to extend this thought to higher 
dimensions. Clusters, patterns, and outliers in a data set 
are protected in the projected multidimensional data 
visualization and interactions affirm this. Customary star 
coordinates initially included rotation and scaling and 
later stretched to incorporate range selection, marking, 
histograms, footprints, and sticks.

Viz3D have been presented that tasks multidimen-
sional data into a 3D display space40. Like star coordinates, 
the essential system of Viz3D is obtained from the fun-
damental system of star coordinates by adding 1 to the 
third coordinates that implies the fundamental system of 
Viz3D is given by:

vi = (cos 2pi/m, sin 2pi/m, 1), i = 1, … m

what’s more, the mapping from multidimensional data 
space into a 3D visual space is detailed as:

 

Axes arrangement is presented for show that keeps 
profoundly comparable attributes near one another, 
which might be accomplished by computing information 
on the attributes comparability from the data set40.

Expansions of star coordinates have been proposed 
into three dimensions41. The creators add a third dimen-
sion to conventional star coordinates, which takes into 
consideration connection in the third dimension, yet it 
keeps up the two-dimensional display. Three-dimensional 
star coordinates expand the conventional two-dimen-
sional star coordinates in a few ways:

Stars disseminate in a volume rather than a plane, giv-
ing clients more space to exploit.

•	 Depth cues permit users to incorporate more mean-
ingful variables at the same time in an analysis.

•	 Transformations are stretched to three dimensions.
•	 System rotation is presented as a powerful new trans-

formation.

An algorithm has been presented for a computerized way 
of finding the best configuration when high-dimensional 
data points are projected into a 3Dvisual space42. The best 

Figure 4.  Calculation of data point location for an eight-
dimensional data set.

Table 6.  Visualization algorithms

Algorithm References
Self-organizing Map [49]

Fast Map [50]
Sammon’s mapping algorithms [51]
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and are created for visualizing multidimensional geometry. 
Parallel coordinates depend on an arrangement of parallel 
coordinates, which incorporates Anon-projective mapping 
amongst multidimensional and two-dimensional sets.

Parallel coordinates on the plane with Cartesian coor-
dinates, and beginning on the y-axis, m duplicates of the 
real line, marked X1, X2, …, Xm, are placed equidistant 
and perpendicular to the x-axis. Regularly, the Xi axe per-
pendicular to the x-axis lies at positions i−1, for i=1, …, 
m. They are the axes of the parallel coordinates system 
for the Euclidean m-dimensional space Rm all having the 
same positive orientation as the y-axis. A point P = (p1, …, 
pm) is spoken to by the polygonal line whose m vertices 
are at (i−1, pi) on the Xi axes for i= 1, …, m, see Figure 5. 
Points on the plane are represented by segments and the 
line contains the segment as depicted in Figure 6.

design of star coordinates is found among some arbitrary 
star coordinates configurations in view of self-organizing 
maps clustering algorithm in visual space to gauge nature 
of the star coordinates display. 

Another algorithm has been proposed43for naturally 
finding the best configuration of star coordinates in light 
of the minimization of a multidimensional scaling object 
function (stress function).

VISTA mappings have been presented by44. The VISTA 
maps multidimensional data points into 2D visual space 
while giving the convenience of visual parameter change:

where α = (α1, …, αm) are the dimension adjustment 
parameters in [−1, 1], angles

θ = (θ1, …, θm) are set to θi = at first and can be 
balanced, and c is the scaling of the radius of the display 
region. VISTA is an augmentation of conventional star 
coordinates that takes into for more intuitive exploration 
of multidimensional data. 

Star class is presented45 that permits intuitive star 
coordinates for visual classification.

Advanced star coordinates is presented46 that utilize 
the diameter rather than the radius as the dimensions, 
axis, such that data points in multidimensional space 
are mapped into visual space saving attribute values with 
orthogonal distance from the visual point to the diam-
eter. The diameters configuration procedure depends on 
correlations. The advanced star coordinates visualizes the 
clusters and structure of multidimensional data.

A technique has been proposed47,48 for projecting mul-
tidimensional data in view of class-preserving projection. 
The authors introduced an algorithm for finding the best 
two-dimensional plane that preserves inter-class distances.

The mapping is a linear dimension reduction method, 
in which an advanced two dimensional

Sub-space is chosen keeping up the distance between 
means of classes.

4.5  Parallel Coordinates
Parallel coordinates is a standout amongst the most well-
known visualization techniques for multidimensional 
multivariate data sets. Parallel coordinates are presented 

 Figure 5.  A polygonal line represents a point P = 
(p1, . . . , pm).

Figure 6.  The dual line and point in parallel coordinates.
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Parallel coordinates in data analysis: Wegman21 

presented a technique to analyse data utilizing paral-
lel coordinates. In his paper, the author proposed two 
strategies called density plots and color histograms. For 
density plots, the algorithm depends on Scott’s notion 
of the Average Shifted Histogram (ASH) to visualize 
density plots with parallel coordinates. The author uti-
lized contours to represent the two dimensional density. 
Parallel coordinates density plots have the benefit of being 
graphical representations of data that are simultaneously 
high-dimensional and extensive. In colour histograms, 
the idea is to code the magnitude of an observation along 
a given axis by a colour canister. The diagram is drawn by 
picking an axis, and sorting the perceptions in ascending 
order. The author likewise presented a permutation algo-
rithm of the axes for pairwise comparisons.

Multi-resolution view with parallel coordinates: 
Multi-resolution perspectives of the data have been built 
up by49 through various hierarchical clustering and utilize 
a variation on parallel coordinates to convey aggregation 
information for the outcomes.

Focus + context visualization have been presented 
by50 in parallel coordinates. Every pair of adjacent axes 
representing a pair of dimensions, in a two dimensional 
subspace is divided into b×b canisters, which make a fre-
quency-based and output-oriented representation of the 
original data.

Frequency and density-based visualizations have been 
created40.The fundamental thought of the algorithm is to 
make two-dimensional frequency histograms for each 
pair of adjacent attributes in parallel coordinates. A two-
dimensional region between a couple of adjacent axes in 
parallel coordinates is divided into w × h bins, where w is 
the number of horizontal canisters and h is the number 
of vertical canisters. The estimation of frequency is stored 
in matrix F = (Fij) w×h. For every data point in multi-
dimensional data sets, a line segment is drawn with the 
Bresenham algorithm, if the line segment goes through 
the (i, j)th container, they add 1 to the value of Fij. For the 
density plot, matrix frequencies F = (Fij) w×hare linear-
ing scaled into [0, 255].

For the frequency plot, they utilized a 3×3 averaging 
filter applied to the FW×H matrix.

High-precision texture has been presented by51,52 that 
can be utilized to uncover diverse sorts of cluster informa-
tion. This visualization technique can be used to examine 
exclusive, overlapping, and hierarchical clusters. For dis-
playing clusters in parallel coordinates, the authors utilized 

As a result, a one-to-one correspondence between 
points in Rm and planar polygonal lines with vertices on 
X1, …, Xmis set up.

The fundamental duality: we consider the X1X2 paral-
lel coordinates and also the Ox1x2 Cartesian coordinates 
that are appeared in Figure 5. In the Cartesian coordi-
nates Ox1x2, we draw a line (l) that is portrayed by the 
accompanying condition :(l) :x2 = mx1 + b. Every point 
(x1, x2 = mx1 + b) lying on the line (l) in the Cartesian 
coordinates is shown by a segment line with endpoints 
(0, x1) and (1, x2 = mx1 + b) in parallel coordinates. 
Consequently the points on (l) which are represented in 
parallel coordinates form an unbounded group of lines. 
On the off chance that m  1, the group of lines has a 
common point:

The point ( ) in parallel coordinates denotes the line 
(l) in Cartesian coordinates. For the circumstance m = 1, 
the group of lines has a typical point at boundlessness with 
direction (1, b). Each point in two-dimensional Cartesian 
coordinates is represented by a line in parallel coordinates 
and every point in parallel coordinates, which can be 
comprehended as a group of lines that cross at this point, 
represents a line in Cartesian coordinates. This property 
is known as a duality amongst line and point.

Multidimensional lines: A line (l) in Rmcan be depicted 
by m−1 linearly autonomous conditions of the form:(l) 
:xi+1 = mixi+ bi, i= 1, . . . , m−1.

The line (l) is represented in parallel coordinates by m 
− 1 indexed points in the XiXi+1 parallel coordinates. In 
Figure 7 the points  correspond to nearby variables.

Figure 7.  Parallel coordinates display an interval of a line 
in R10.
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points, which helps to see a review and details in parallel 
coordinates62. Proposed the tight coupling amongst radviz 
and parallel coordinates called spring view. In spring view, 
the user can choose a 2D rangeon the radviz representa-
tion getting the corresponding components highlighted 
in the parallel coordinates cluttering. The colour coding 
on the radviz (based on a 2Dcolor-map guide to a rectan-
gular board) is automatically computed, which takes into 
account automatically clustering the parallel coordinate’s 
polylines, exploiting their similarity and their distances.

5.  Visualization Tools

5.1  Starfish’s Visualizer
When a Map Reduce job executes in a Hadoop cluster, a 
lot of information is generated including logs, counters, 
resource utilization metrics, and profiling data. This infor-
mation is organized, stored, and managed by Starfish’s 
Metadata Manager in a catalog that can be viewed using 
Starfish’s Visualizer. A user can employ the Visualizer 
to get a deep understanding of a job’s behaviour during 
execution, and to ultimately tune the job. Broadly, the 
functionality of the Visualizer can be categorized into 
Timeline views, Data-flow views, and Profile views.

5.2  D3.js
D3.js, short for ‘Data Driven Documents. It uses HTML, 
CSS and SVG to render some amazing charts and dia-
grams. It uses HTML, CSS, and SVG to render some 
amazing charts and diagrams. It is feature packed, inter-
activity rich and extremely beautiful. Most of all it’s free 
and open-source.

5.3  SAS Visual Analytics 
SAS Visual Analytics make sense of big data. SAS Visual 
Analytics uses intelligent autocharting to create the best 
possible visual based on the data that is selected. If SAS 
Visual Analytics determines that the data is geographic, a 
map frequency chart is used as shown in Figure 7.

6.  Visualization Algorithm

6.1  Fast Map
Fast Map is a fast algorithm to map objects into points in 
some k-dimensional space (k is user-defined), such that 
the dis-similarities are preserved.

a transfer function on the intensity value which permits 
non-linear and additionally user-defined mappings.

Generalization of parallel coordinates: Perhaps the 
earliest multidimensional data visualization was pre-
sented, in which each multidimensional data point x = 
(x1, …, xm) is spoken to by a function of the form fx(t) =

+ x2 sin(t) + x3 cos(t) + … +
What’s more, this function is plotted on the extent 

[−π, π]. Some helpful properties of the Andrews’ plots are 
safeguarding of means and distances. A free-form curve53 
has been represented such that the space between two 
neighbouring axes can be proficiently exploited to encode 
more information of the axes, which can assist to notice 
correlations among more than two dimensions. Smooth 
curves54 have been used to permit users to distinguish an 
individual path through the curves’ nodes. 

A smooth plot between two adjacent axes has been 
used55. While in conventional parallel coordinates, a line 
segment can be comprehended as a linear interpolation, 
the authors presented a new group of smooth functions 
using smooth interpolation. Curved lines56 are used to 
form visual bundles for clusters in parallel coordinates. 
The visual clustering is enhanced by changing the shape 
of the edges while keeping their relative order.

Dimension ordering in parallel coordinates: 
Dimension ordering, spacing, and filtering can enhance 
the parallel coordinate’s layout and ease data explora-
tion. Data dimensions have been clustered according as 
per their similarity, then data dimensions are reworked 
such that dimensions showing a similar behaviour are 
situated beside each other. A hierarchical approach has 
been proposed57 to deal with enhancing the intuitiveness 
of dimension reordering, spacing, and filtering. A visual 
clutter measure58 has been characterized as the proportion 
of outlier points to the aggregate data points. The opti-
mized dimension order is then processed to minimize the 
proposed clutter measure.

Interacting with parallel coordinates: Angular brush-
ing59 has been used to choose data subsets with particular 
patterns between nearby axes. Parallel coordinates60 has been 
straight forwardly manipulated by progressively outlining 
an arrangement of polylines and interactively visualizing 
correlation between polyline subsets. These brushing and 
interactive strategies are viewed as very effective tools in 
investigating the structures within the clusters.

Integration with parallel coordinates: Self-organizing 
map61 has been used in conjunction with parallel coordi-
nates, in which clusters are represented rather than data 
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6.2  Self-Organizing Map (SOM)
SOM algorithm to analyse large data set and show that 
SOM is an excellent tool for the analysis and visualization 
of gene expression profiles

6.3  Sammon’s Mapping Algorithms
The Sammon’s mapping algorithm places data with simi-
lar, but not identical profiles in neighbouring groups 
creating a smooth transition of related profiles over the 
whole matrix.

7. � Big Data Analytics and Data 
Visualization

The strategy for visualizing enormous data is critical and 
analysing is done to enhance the technique for customiz-
ing it to pick up consideration from the business examiner, 
information researchers and scientists. Examining time 
series data continuously is the testing undertaking and is 
accomplished for predicting the future for better compre-
hension of the behaviour63. The author gave an automated 
model to extricating learning from enormous information 
and discovering insights out of it. The data is produced at 
quick rate at the server side and the testing undertaking 
is to capture the information in the on-going and is to 
be put away in the database for the investigation of huge 
information and to visualize data in R. The broke down 
results are stored into the Mongodb for visualization pur-
pose63. The broke down results are visualization in the R 
environment.

The author64 had indicated the sources of steps, in light 
of the internal and external sources of upgraded deci-
sion making, insight discovery can be distinguished as 1. 
Acquisition of data from various sources, 2. Processing, 3. 
Visualize 4. Intelligence. Perception is helpful to draw the 
inferences and test the theories. Enterprise top manage-
ment can take savvy decision from the visualization and 
patterns leaving big data analysis.

Big Data analytics and neural network technique helps 
to better know the objectives of diagnosing and treating 
patients in need of healthcare. The clinical data are usu-
ally typically questionable and also ambiguous with. So, 
in the paper65 Neural Network is proposed to diagnose the 
diabetic disease from the clinical diabetic enormous data. 
Two scheme of Neural Network, namely BFGS quasi-New-
ton Back propagation and Resilient Back propagation are 
suggested for the diagnosis of diabetes65. From the result 

of the proposed methods it is experiential that Resilient 
Back propagation performs better contrasted with BFGS 
quasi-Newton Back propagation. Hence it is reasonable 
to expect a rapid boost in the understanding of Artificial 
Neural Network to analyse enormous Data efficiently.

The fundamental tasks of data visualisation are listed as 
filtering, Meta data interpretation, find extreme maximum, 
sort and shuffle, determination of range, clustering, data 
correlation and intricate computation. The paper66 focus 
on the key term called data correlation and shuffle and sort 
sequence where job scheduling and job sequence takes a 
vital part. Hadoop yarn will be an advanced version of Map 
reduce, YARN is used to handle those general processing 
system beyond the Map reduce. YARN is an advanced pro-
cessing engine used to run numerous jobs or applications in 
HADOOP by involvement those resources. One of the opti-
mal scheduling algorithms utilized in the naïve HADOOP 
might have been “late” algorithm. Data correlation values for 
high dimensional data which surpasses the ordinary dimen-
sionality within the attribute are correlated to attain better 
results in terms of accuracy, Kappa values and so forth.

8.  Conclusion
Visual analytics is an emerging field of research combining 
strengths from information analytics, geospatial analytics, 
scientific analytics, statistical analytics, knowledge dis-
covery, data management and knowledge representation, 
presentation, production and dissemination, cognition, 
perception and interaction. Its goal is to gain insight 
into homogeneous, contradictory and incomplete data 
through the combination of automatic analysis methods 
with human background knowledge and intuition.

We systematically selected and rigorously analysed a 
comprehensive set of visualization techniques and tools 
in order to provide an evidential based knowledge about 
the current state of visualization and the potential areas 
of research. From the initially identified 2 papers through 
manual and automatic searches, 66 papers have been 
selected based on the inclusion and exclusion criteria for 
this review.
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