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low arithmetic complexity for images
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Abstract

Image smoothing with edge preservation in the presence of outliers is a challenge in image processing. Anisotropic

diffusion smoothing is a well-established paradigm in digital image smoothing with edge preservation. Anisotropic

diffusion smoothing filters are not robust to impulse noise. They employ two or more stages for robustness in the

presence of outliers, and, therefore, they demand significantly increased arithmetic operations for robustness;

consequently, they are not power efficient. This paper introduces a low arithmetic complexity image smoothing model

and proposes an intrinsically robust and power efficient algorithm for anisotropic diffusion smoothing of images. The

algorithm outperforms the foundational robust smoothing algorithms in terms of the standard performance metrics

and visual quality.

Keywords: Anisotropic filters, Computational complexity, Image denoising, Nonlinear filters, Robustness

1 Introduction

Image smoothing is an essential operation in digital

image processing. One well-established approach to

image smoothing is scale-space filtering [1]. The

basic scale-space filter is an isotropic diffusion

smoothing filter which produces image smoothing

with poor edge retention. Perona-Mailk (PM) intro-

duced an edge-preserving anisotropic diffusion filter

[2] which also formed the basis for subsequent de-

velopments in anisotropic diffusion smoothing. How-

ever, filters based on anisotropic diffusion failed to

perform well in the presence of impulse noise. Black

et al. [3] developed a statistical interpretation of an-

isotropic diffusion from the view point of robust sta-

tistics and proposed a diffusion coefficient based on

Tukey’s biweight robust error norm. Ling et al. [4]

proposed a two-stage anisotropic median filtering in

which the first stage is anisotropic diffusion; the dif-

fusion coefficient is based on Tukey’s biweight ro-

bust error norm proposed by Black et al., and the

second stage is median filtering of the diffused

image. Ham et al. [5] introduced an adaptive robust

scale-space filter in which the robustness is provided

by the incorporation of a normalization term. Subse-

quent developments [6–13] have followed these

foundational models [2–5].

Wu et al. [6] proposed a two-stage diffusion scheme for

random valued impulse noise in which the ENI (edge

pixels, noisy pixels, and image pixels) concept is employed

in the first stage for the identification of noisy pixels. In

the anisotropic diffusion stage, two diffusion functions,

namely, controlling speed function and controlling fidelity

function are employed for robustness. Wang et al. [7] in-

troduced an adaptive switching anisotropic diffusion filter

which operates in two modes. In one mode, the filter acts

as a direction weighted median filter for impulse noise

corrupted pixels, and in the other mode, the filter acts as

an adaptive anisotropic diffusion filter for Gaussian

noise-corrupted pixels. The filter selects the mode in ac-

cordance with a local difference factor of the pixel. Xia et

al. [8] proposed a two-stage diffusion filter, which employs

a switching function in the diffusion algorithm. The filter

is designed to handle both salt and pepper

noise-corrupted and random-valued impulse

noise-corrupted images. In the first stage, noise detectors

are employed to determine the noisy pixels. The value of

the switch function in the diffusion algorithm depends on

the noise detector output; therefore, the noisy pixels are

replaced in the diffusion stage and the uncorrupted pixels

are left unchanged. In the second stage, anisotropic
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diffusion is carried out at two levels of filtering,

namely, coarse filtering and fine filtering for the ef-

fective removal of impulse noise. Khan et al. [9] pro-

posed a two-stage robust adaptive anisotropic

diffusion filter. In the preprocessing stage, noisy pixels

are identified and are replaced by the median value of

the local neighborhood. In the second stage, an adap-

tive anisotropic diffusion is carried out. Haiying et al.

[10] proposed a two-stage diffusion tensor-based ro-

bust diffusion filter. A clean pixel excluder is pro-

posed to identify the noisy pixels in the first stage; in

the second stage, an adaptive diffusion is carried out

in accordance with the diffusion tensor to replace the

noisy pixels. Sung et al. [11] proposed a single-pass

dictionary-based anisotropic diffusion in which an off-

line dictionary and an online dictionary are employed. In

the offline dictionary, diffusivity values and diffusion path

kernels for different image patches are stored. A

single-pass adaptive anisotropic diffusion is carried out in

the online dictionary processing by choosing appropriate

diffusivity values and diffusion path-based kernels from

the offline dictionary for each image patch. Veerakumar et

al. [12] introduced a two-stage adaptive anisotropic diffu-

sion filter in which noisy pixel determination is the first

stage and an adaptive anisotropic diffusion is the second

stage. In the noisy pixel determination stage, each image

pixel is compared against the maximum and the mini-

mum pixel gray-level values for the determination of salt

and pepper noise; a rank-ordered logarithmic difference

approach is proposed for the identification of the pixels

corrupted by the random-valued impulse noise. In the dif-

fusion stage, an adaptive anisotropic diffusion is carried

out for the replacement of noisy pixels in accordance with

the local neighborhood characteristics.

Existing robust diffusion smoothing filters [4–13] em-

ploy a variety of additional nonlinear techniques for im-

proving the performance in the presence of outliers. They

are generally complex in terms of hardware (adders and

multipliers) and are not power efficient. This paper pro-

poses a simple first-order anisotropic diffusion model

which exhibits a performance superior to the standard

second-order parabolic partial differential equation

(PDE)-based diffusion models. The proposed model is in-

trinsically robust, simple in hardware complexity, and

power efficient and outperforms the foundational models

in terms of performance metrics and visual quality.

The first-order robust diffusion smoothing filter which

is intrinsically robust to impulse noise is derived in Sec-

tion 2 based on Albert Einstein’s stochastic argument for

Brownian motion. Section 3 describes the performance

of the proposed filter in detail in comparison with three

foundational diffusion smoothing filters [2, 4, 5] and one

extended model [12]. Section 4 concludes by highlight-

ing the significance of the proposed filter in the context

of low-power digital signal processing (DSP) and embed-

ded environments.

2 The proposed methodology
The methodology is based on the concept that the

immediate future value of the intensity of a candi-

date pixel can be predicted in terms of the estimate

of the increment or decrement of the pixel intensity

in terms of the directional derivatives with respect

to neighborhood pixels inside an open subset. The

open subset includes four neighborhood pixels along

the north, south, east, and west directions with re-

spect to the center pixel of a 3 × 3 window. The pre-

diction equation is a novel mathematical model

developed from Einstein’s stochastic argument for

Brownian motion. The mathematical model involves

a candidate pixel, four neighborhood pixels, a

weighting function, and a control parameter. The

mathematical model is translated to an algorithm.

For numerical computation of the algorithm, direc-

tional derivatives along north, south, east, and west

directions of the candidate pixel are calculated; a

median estimate of the directional derivatives is ob-

tained. The candidate pixel intensity value is updated

by adding a value proportional to the median esti-

mate of the directional derivatives. This process is

repeated for all the pixels in the image. The whole

procedure is iterated n times until specified signal to

noise ratio performance is achieved. Different test

images corrupted with various noise types at differ-

ent noise intensities are selected for testing the algo-

rithm. Simulation is carried out on MATLAB

R2014a installed in a system powered by 567u7 Intel

(R) core (TM) i5-5200 U CPU @ 2.20 GHz, 64-bit

Operating System with 4 GB RAM. The performance

of the algorithm is validated in terms of visual re-

sults and the performance metrics peak signal to

noise ratio (PSNR), structural similarity index metric

(SSIM), and edge preservation index (EPI).

2.1 A first-order robust diffusion smoothing model based

on Einstein’s stochastic argument for Brownian motion

Let I(x, t) be a space-time continuous function at pos-

ition x and time t. Following Albert Einstein’s stochastic

argument for Brownian motion of suspended particles in

a fluid medium [14], one can write

I x; t þ τð Þ ¼ I x; tð Þ þ τ ∂I=∂tð Þ ð1Þ

where the right hand side (RHS) of (1) is expressed as a

two term Taylor’s series [14]
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In (2), I(x, t) and I(x, t + τ) represent the number of

Brownian particles per unit volume at time t and t + τ

respectively, t + τ is the next time instant, ∅(ε) = ∅(−ε),
R∞

−∞ ∅ðεÞ dε = 1, ε and x are the spatial variables, and

∅(ε) is the probability density distribution function.

Since
R∞

−∞ ∅ðεÞ dε = 1 and ∅(ε) =∅(−ε), a simple manipu-

lation of (2) eliminates the first term on the left hand

side (LHS) and the first and second terms on the RHS of

(2). Therefore, (2) can be written as.
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By applying (1) to the LHS of (3)
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Rearranging (4),
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Let the second term on the RHS of (5) be inter-

preted as a statistical expectation of the directional

derivatives ∂I/∂Ex, ∂I/∂Wx resulting from (∂/∂x). (∂I/

∂x) = (∂2I/∂x2), where I = I(x, t) is the number dens-

ity, E and W are the east and west directions re-

spectively, the dot symbol represents the divergence,

and the time t is a parameter. Let (1/τ) ∫ (ε2/2)

∅ (ε) dε be defined as spreading function D(x). Equa-

tion (5) says that the function D(x) diffuses the con-

centrated mass I(x, t) throughout the length x from x

= x0 to x = xL (x0 and xL are boundaries) with

Gaussian probability density distribution at equilib-

rium. In the context of DSP, let this be interpreted

as system response to white noise excitation whose

autocorrelation is a concentrated impulse [15]. Func-

tion D(x) becomes the convolution kernel. Extending

(5) to two dimensions

I x; y; t þ τð Þ ¼ I x; y; tð Þ þ D x; yð Þ ∂
2I=∂x2

� �

þ ∂
2I=∂y2

� �� �

ð6Þ

Expression (6) in terms of the inner product becomes

I x; y; t þ τð Þ ¼ I x; y; tð Þ þ ∇:D x; yð Þ∇Ið Þ; ð7Þ

where ∇ is the “del” operator and the second term on

the RHS of (7) is the divergence of the gradient of I(x, y, t).

Assuming that an image is a volume with one dimension

vanishingly small and invoking the divergence theorem

I x; y; t þ τð Þ ¼ I x; y; tð Þ þ DN∇N I þ DS∇SI þ DE∇EI þ DW∇W I½ �;

ð8Þ

where ∇NI, ∇SI, ∇EI, and ∇WI represent the direc-

tional derivatives along north, south, east, and west di-

rections, and DN, DS, DE, and DW are diffusion

functions. Equation (8) describes a spatio-temporal

spreading of the number density I(x, y, t) in which the

current value of the number density is updated by a

statistical estimate of flux density which tends to

reach an equilibrium state such that I(x, y, p + 1) =

I(x, y, p) after some t = p + 1 when the probability

density distribution of the process settles to Gaussian

[16]. Equations (4)–(8) are based on the continuum

hypothesis; for sampled time and space variables, the

last equation becomes

I u∆x; v∆y; nþ 1ð Þ∆tð Þ ¼ I u∆x; v∆y; n∆tð Þ

þ ∆t= ∆xð Þ2
� �

: DN∇N I þ DS∇SI þ DE∇EI þ DW∇W I½ �;

ð9Þ

where ∆t is the time sampling interval; ∆x and ∆y are the

space sampling intervals; u, v, and n are integers including

zero; ∆x =∆y; and I in the second term on the RHS is

I(u∆x, v∆y, n∆t). If the integers u and v take a value equal to

zero, the corresponding image is the initial or the original

image. It becomes an initial value problem which is a

necessary condition for a causal Markov process.

Consistent with (5), the diffusion of I(u∆x, v∆y, n∆t)

is interpreted as the accumulation of the expectation

of the directional derivatives with respect to iteration

number n, starting with an initial number density as

a delta function at n = 0. At equilibrium, I(u∆x,

v∆y, (m + 1)∆t) = I(u∆x, v∆y,m∆t) for some n =m, and

is a Gaussian distributed function. Since mean is the

posterior estimate in the least square sense for

Gaussian distribution [16], (9) can be written as

I u∆x; v∆y; nþ 1ð Þ∆tð Þ ¼ I u∆x; v∆y; n∆tð Þ

þ ∆t= ∆xð Þ2
� �

: 4ð Þ 1=4ð Þ DN∇N I þ DS∇SI þ DE∇EI þ DW∇W Ið Þ½ �

ð10Þ
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where k = 1, 2, 3, 4 represent N, S, E, and W direc-

tions, respectively; Dk are associated with the Gaussian

kernel; and the second term on the RHS of (11) is the

expectation of ∇kI such that the estimate is the max-

imum likelihood (ML) estimate in the L2 sense [17]. Let

Dk be chosen as g(∇kI) so that (11) can be written as

I u∆x; v∆y; nþ 1ð Þ∆tð Þ ¼ I u∆x; v∆y; n∆tð Þ

þ λ 1=4ð Þ
X4

k¼1
g ∇kIð Þ∇kI

h i

;

ð12Þ

where control parameter λ = 4∆t/(∆x)2. If g(∇kI) is

semigroup, (12) corresponds to

I u∆x; v∆y; nþ 1ð Þ∆tð Þ ¼ I u∆x; v∆y; n∆tð Þ
� Gσ u∆x; v∆y; n∆tð Þ; ð13Þ

where (13) defines scale-space filtering which was intro-

duced by Witkin [1]. According to this definition, the scale

space of an image can be derived by convolving the image

by a Gaussian kernel Gσ(u∆x, v∆y, n∆t) where σ is the

standard deviation, and the asterisk represents convolution

[1]. If impulse noise is present, weighted averaging in (12)

spreads the impulse noise corrupted image gradients along

with noise free image gradients, as is clear from (5–7) and

Fig. 1e. For Laplacian or long-tailed distribution, median is

the posterior estimate and, hence, the second term on the

RHS of (12) is an expectation such that it is an ML estimate

in the L1 sense [17]. Then, it is possible to write (12) as

I u∆x; v∆y; nþ 1ð Þ∆tð Þ ¼ I u∆x; v∆y; n∆tð Þ
þ λ g Med ∇kI½ �ð ÞMed ∇kI½ �:

ð14Þ

Equation (14) describes a smooth first-order diffusion

process that is robust to impulse noise or outliers with

long-tailed distributions. It is first order on account of the

fact that the median estimate is simply the selection of one

of the first order spatial derivatives ∇NI, ∇SI, ∇EI, and ∇WI

in (9) after sorting. Median sorting renders (14) optimal in

the sense of the length functional [18]. A first-order

space-time differential equation has an exponential impulse

response, and, therefore, the weighting function or kernel

function in (14) can be chosen as an exponential function

g Med ∇kI½ �ð Þ ¼ exp: − Med ∇kI½ �=Kð Þð Þ; ð15Þ

where K is a constant; (15) is consistent with

first-order smoothing process. Equation (14) is free

Fig. 1 Comparison of a noisy image, b PM as a smoother at n = 5, c FORADF as a smoother at n = 5, d FORADF at n = 25, and e the spreading

effect in PM. Noisy image a is corrupted with Gaussian noise of variance 0.1. n represents the number of iterations. The dark patches indicate the

spreading effect in PM algorithm
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of the spreading effect with respect to impulse noise

samples on account of the elimination of impulse

noise-corrupted gradients prior to smoothing. This

is in contrast to the well-established mean filter

[19], PDE-based diffusion smoothing filters [20], bi-

lateral filters [21], and guided filters [22, 23] which

are not intrinsically robust. They require

pre-diffusion processing and elaborate post-diffusion

processing for good performance in the presence of

outliers [4–10, 19–23]. It is shown in Section 3 that

(14) provides smoothing, Gaussian and impulse

noise elimination, and edge preservation and is

Fig. 3 Performance of a RF (λ = 0.25), b AMD (λ = 0.25), c AADF (λ = 0.25), d FORADF (λ = 0.25), and e FORADF (λ = 1) for salt and pepper noise at

70% density. λ represents the control parameter, and n represents the number of iterations

Fig. 2 Performance of a RF (λ = 0.25), b AMD (λ = 0.25), c AADF (λ = 0.25), d FORADF (λ = 0.25), e FORADF (λ = 1) for salt and pepper noise at

20% density for n = 5. λ represents the control parameter, and n represents the number of iterations
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Fig. 5 Performance of a RF (λ = 0.25), b AMD (λ = 0.25), c AADF (λ = 0.25), d FORADF (λ = 0.25), and e FORADF (λ = 1) for high-density mixed

noise. λ represents the control parameter, and n represents the number of iterations. The results are given for high-density mixed noise, i.e.,

Gaussian noise of variance 0.1 plus salt and pepper noise of density 70%

Fig. 4 Performance of a RF (λ = 0.25), b AMD (λ = 0.25), c AADF (λ = 0.25), d FORADF (λ = 0.25), and e FORADF (λ = 1) for low density mixed

noise. λ represents the control parameter, and n represents the number of iterations. The results are given for low density mixed noise, i.e.,

Gaussian noise of variance 0.1 plus salt and pepper noise of density 20%
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intrinsically robust. We also demonstrate that (14)

is the simplest in terms of arithmetic complexity. In

the context of digital image processing, (14) can be

algorithmically expressed as

Inþ1
i; j ¼ Ini; j þ λg Med ∇kI½ �ð Þ: Med

Ini−1; j−I
n
i; j

� 	

; Iniþ1; j−I
n
i; j

� 	

;

Ini; jþ1−I
n
i; j

� 	

; Ini; j−1−I
n
i; j

� 	

2

4

3

5

8

<

:

9

=

;

;

ð16Þ

Inþ1
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Ini−1; j−I
n
i; j

� 	

; Iniþ1; j−I
n
i; j

� 	

;

Ini; jþ1−I
n
i; j

� 	

; Ini; j−1−I
n
i; j

� 	

2

4

3

5

8

<

:

9

=

;

: Med
Ini−1; j−I

n
i; j

� 	

; Iniþ1; j−I
n
i; j

� 	

;

Ini; jþ1−I
n
i; j

� 	

; Ini; j−1−I
n
i; j

� 	

2

4

3

5

8

<

:

9

=

;

;

ð17Þ

where i, j are spatial indices; n is the iteration number;

λ is the control parameter; Ini; j represents the pixel

a b c d

e f g h

Fig. 7 Performance of FORADF (λ = 1, n = 10) with and without preprocessing strategy. Without preprocessing strategy: a without noise, b -

d 5%, 20%, and 50% salt and pepper noise respectively. With preprocessing strategy: e without noise, f - h 5%, 20%, and 50% salt and pepper

noise respectively. λ represents the control parameter, and n represents the number of iterations

Fig. 6 Performance of FORADF (λ= 1) for very high-density mixed noise a at n= 5 and b n= 25. λ represents the control parameter, and n represents the

number of iterations. The results are given for very high-density mixed noise, i.e., Gaussian noise of variance 0.1 plus salt and pepper noise of density 90%
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intensity of an image pixel after n iterations at the

spatial location (i, j); ðIni−1; j−I
n
i; jÞ, ðI

n
iþ1; j−I

n
i; jÞ, ðI

n
i; jþ1−I

n
i; jÞ,

and ðIni; j−1−I
n
i; jÞ represent first-order spatial derivatives

along north, south, east, and west directions, respect-

ively; and g(.) is an exponential function given by (15).

Perona-Malik [2] and Canny [24] have suggested the

procedure for choosing the value(s) for K. This proced-

ure is followed in fixing K = 2. Algorithm (16) works

well for any value of λ in the interval 0 < λ≤1 in

accordance with Courant-Friedrichs-Lewy (CFL) condi-

tion [25]. With 0 < λ≤1, the algorithm is an excellent

smoother as n →∞, and, therefore, the number of

time iterations can be selected on the basis of objective

performance metrics and subjective visual quality.

Algorithm (17) involves the following step by step

process: with respect to an image pixel Ini; j , i.e., the

center pixel, along with its four neighboring pixels along

north ðIni−1; jÞ, south ðIniþ1; jÞ, east ðI
n
i; jþ1Þ, and west ðIni; j−1Þ

directions,

1. Get the four directional derivatives of the center pixel

along north, south, east, and west directions by

calculating the difference in pixel intensities of each

neighboring pixel along that direction to that of the

center pixel. Pixel padding can be used to process the

first row, last row, first column, and last column image

pixels.

2. Select the median value of the four directional

derivatives of step 1.

3. Using the median value the directional

derivatives of step 2, find the value of the

weighting function using the analytical formula

given in (15).

4. Select an appropriate control parameter (λ) value in

between 0 and 1, which gives an optimal

performance in L1 sense for the given input image.

5. Find a scalar value which is the product of the

values of step 2, step 3, and step 4.

6. To get an updated pixel intensity value Inþ1
i; j , add the

value of step 5 to the pixel intensity of the center

pixel Ini; j.

7. In case of color images, the same procedure has to

be extended to three image planes.

3 Results and discussion

Three foundational diffusion smoothing methods [2, 4, 5]

and one extended model are considered for comparison.

The benchmark Perona-Malik algorithm [2] provides

edge-preserving Gaussian smoothing. The goal of the other

two foundational diffusion smoothing methods [4, 5] is to

provide image smoothing while suppressing impulse noise

without affecting edge information. The state-of-the-art ex-

tended model [12] is included to highlight the increased

computational complexity by adding additional stages in

attempting to improve the performance. The proposed

Fig. 8 Robust smoothing of color Pleiades image for n = 5. a Original image, b RF (λ = 0.25), c AMD (λ = 0.25), and d FORADF (λ = 1). λ represents

the control parameter, and n represents the number of iterations. The results are given to demonstrate the superiority in robustness of the

proposed FORADF in comparison with other robust algorithms
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algorithm (16) is primarily a low arithmetic complexity,

edge-preserving smoothing algorithm, and impulse noise

removal is an additional strength of the algorithm without

a requirement for additional stages. Other methods [6–

12] are the extensions or modifications of the three foun-

dational methods by adding additional stages for the re-

moval of impulse noise which results in high complexity

and poor smoothing. However, one method [12] from [6–

12] is considered for comparison to highlight the trade-off

between performance and complexity. Salt and pepper

noise is included as a convenient model of strong outliers;

similar results can be generated for random-valued im-

pulse noise. The proposed algorithm is mainly meant for

edge-preserving image smoothing at low complexity in

the presence of salt and pepper noise. The results for

mixed noise, i.e., mild Gaussian noise of variance 0.1 plus

salt and pepper noise are also included to show that no

image will ever be free of a mild Gaussian noise. This re-

sult for mixed noise is only an addition. Cameraman

image, Lena image, and Pepper image of size 512 × 512

are selected as test images. An additional non-iterative

simplifying strategy employed is that if the center pixel in-

side the mask is an impulse corrupted pixel, it can be re-

placed by an immediate neighbor pixel [26], assuming that

impulse noise pixels do not occur consecutively.

Figure 1a shows an image corrupted by Gaussian noise

of variance 0.1. Figure 1b and c show the performance of

PM algorithm and the proposed first-order robust aniso-

tropic diffusion filter (FORADF), respectively. The num-

ber of iterations is kept low at 5. It is confirmed that

FORADF works well for Gaussian noise. Figure 1d dem-

onstrates that FORADF is a good smoother (n = 25). Fig-

ure 1e shows the spreading effect in PM algorithm for the

image corrupted by 20% salt and pepper noise for iteration

number n = 20.

Figure 2a–e show the results of the robust filter (RF; n

= 5) [5], anisotropic median diffusion (AMD; n = 5) [4],

adaptive anisotropic diffusion filter (AADF; n = 1) [12],

FORADF(λ = 0.25, n = 5), and FORADF(λ = 1, n = 5), re-

spectively, with salt and pepper noise at 20%, for the

three test images. It can be seen that AMD (K1 = 0.5, λ

= 0.25) gives better performance than the robust filter (λ

= 0.25). The proposed FORADF (λ = 0.25 and λ = 1) out-

performs the RF and AMD. It is clear from the results

that FORADF is robust, preserves edge information, and

is a good smoother. The performance of AADF is very

good in terms of salt and pepper removal, but it is a

poor smoother in comparison with FORADF. The major

advantage of FORADF in comparison with AADF is very

low complexity.

Table 1 Performance for Gaussian noise

Methods Noise type Variance λ NI PSNR SSIM

PM GN 0.1 0.25 5 19.267 0.8287

FORADF GN 0.1 1 5 20.233 0.8384

FORADF GN 0.1 1 100 Good smoothing

GN Gaussian noise, NI number of iteration, S&P salt and pepper noise

Fig. 9 Anisotropic smoothing of lamp image for n = 25. a Original image, b PM (λ = 0.25), and c FORADF (λ = 1). λ represents the control

parameter, and n represents the number of iterations. The results are given to demonstrate the superiority in anisotropic behavior of the

proposed FORADF in comparison with the benchmark Perona-Malik anisotropic diffusion filter
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Figure 3a–e show the results of the RF (λ = 0.25, n = 5),

AMD (λ = 0.25, n = 5), AADF (λ = 0.25, n = 1), FORADF (λ

= 0.25, n = 5), and FORADF (λ = 1, n = 5), respectively, with

salt and pepper noise at 70% for the three test images. The

proposed filter works very well at higher noise densities

and for very low number of iterations, whereas RF and

AMD fail to provide acceptable performance at

high-density salt and pepper noise with low number of iter-

ations. The performance of RF [5] and AMD [4] can be im-

proved by increasing the number of iterations. For

acceptable performance at higher noise densities, both RF

[5] and AMD [4] require the number of iterations be high

(above 100), whereas FORADF performs better at much

lower number of iterations. Since the focus of AADF is on

salt and pepper noise removal, it works well at higher noise

densities also. It is clear from the result that FORADF out-

performs AADF in terms of image smoothing and compu-

tational complexity.

Figure 4a–e show the results of RF (λ = 0.25, n = 5),

AMD (λ = 0.25, n = 5), AADF (λ = 0.25, n = 1), FORADF

(λ = 0.25, n = 5), and FORADF (λ = 1, n = 5) for n = 5, re-

spectively, for the three images corrupted by mixed

noise consisting of Gaussian noise of variance 0.1 plus

salt and pepper noise of density 20%. The proposed

FORADF works better in comparison with the other

three algorithms. The non-iterative AADF is very good

in the removal of salt and pepper noise, but it fails to

work even in the presence of low-density Gaussian

noise; in addition, it is not a good smoother in compari-

son with FORADF and is computationally complex.

Figure 5a–e show the performance of the RF (λ = 0.25,

n = 5), AMD (λ = 0.25, n = 5), AADF (λ = 0.25, n = 1),

FORADF (λ = 0.25, n = 5), and FORADF (λ = 1, n = 5),

respectively, for the three images corrupted by mixed

noise consisting of Gaussian noise of variance 0.1 plus

salt and pepper noise of noise density 70%. The results

show that FORADF performs well at high noise dens-

ity with low number of iterations. The performance

of RF and AMD are very poor at high noise density

with low number of iterations. Even with the in-

creased number of iterations, the performance of RF

[5] and AMD [4] at high noise density are not appre-

ciable. AADF is also not suitable in the presence of

even mild Gaussian noise.

Figure 6a and b show the results of FORADF for the

image corrupted by mixed noise consisting of Gaussian

noise of variance 0.1 and salt and pepper noise density

90% for n = 5 and n = 25, respectively. These are the

worst case results which demonstrate the intrinsic ro-

bustness of FORADF.

Figure 7a–d show the performance of FORADF with-

out the preprocessing strategy and Fig. 7e–h show the

performance of FORADF with the preprocessing strat-

egy. It is clear from Fig. 7e and a that FORADF is a good

image smoother with and without the preprocessing

strategy. Figure 7b and c show that FORADF is also a

good edge-preserving impulse noise suppresser at low

and medium impulse noise densities even without the

preprocessing strategy. The preprocessing strategy is an

Table 3 Performance of FORADF for very high-density mixed

noise

Methods Noise type Noise % λ NI PSNR SSIM

FORADF GN + S&P 0.1 + 90 1 5 16.338 0.8190

FORADF GN + S&P 0.1+ 90 1 25 16.825 0.8190

Table 2 Performance for low-density salt and pepper noise

Methods Test image NI Noise type − S&P
Noise % − 20

Noise type − S&P
Noise % − 70

Noise type-GN + S&P
Noise % − 0.1 + 20

Noise type-GN + S&P
Noise % − 0.1 + 70

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RF
λ = 0.25

Cameraman 5 19.413 0.8673 12.5457 0.7796 16.906 0.8159 12.4372 0.7782

Lena 5 20.4622 0.9693 12.6513 0.8751 12.9513 0.8622 13.0337 0.8639

Pepper 5 19.7905 0.9622 13.2004 0.8719 17.2988 0.9096 12.9513 0.8622

AMD
λ = 0.25

Cameraman 5 26.079 0.9958 20.5091 0.8927 19.178 0.8270 19.7392 0.8033

Lena 5 28.7007 0.9964 18.0798 0.9520 16.4546 0.8962 18.2120 0.9057

Pepper 5 28.6385 0.9923 18.6443 0.9462 19.5751 0.9199 16.4546 0.8962

AADF
λ = 0.25

Cameraman 1 40.1719 0.9997 28.7566 0.9967 14.4454 0.8380 10.5868 0.7873

Lena 1 41.9936 0.9999 26.0650 0.9975 15.9324 0.9441 9.3239 0.8923

Pepper 1 42.2684 0.9999 31.4408 0.9999 14.4793 0.9380 10.8085 0.9021

FORADF
λ = 0.25

Cameraman 5 34.8502 0.9997 24.4484 0.9947 19.2064 0.8296 17.6850 0.8265

Lena 5 37.7526 0.9998 27.0534 0.9962 18.1284 0.9212 19.9176 0.9315

Pepper 5 37.5130 0.9998 25.5219 0.9942 19.5065 0.9260 18.1284 0.9212

FORADF
λ = 1

Cameraman 5 28.1563 0.9925 23.916 0.9771 20.080 0.8377 18.822 0.8328

Lena 5 31.2451 0.9990 26.2455 0.9951 19.3510 0.9271 20.5072 0.9381

Pepper 5 31.7647 0.9986 25.1724 0.9883 20.7433 0.9342 19.3510 0.9271

Nair et al. EURASIP Journal on Image and Video Processing         (2019) 2019:48 Page 10 of 14



addition for the purpose of increasing FORADF effi-

ciency at higher impulse noise densities. The added pre-

processing strategy does not significantly increase the

computational complexity and, hence, is retained at all

noise densities. Figure 7h and d demonstrate a compari-

son of FORADF performance with and without the pre-

processing strategy at higher impulse noise density. In a

practical situation, robustness implies up to 20% impulse

noise, and, hence, the proposed algorithm is an excellent

robust smoother even without the preprocessing strategy

and is attractive for computational photography [27, 28].

Figure 8 demonstrates the intrinsic robustness of FOR-

ADF in comparison with the foundational robust diffu-

sion algorithms RF and AMD. Figure 8d shows the

excellent intrinsic robustness characteristic in addition

to the anisotropic smoothing of FORADF at a very low

number of iterations. Figure 9 demonstrates the aniso-

tropic smoothing property of FORADF in comparison

with the foundational PM algorithm. It is clearly seen

from Fig. 9b and c that anisotropic smoothing behavior

of FORADF is superior in terms of smoothing and edge

preservation in comparison with PM algorithm.

20

22
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26

28

30

32

34

36

38

40

= 0.25 = 0.5 = 0.75 = 1

P
S

N
R

Values

Performannce of FORADF for various values   

Cameraman Lena Pepper

Fig. 10 Performance of FORADF in terms of PSNR for various λ values at 20% salt and pepper noise density for n = 5. λ represents the control

parameter, and n represents the number of iterations. The figure shows the stability of FORADF for various λ values, and the performance is

measured in terms of the performance metric PSNR. : performance of FORADF for Cameraman image. : performance of

FORADF for Lena image. : performance of FORADF for Pepper image.

Table 4 Edge Preservation Index (EPI)

Methods Test image NI Noise type − S&P
Noise % − 20

Noise type − S&P
Noise % − 70

Noise type-GN + S&P3

Noise % − 0.1 + 20
Noise type-GN + S&P3

Noise % − 0.1 + 70

EPI EPI EPI EPI

RF
λ = 0.25

Cameraman 5 0.4003 0.3288 0.3696 0.3316

Lena 5 0.3560 0.3565 0.3468 0.3457

Pepper 5 0.3551 0.3850 0.3520 0.3861

AMD
λ = 0.25

Cameraman 5 0.4672 0.3485 0.4040 0.3363

Lena 5 0.4038 0.2490 0.3793 0.2487

Pepper 5 0.4482 0.2705 0.4173 0.2424

AADF
λ = 0.25

Cameraman 1 0.8831 0.5740 0.3672 0.3356

Lena 1 0.9081 0.5811 0.4220 0.4143

Pepper 1 0.8679 0.5313 0.4134 0.4209

FORADF
λ = 0.25

Cameraman 5 0.8495 0.5391 0.4064 0.3297

Lena 5 0.8071 0.4870 0.4340 0.3243

Pepper 5 0.7626 0.4592 0.3639 0.3179
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The peak signal to noise ratio (PSNR) and the struc-

tural similarity index metric (SSIM), listed in Tables 1, 2,

and 3, clearly demonstrate the superiority of FORADF

in terms of noise removal and edge-preserving image

smoothing. Even though AADF shows slightly better

performance than FORADF in terms of PSNR and SSIM

for 20% and 70% salt and pepper noise densities

(Table 2), AADF fails to perform even in the presence of

low-density Gaussian noise and AADF is not a

smoother; in addition, AADF, which is non-iterative re-

quiring one-shot solution, is computationally complex.

Table 4 shows the performance of various filters in

terms of edge preservation index (EPI). Figures 10 and

11 show the performance of FORADF for λ values 0.25,

0.5, 0.75, and 1 in terms of the performance metrics

PSNR and SSIM, respectively. The results are obtained

for the input images corrupted by 20% salt and pepper

noise density, and the number of iterations is chosen as

n = 5. It is clear from Figs. 10 and 11 that FORADF pro-

vides very good performance in terms of intrinsic ro-

bustness, smoothing, and edge preservation over all λ

values in the interval (0, 1]. In real-time DSP, which does

not always mean high speed [29], multipliers and adders

determine the computational efficiency [30] and hard-

ware complexity [31] which is an important consider-

ation in meeting power budgets [29]. A typical

comparison from this perspective is presented in Table 5.

Computational efficiency of FORADF in comparison

with RF and AMD is expressed in terms of percentage

excess/savings on arithmetic complexity (C) where Cref,

CAMD, and CRF represent the complexity of the reference

FORADF, AMD, and RF, respectively, as the number of

arithmetic operations per pixel per iteration. In RF,

41.37% excess arithmetic computations are required in

comparison with FORADF to perform one pixel oper-

ation. Similarly, 75.36% excess computations are

Table 5 Hardware complexity in DSP context

Methods Noise
type

Noise
%

λ NIAP No. of A/M/S
per iteration
(C)

Running time per
iteration in
seconds

Running time for
NIAP in seconds*

Computational efficiency of FORADF (Cref) in
comparison with RF and AMD in terms of excess/
savings on C (%)
((C − Cref)/C)

RF GN +
S&P

0.1 +
70

0.25 100 11/18/0 3.5244 352.44 ((CRF − Cref)/CRF)= 41.37% excess

AMD GN +
S&P

0.1 +
70

0.25 100 12/33/24 5.5495 554.95 ((CAMD − Cref)/CAMD)= 75.36% excess

FORADF GN +
S&P

0.1 +
70

1 5 5/4/8 4.9407 24.7038 ((Cref − Cref)/Cref)= 0% excess

A/M/S additions/multiplications/sorting, NIAP number of iterations required for acceptable performance, C arithmetic complexity

*MATLAB R2014a, 567u7 Intel (R) core (TM) i5-5200 U CPU @ 2.20 GHz, 64—bit Operating System, RAM-4.00 GB

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

= 0.25 = 0.5 = 0.75 = 1

S
S

IM

Values

Performannce of FORADF for various values

Cameraman Lena Pepper

Fig. 11: Performance of FORADF in terms of SSIM for various λ values at 20% salt and pepper noise density for n = 5. λ represents the control

parameter, and n represents the number of iterations. The figure shows the stability of FORADF for various λ values, and the performance is

measured in terms of the performance metric SSIM. : performance of FORADF for Cameraman image. : performance of

FORADF for Lena image. : performance of FORADF for Pepper image
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required in AMD in comparison with FORADF to per-

form one pixel operation. The total number of multi-

pliers and adders is the lowest for FORADF; in the

context of DSP, this spirals down to power efficiency,

since multipliers are power guzzlers [31]. The lowest

number of iterations of FORADF compensates for the

increased running time due to sorting. Therefore, the

total energy consumed by FORADF is lower than that of

AMD and is comparable with that of RF. The results

clearly demonstrate that FORADF is an efficient

edge-preserving robust smoothing in comparison with

the four filters for Gaussian, salt and pepper, and mixed

noise situations across all noise densities, and, hence,

FORADF is significant in the context of power-efficient

implementations.

4 Conclusion
Diffusion smoothing of images with edge preservation in

robust environment is a growing area of research. Exist-

ing robust diffusion smoothing filters employ two or

more stages and are generally complex in terms of arith-

metic operations. A low arithmetic complexity model

and an algorithm for robust diffusion smoothing of im-

ages are derived. The algorithm exhibits superior per-

formance in terms of standard performance criteria and

visual results in Gaussian, impulse, and mixed noise situ-

ations. The intrinsic computational simplicity of the pro-

posed model and algorithm are significant in the context

of power efficient implementations.

Abbreviations

AADF: Adaptive anisotropic diffusion filter; AMD: Anisotropic median

diffusion; CFL: Courant-Friedrichs-Lewy; DSP: Digital signal processing;

ENI: Edge pixels, noisy pixels, and image pixels; EPI: Edge preservation index;

FORADF: First-order robust anisotropic diffusion filter; GN: Gaussian noise;

LHS: Left hand side; ML: Maximum likelihood; NI: Number of iteration;

NIAP: Number of Iterations required for Acceptable Performance; PDE: Partial

differential equation; PM: Perona-Mailk algorithm; PSNR: Peak signal to noise

ratio; RF: Robust filter; RHS: Right hand side; S&P: Salt and pepper noise;

SSIM: Structural similarity index metric

Acknowledgements

Not Applicable.

Funding

This work was not supported by any funding.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or

analyzed during the current study.

Authors’ contributions

DE contributed to the conceptual and theoretical formulations. NRR

contributed to the algorithm development, programming, and validation. RS

contributed to the computing platforms and methodology. All authors read

and approved the final manuscript.

Authors’ information

Resmi R. Nair received AMIE degree in Electronics and Communication

Engineering from The Institution of Engineers (India) in 2007 and she

received M.E degree in VLSI Design from Anna University in 2009. She is a

research scholar of Anna University, Chennai, India. Her research interests

include Digital Signal Processing, Digital Image Processing, and VLSI. She is a

member of IEEE, IETE, and ISTE (India).

Ebenezer David obtained his Ph. D degree in communication engineering

from Anna University, Chennai, India in 1994. He is a Professor Emeritus in

the Department of Electronics and Communication Engineering, College of

Engineering, Anna University, Chennai. His research publications are in the

area of nonlinear digital filtering with well over 45 journal and conference

publications and 1200 citations. He has also delivered keynote speeches in

international conferences. He served as a referee for journal of Medical

Engineering and physics (U.K), IET, IEEE Transactions on Image Processing,

and JEI (U.S.A). He is an elected AMIE (India), a member of ISTE (India), and a

senior member IEEE.

Sivakumar Rajagopal is a Professor and Head of Department of Electronics

and Communication Engineering at RMK Engineering College, Tamil Nadu,

India. He has been teaching in the Electronics and Communication field

since 1997. He obtained his Master’s degree and Ph. D from College of

Engineering Guindy, Anna University, Chennai. His research interests include

Bio Signal Processing, Medical Image Processing, wireless body sensor

networks and VLSI. He has published over 34 journal and 42 conference

papers. He has chaired a number of international conferences and has

delivered keynote speeches Dr. Siva is a life member of the Indian Society of

Technical Education, a senior member of IEEE.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Department of Electronics and Communication Engineering, RMK

Engineering College, Kavaripettai, Tamil Nadu 601206, India. 2Department of

Electronics and Communication Engineering, Anna University, Chennai, Tamil

Nadu 600025, India.

Received: 1 July 2017 Accepted: 15 February 2019

References

1. J. Babaud, A. Witkin, M. Baudin, R. Duda, Uniqueness of the Gaussian kernel

for scale space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 26–33

(1986)

2. P. Perona, J. Malik, Scale space and edge detection using anisotropic

diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

3. M.J. Black, D.H. Marimont, Robust anisotropic diffusion. IEEE Trans. Image

Process. 7(3), 421–432 (1998)

4. J. Ling, A.C. Bovik, Smoothing low-SNR molecular images via anisotropic

median diffusion. IEEE Trans. Med. Imag. 12(4), 377–383 (2002)

5. B. Ham, D. Min, K. Sohn, Robust scale space filter using second order partial

differential equations. IEEE Trans. Image Process. 21(9), 3937–3951 (2012)

6. J. Wu, C. Tang, PDE-based random-valued impulse noise removal based on

new class of controlling functions. IEEE Trans. Image Process. 20(9), 2428–

2438 (2011)

7. W. Wang, P. Lu, IEEE Proceedings of the 10th world congress on intelligent

control and automation. Adaptive Switching Anisotropic Diffusion Model for

Universal Noise Removal (Beijing, 2012), pp. 4803–4808

8. X. Chen, C. Tang, X. Yan, Switching degenerate diffusion PDE filter based on

impulse like probability for universal noise removal. Elsevier Int. J. Electron.

Commun. 68(9), 851–857 (2014)

9. N.U. Khan, K.V. Arya, M. Pattanaik, Edge preservation of impulse noise

filtered images by improved anisotropic diffusion, Springer Sci. + Bus. Media

New York. Multimed. Tools Appl. 73(1), 573–597 (2014)

10. H. Tian, H. Cai, J. Lai, A novel diffusion system for impulse noise removal

based on a robust diffusion tensor. Elsevier Neurocomputing 133, 222–230

(2014)

11. S.I. Cho, S.J. Kang, H.S. Kim, Y.H. Kim, Dictionary-based anisotropic diffusion

for noise reduction. Elsevier Pattern Recogn. Lett. 46, 36–45 (2014)

12. T. Veerakumar, S. Esakkirajan, I. Vennila, Edge preservation adaptive

anisotropic diffusion filter approach for the suppression of impulse noise in

images. Elsevier Int. J. Electron. Commun. 68(5), 442–452 (2014)

Nair et al. EURASIP Journal on Image and Video Processing         (2019) 2019:48 Page 13 of 14



13. B. Marami, B. Scherrer, O. Afacan, B. Erem, S.K. Warfield, A. Gholipour,

Motion-robust diffusion-weighted brain MRI reconstruction through slice-

level registration-based motion tracking. IEEE Trans. Med. Imag. 35(10),

2258–2269 (2016)

14. A Einstein, Investigation on the Theory of the Brownian Movement, ed. By R

Furth and Transl. by AD Cowper (Dover Publications, New York, 1956), pp.

9–15

15. M.H. Hayes, Statistical Digital Signal Processing and Modelling (Wiley, Wiley-

India, New Delhi, 2011), pp. 99–102

16. K. Kim, G. Shevlyakov, Why Gaussianity [an attempt to explain this

phenomenon]. IEEE Signal Process. Mag. 25(2), 112 (2008)

17. J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering (CRC

Press, New York, 1997), p. 40

18. P.J. Huber, Robust Statistics, 2nd edn. (Wiley, New Jersey, 2009), p. 46

19. S. Rakshit, A. Ghosh, B.U. Shankar, Fast mean filtering technique (FMFT).

Elsevier Pattern Recogn. 40(3), 890–897 (2007)

20. J. Weickert, Anisotropic Diffusion in Image Processing (BG Teubner, Stuttgart,

2008), pp. 1–26

21. S. Paris, P. Kornprobst, J. Tumblin, F. Durand, Bilateral Filtering (Theory and

Applications, (now Publishers, USA, 2009), pp. 5–9

22. K. He, J. Sun, X. Tang, Guided image filtering. IEEE Trans. Pattern Anal. Mach.

Intell. 35(6), 1397–1409 (2013)

23. L. Caraffa, J.P. Tarel, P. Charbonnier, The guided bilateral filter: when the

joint/cross bilateral filter becomes robust. IEEE Trans. Image Process. 24(4),

1199–1208 (2015)

24. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8, 679–698 (1986)

25. R. Courant, K. Friedrichs, H. Lewy, Uber die partiellen

Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74

(1928) (Trans.: in L. English by PD Lax, Hyperbolic difference equations: a

review of the courant-friedrichs-lewy paper in the light of recent

developments, IBM J. of Res. and Develop., 11(2), 235–238(1967)

26. K.S. Srinivasan, D. Ebenezer, A new fast and efficient decision-based

algorithm for removal of high-density impulse noises. IEEE Signal Process.

Lett. 14(3), 189–192 (2007)

27. R. Ramanath, W.E. Snyder, Y. Yoo, M.S. Drew, Color image processing

pipeline. IEEE Signal Process. Mag. 22(1), 34–43 (2005)

28. W. van Houten, Z. Geradts, Using anisotropic diffusion for efficient

extraction of sensor noise in camera identification. J. Forensic Sci. 57(2),

521–527 (2012)

29. P. Deodar, Dissertation, University of Cincinnati (2014)

30. H.K. Garg, Digital Signal Processing Algorithms: Number Theory, Convolution,

Fast Fourier Transforms, and Application (CRC Press, Florida, 1998), p. 1

31. K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation

(Wiley, New York, 1997), p. 268 p. 645, p. xvi

Nair et al. EURASIP Journal on Image and Video Processing         (2019) 2019:48 Page 14 of 14

http://dl.acm.org/author_page.cfm?id=81100417806&coll=DL&dl=ACM&trk=0&cfid=735786241&cftoken=84508693

	Abstract
	Introduction
	The proposed methodology
	A first-order robust diffusion smoothing model based on Einstein’s stochastic argument for Brownian motion

	Results and discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	Author details
	References

