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Abstract: A nonlinear singularly perturbed boundary

value problem depending on a parameter is considered.

First, we solve the problemusing the backward Euler finite

difference scheme on an adaptive grid. The adaptive grid is

a special nonuniform mesh generated through equidistri-

bution principle by a positive monitor function depending

on the solution. The behavior of the solution, the stability

and the error estimates are discussed. Then, the Richard-

son extrapolation technique is applied to improve the ac-

curacy of the computed solution associated to the back-

ward Euler scheme. The proofs of the uniform convergence

for the backward Euler scheme and theRichardson extrap-

olation are carried out. Numerical experiments validate

the theoretical estimates and indicates that the estimates

are sharp.

Keywords: Singular perturbation, layer adapted mesh,

parameterized problems, boundary layer, Richardson ex-

trapolation

1 Introduction

The study of singularly perturbed problems (SPPs) is ex-

ceptionally useful because they describe many problems

of practical interest. These types of problems are identi-

fied by the differential equations in which a small param-

eter (ε) known as perturbation parameter multiplies the

highest order derivative. It is well known that the classi-

cal numerical methods for solving SPPs are unstable and

fail to give accurate results when ‘ε’ is very small, 0 <

ε ≪ 1. Therefore, special approaches are required for ob-

taining a good approximation. So, it is important to de-
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velop such methods, whose accuracy do not depend on

ε. The layer-adapted meshes: Shishkin type meshes (stan-

dard Shishkin mesh (S-mesh), Bakhvalov-Shishkin mesh

(B-S-mesh)) and newly developed adaptive grid can be

used to obtain parameter uniform numerical methods. In

recent years, development of parameter uniform numer-

ical methods based on layer adapted meshes have wit-

nessed substantial progress. Formore details on the singu-

lar perturbation and layer adapted meshes, one can refer

the books ([7, 13, 19]) and the references therein.

Consider the following singularly perturbedBoundary

Value Problem(BVP) depending on a parameter:
{
εu′(x) + f (x, u, λ) = 0, x ∈ Ω = (0, 1],

u(0) = s0, u(1) = s1,
(1.1)

where 0 < ε ≪ 1 and λ known as the control parameter.

Here s0, s1 are the given constants. The function f (x, u, λ)

is assumed to be sufficiently smooth and satisfies the fol-

lowing bounds:




f (x, u, λ) ∈ C3([0, 1] × R2),

0 < α ≤
∂f
∂u

≤ α* < ∞ (x, u, λ) ∈ [0, 1] × R2,

0 < m ≤
∣∣ ∂f
∂λ

∣∣ ≤ M < ∞ (x, u, λ) ∈ [0, 1] × R2.

(1.2)

With these assumptions, the BVP (1.1) possesses a unique

solution having a boundary layer of width O(ε) near x =

0 (refer [1, 17, 18]). The parameter λ has no connection

with the eigenvalue of the nonlinear differential equation.

Since there are two unknowns, two boundary conditions

are given in (1.1) to determine it exactly.

Parameterized BVP have been considered for many

years. The existence and uniqueness of the solution for

the BVP(1.1) were first considered by Pomentale [17].

Jankowski [8] and Liu [11] constructed monotonic itera-

tivemethods for these problems. But the above-mentioned

articles were concerned with the regular case. In recent

years, many researchers considered the singular perturba-

tion cases for these problems. Amiraliyev et. al. [1] gave a

uniform finite difference method on a standard Shishkin

mesh [7] for BVP(1.1) and shown that themethod is first or-

der convergent up to a logarithmic factor i.e. of the order

O(N−1 lnN). A hybrid difference scheme which combines
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upwind scheme on the fine mesh with the midpoint up-

wind scheme on the coarse mesh was considered by Cen

[3]. Xie et. al. [23] used the boundary layer correction tech-

nique to solve the parameterized problem. Turkyilmazoglu

[21] constructed a methodology based on the homotopy

analysis technique to approximate the analytic solution. A

uniform difference scheme was developed by Amiraliyeva

et. al. [2] for parameterized delay differential equation. Re-

cently, Das [6] provide a comparison of apriori and poste-

riorimeshes for BVP (1.1).

Here, we have considered two types of numerical

schemes: the backward Euler scheme and the post-

processing Richardson extrapolation technique on the

adaptive grid generated via equidistribution principle.

Richardson extrapolation is a technique where two com-

puted solutions are approximated by an average to pro-

vide a better approximation. This technique has the ad-

vantage that it can be extended to problems in more than

one dimensions. Vulanovic et. al. [22] used this technique

for singularly perturbed reaction-diffusion problem using

Bakhvalov mesh. Its application to the numerical solu-

tion of singularly perturbed convection-diffusion problem

was examined in [16] by Natividad and Stynes. Using this

idea,Mohapatra andNatesan [14] constructed a second or-

der post processing technique for solving singularly per-

turbed delay differential equation. In this work, we have

solved the BVP (1.1) by backward Euler difference scheme

on an adaptive grid. Then, we have successfully applied

the Richardson extrapolation technique on computed so-

lution to enhance the accuracy from first order to second

order.

This paper is organized as follows: In section 3, we

describe the numerical scheme for the problem (1.1). In

section 4, a brief description of the nonuniform mesh is

presented. The error estimates for the approximate solu-

tion are obtained for the proposed schemes in section 5.

Finally, in section 6, we present two numerical examples,

which validate the theoretical estimates. Throughout this

paper ‘C’ denotes a generic positive constant independent

of both ε and N which can take different values at differ-

ent places and subscripted C’s are fixed constants. Here,

we denote g(xi) = gi.

2 Analytical results

Lemma 2.1. The BVP (1.1) has a unique solution

{u(x), λ} ∈ C1([0, 1] ×R).

Proof. Following the proof of Theorem 2.1 in [23], one can

prove the above Lemma.

Lemma 2.2. The solution {u(x), λ} of (1.1) satisfies the fol-

lowing the inequalities:

|λ| ≤ C, |uk(x)| ≤ C

{
1 + ε−k exp

(
−
αx
ε

)}
,

x ∈ Ω, k = 0, 1, 2, 3,

Proof. The proof for k = 0, 1 is given in Lemma 1 of [1],

same argument can be used to prove for k = 2, 3.

3 Numerical schemes

In this section, we describe a difference scheme for BVP

(1.1). On a arbitrary nonuniform mesh ΩN : 0 < x0 < x1 <

. . . < xN , define the operator:

D−UN
i =

UN
i − UN

i−1

hi
,

where hi = xi − xi−1. The BVP (1.1) is discretized by the

following difference scheme:





TNUN
i ≡ εD−UN

i + f (xi , U
N
i , λ

N) = 0 , 1 ≤ i ≤ N − 1.

UN
0 = s0, UN

N = s1,

(3.1)

In order to increase the accuracy of the difference scheme

(3.1), we follow the idea described in [16]. We construct a

new nonuniform mesh Ω2N : 0 < x̃0 < x̃1 < . . . < x̃2N and

h̃i = x̃i−1− x̃i, which is generated by bisecting each interval

of the originalmeshΩN . Now, thedifference schemeon the

mesh Ω2N is defined as:



T̃2NU

2N
i ≡ εD−U

2N
i + f (xi , U

2N
i , λ2N) = 0 , 1 ≤ i ≤ 2N − 1,

Ũ2N
0 = s0, Ũ2N

2 N = s1.

(3.2)

We are interested in the extrapolated solution defined on

the mesh ΩN by UN
extp,i = 2U

2N
2i − UN

i , for i = 0, 1, . . . , N;

which we expect will improve the accuracy of the approx-

imation obtained at the points xi ∈ ΩN . Also, It will en-

hance the order of the convergence of the scheme.

4 The nonuniform mesh

Numerical methods using the standard finite difference

schemes on uniform meshes are inadequate for solving

SPPs [7, 13]. Special approaches are required to dealt with
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these problems. Layer-adapted meshes are of great inter-

est, not only because they capture the layer behaviour, but

also because they can result in numerical approximation

whose accuracy is guaranteed independent of thewidth of

the layer. Thesemeshes can be divided into two categories:

a priori mesh, for which a prior information about the lo-

cation and the width of the solution is required and a pos-

teriori mesh, for which we do not need such information.

In past few years, different approaches are developed to

get uniformconvergencewhere themesh is chosen apriori.

Very few literature are available for the posteriori meshes.

One of such approach is the adaptive grid. In [10], an adap-

tive grid based numerical method is developed for solv-

ing a quasi-linear one-dimensional convection-diffusion

problem. Mackenzie [12] constructed the uniform conver-

gent upwind method for a convection-diffusion problem

on an adaptive grid generated via equidistribution princi-

ple. Chen [4] provided uniform convergence of finite dif-

ference approximation for SPP on an adaptive grid. Moha-

patra and Natesan [15] proved the uniform convergence of

upwind scheme for approximating the global solution and

the global normalized flux using the grid equidistribution.

Here, our aim is to construct efficient numerical method

on an adaptively generated posteriori mesh.

Adaptive grid is one of the special kind of nonuni-

form mesh. A commonly-used technique to generate the

adaptive grid is based on equidistribution of an arbitrary

non-negative function M(u(x), x) defined on [0, 1] known

as the monitor function. A grid ΩN is said to be equidis-

tributed if

xj∫

xj−1

M
(
u(s), s

)
ds =

xj+1∫

xj

M
(
u(s), s

)
ds, j = 1, 2, . . . , N − 1.

(4.1)

The monitor functions are usually depend on the gradi-

ent of the solution. The solution of (4.1) along with a dis-

cretized version of the BVP (1.1) produces the numerical

approximation to the solution of the BVP (1.1).

We shall follow the similar mesh generation algo-

rithm for solving the parameterized BVP (1.1). The follow-

ing adaptive algorithm is used to generate the appropriate

nonuniform mesh (One may refer [4, 10, 12] for more de-

tails on the adaptive algorithm).

Adaptive mesh generation algorithm

Step 1: Consider the initial mesh {0, 1/N, 2/N, ...1} as

uniform.

Step 2: Solve the discrete problem for k = 0, 1, ... on the

mesh {xki } to compute the solution {UN,(k)i }.

Step 3: Define D2 = D+D−, where D+UNi =
UNi+1−U

N
i

xi+1−xi
and

D−UNi =
UNi −U

N
i−1

xi−xi−1
. Find the discretized the monitor function

as

Mk
i = [1 + |D

2
UN,(k)i |1/2] for i = 1, · · · , N,

by defining D
2
UNi =

(
D2UNi + D2UNi−1

)
/2 with D

2
UN1 =

D2UN1 and D
2
UNN = D2UNN−1. Compute

lkj =

j∑

i=1

hki M
k
i ,

where hi = xi+1 − xi for i = 1, 2, · · · , N − 1.

Step 4: Let C0 be a user chosen constant with C0 > 1.

Now if,

max
i=1,··· ,N

hki M
k
i

lkN
≤
C0
N
, then go to Step 6, otherwise

continue to Step 5.

Step 5: Generate a new mesh by equidistributing the

monitor function using the current computed solution

from Step 2 and Mk
i from Step 3. Set UN,(k)i = ilkN /N for

i = 0, · · · , N . Now interpolate (xk+1i , UN,(k)(xki )) to (x
k
i , l

k
i ))

using the piecewise linear interpolation. Generate a new

mesh x(k+1)i = 0 = x(k+1)0 < x(k+1)1 < ... < x(k+1)N = 1 and re-

turn to Step 2.

Step 6: Set x0, x1, ..., xN = x(k+1)i as the final desired

nonuniform mesh and U = UN,(k+1). Stop.

5 Error estimates

In this section, we wish to establish the uniform conver-

gence of the extrapolation scheme on the layer-adapted

mesh. To investigate the error function of the method, the

error function is denoted as zNi = UNi − ui , 0 ≤ i ≤ N, µN =

λN − λ which is the solution of the following discrete prob-

lem:




ε
zNi − z

N
i−1

hi
+ f (xi , U

N
i , λ

N) − f (xi , ui , λ) = ε(u
′

i − D
−UNi ),

zN0 = zNN = 0.

(5.1)

For, i = 1, 2, ..., N, we use the Taylor’s expansion for f

around (xi , ui , λ) which gives,

LNzNi ≡ ε
zNi − z

N
i−1

hi
+ aiz

N
i = biµ

N + Ri , (5.2)

where,




ai =
∂

∂u
f (xi , ui + σzi , λ + σµ

N),

bi =
∂

∂λ
f (xi , ui + σzi , λ + σµ

N), 0 < σ < 1,

Ri = ε(u
′

i − D
−UNi ).

(5.3)

It is easy to verify that the matrix associated with LN is

an M-matrix. Hence, we can use the discrete maximum
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principle, which states “If {vi}
N
0 and {wi}

N
0 are the mesh

functions that satisfy v0 ≥ w0 and vN ≥ wN and LNvi ≥

LNwi for i = 0, ..., N − 1 then vi ≥ wi for all i.” Here we

use the discrete norms ‖v‖∞,Ω = max
i

|vi| and ‖v‖*,Ω =

maxi=1,...,N |
∑N

j=i hjvj|.

Lemma 5.1. For the pair {zNi , µ
N}, the following estimates

hold:




|µN | ≤ m−1‖R‖∞,Ω ,

‖zN‖∞,Ω ≤ α−1(1 + m−1M)‖R‖∞,Ω .
(5.4)

Proof. One can refer Lemma 4.2 of [1] for the proof.

The next theorem gives the error estimate of the solution

before extrapolation.

Theorem 5.2. Let {u(x), λ} and {UNi , λ
N} be the exact

solution and discrete solution on adaptive grid respectively.

Then, there exists a constant C independent of N and ε such

that

‖u − UN‖∞,Ω < CN−1. (5.5)

Proof. From (5.3) for Ri, we use Taylor’s series expansion

for u(x) around xi to obtain

|Ri| ≤ ε|u′i − D
−UNi | ≤ ε

xi∫

xi−1

|u′′(x)|dx,

≤

xi∫

xi−1

(ε + ε−1 exp(−αx/ε))dx,

≤ C

(
εhi + ε

−1

xi∫

xi−1

exp(−αx/ε)dx

)
,

≤ C

(
εN−1 +

xi∫

xi−1

(1 + |u′′(x)|1/2)dx

)
,

≤ C

(
εN−1 +

xi∫

xi−1

M(u(x), x)dx

)
,

≤ C

(
εN−1 +

1

N

1∫

0

M(u(x), x)dx

)
≤ CN−1.

Combining the above with (5.4), we get the desired bound.

Now, we will prove the estimate on the adaptive grid after

extrapolation. Equation (1.1) can be written as:

Lu = εu′ + a(x)u = b(x)λ + F(x), (5.6)

where, 



a(x) =
∂f

∂u
(x, u, λ),

b(x) = −
∂f

∂λ
(x, u, λ),

F(x) = f (x, 0, 0).

(5.7)

So, the backward Euler scheme for (5.6) is given as:

LNUNi = εD−UNi + aiU
N
i = biλ

N + Fi . (5.8)

The operator LN enjoys the following stability property:

‖v‖∞,Ω ≤ C‖LNv‖*,Ω for all v ∈ RN+10 . (5.9)

Lemma 5.3. Let ζ be the solution of the following parame-

terized BVP:

Lξ = b(x)λ + F(x) where ζ ′ = b(x)λ + F(x), x ∈ (0, 1),

ξ (0) = 0, ξ1 = 0, (5.10)

where ζ is piecewise continuously differentiable, then

N−1∑

k=i

hk[L
N ξ ]k =

N−1∑

k=i

hk(aξ )k −

1∫

xi

(aξ )dx+

1∫

xi

(F(x)+λb(x))dx

(5.11)

Proof. We know

N−1∑

k=i

[LN ξ ]k = ε[ξ ]N − ε[ξ ]i +

k=N∑

k=i

hk(aξ )k . (5.12)

Integrating Lξ = b(x)λ + F(x) over (xi , xN), we get

ε([ξ ]N − [ξ ]i) =

1∫

xi

(F(x) + λb(x))dx −

1∫

xi

(aξ )dx. (5.13)

Combining (5.12) and (5.13), we get (5.11).

From Lemma 5.3, the error LN(u − UN) of the scheme is

given by:

k=N−1∑

k=i

hk[L
N(u−UN)]k ≤

k=N−1∑

k=i

hkgk −

1∫

xi

g(x)dx+C1|λ− λ
N |,

(5.14)

where g(x) = (F(x) − a(x)u(x)). Thus,

‖LN(u − UN)‖∞,Ω ≤ε max
i=1,...N

|[D−UN ]i − u
′

i|

+ max
i=0,...,N

∣∣∣∣

1∫

xi

g(x)dx −

N∑

k=i

hkgk

∣∣∣∣.

(5.15)

Both terms in RHS of (5.15) are of first order.
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Let ψ, the leading term of the error expansion be the solu-

tion of the following problem:

Lψ(x) = Ψ ′, ψ(0) = ψ(1) = 0,

Ψ(x) = ε
h(x)
2
u′′(x) −

1∫

x

h(s)g(s)ds. (5.16)

Then by Lemma 5.3, we have

k=N−1∑

k=i

[LN(u − ψ − UN)]k = ε([D
−UN ]i − u

′

i +
hi
2
u′′i ) − ε

hN
2
u′′N

+

1∫

xi

(g(x) − h(x)g′(x))dx −
N−1∑

k=i

hkgk . (5.17)

Now, consider the first term inRHSof (5.17). Differentiating

(5.6) twice, we get εu′′+(a(x)u)′ = b′(x)λ+F′(x) and εu′′′ =

b′′(x)λ + F′′(x)− (a(x)u)′′ which implies that |εu′′′| ≤ C(1 +

|u′′|). So, we have

ε([D−UN ])i − u
′

i +
hi
2
u′′i =

ε
2hi

∣∣∣∣

xi∫

xi−1

(x − xi−1)
2u′′′(x)dx

∣∣∣∣,

≤
C
2hi

xi∫

xi−1

(x − xi−1)
2(1 + |u′′(x)|)dx,

≤ C max
[xi−1xi ]

h2i [1 + |u′′(x)|],

≤ Cmax
i

max
[xi−1xi ]

h2i [1 + |u′′(x)|1/2]2.

(5.18)

From Taylor’s expansion, we obtain

g(s) = gi−1 + (s − xi−1)g
′(s) −

s∫

xi−1

(x − xi−1)g
′′(x)dx. (5.19)

So, we can deduce

xi−1∫

xi

(g(x) − (x − xi−1)g
′(x))dx − higi−1 =

xi∫

xi−1

s∫

xi−1

g′′(x)dxds

≤ Ch3i . (5.20)

Thus,

∣∣∣∣

1∫

xi

(g(x) − h(x)g′(x))dx −
N∑

k=i+1

hkgk−1

∣∣∣∣

≤

N∑

k=i+1

∣∣∣∣

xk∫

xk−1

(g(x) − (x − xk−1)g
′(x)dx

∣∣∣∣,

≤ C
N∑

k=i+1

h3k ≤ Cmax
k
h2k

N∑

k=i+1

hk ≤ Cmax
i
h2i ,

≤ Cmax
i

max
[xi−1xi ]

h2i [1 + u
′′(x)1/2]2. (5.21)

Combining the above estimates, we have

‖LN(u − ψ − UN)‖*,ΩN ≤ Cmax
i

max
[xi−1xi ]

h2i [1 + u
′′(x)1/2]2.

(5.22)

Thus, from the stability property,

‖(u − ψ − UN)‖∞,ΩN ≤ Cmax
i

max
[xi−1xi ]

h2i [1 + |u′′(x)|1/2]2.

(5.23)

In order to provide idea of extrapolation, consider the dis-

crete problem for i = 1, 2, . . . 2N − 1:

L
N
U
2N

= εD−U
2N
i + aiU

2N
i = biλ

2N + F i (5.24)

Following the similar procedure as we follow for (5.6) we

can prove that

‖(u −
ψ

2
− U

2N
)‖∞,ΩN ≤ Cmax

i
max
[xi−1xi ]

h2i [1 + |u′′(x)|1/2]2.

(5.25)

Then using the triangle inequality and combining (5.23)

with (5.25), we get

||u − UNextp||∞,ΩN ≤ Cmax
i

max
[xi−1xi ]

h2i [1 + |u′′(x)|1/2]2. (5.26)

Finally on the adaptive grid, we can state the following

convergence result for the Richardson extrapolation tech-

nique.

Theorem 5.4. Let {u(x), λ} and {UNextp , λ
N} be the exact

solution and discrete solution obtained by the Richardson

extrapolation technique on the adaptive grid (defined in

Section 4) respectively. Then, there exists a constant C such

that

‖u − UNextp‖∞,ΩN ≤ CN
−2.

Proof. From (5.26) we have,

‖u − UNextp‖∞,ΩN ≤ Cmax
i

max
[xi−1xi ]

h2i [1 + |u′′(x)|1/2]2.

From [5]weknow that if themesh is generatedby the adap-

tive algorithm, then hi ≤ CN
−1. Applying the bound of the

derivatives of the solution in (5.26), we can prove the de-

sired estimates.

6 Numerical Results

We consider two test problems to show the applicability

and efficiency of the proposed methods.

Example 6.1. Consider the singularly perturbed problem
{
εu′(x) + 2u − exp(−u) + λ = 0, x ∈ Ω = (0, 1) ,

u(0) = 0, u(1) = 1.

(6.1)
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Table 1: ENε,u and the corresponding r
N
ε,u for Example 6.1 on the adaptive grid.

ε Number of intervals N

16 32 64 128 256 512 1024

1e − 4 before 2.577e-2 1.238e-2 6.093e-3 3.020e-3 1.502e-3 7.503e-4 3.749e-4

rate 1.059 1.023 1.013 1.008 1.001 1.001

after 2.370e-3 5.182e-4 1.230e-4 2.998e-5 7.405e-6 1.974e-6 5.921e-7

rate 2.193 2.075 2.037 2.018 1.908 1.737

1e − 8 before 2.796e-2 1.332e-2 6.188e-3 3.033e-3 1.504e-3 7.506e-4 3.742e-4

rate 1.069 1.106 1.029 1.012 1.003 1.004

after 2.776e-3 5.849e-4 1.269e-4 3.023e-5 7.678e-6 1.937e-6 4.947e-7

rate 2.246 2.204 2.070 1.977 1.987 1.969

The exact solution is not available for Example 6.1. In or-

der to calculate themaximumpoint-wise error ENε,u and the

rate of convergence rNε,u, we use interpolation. Define Ũ
2N
i

and Ũ2N
extp, i as the piecewise linear interpolation to U

N
i and

UNextp, i respectively in Ω
N . For any value of N, maximum

pointwise error ENε,u with respect to the variable u of the

numerical solution before and after extrapolation will be

calculated by max
i

|UNi − Ũ2N
i | and max

i
|UNextp, i − Ũ

2N
extp, i|

respectively.

Example 6.2. Consider the following singularly perturbed

problem:





εu′(x) + u − exp(−u) + (λ + x) exp(−1/ε)

+ exp(x exp(−1/ε) − exp(−x/ε)) + exp(λ) + λ − 1 = 0,

x ∈ Ω = (0, 1) ,

u(0) = 1, u(1) = 0.

(6.2)

The above problem has exact solution u(x) = exp(−x/ε) −

x exp(−1/ε)whenever λ satisfies (λ−ε) exp(−1/ε)+exp(λ)−

1 = 0

Let u(x) be the exact solution. Let the numerical solution

before and after extrapolation be UNi and UNextp, i respec-

tively, then the ENε,u with respect to the variable u of the

numerical solution before and after extrapolation is cal-

culated as: max
i

|ui − U
N
i | and max

i
|ui − U

N
extp,i| respec-

tively. The corresponding rate of convergence is calculated

as rNε,u = log2

(
ENε,u
E2Nε,u

)
.

Figure 1(a) and Figure 1(b) represent the numerical so-

lution before and after extrapolation for Example 6.1 and

Example 6.2 respectively for N = 40 and ε = 2−8. The er-

ror behaviour of the scheme for Example 6.1 and 6.2 for

N = 20 and ε = 10−2 are displayed in the Figure 2. One can

clearly observe that the error in the layer region as well as

in the outer region is less after extrapolation. In Figure 3(a)

and Figure 3(b), the maximum pointwise error versus the

number ofmesh interval is plotted in the logarithmic scale

for ε = 10−8. These figures show the effectiveness and ac-

curacy of the extrapolation scheme. In Table 1, we repre-

sent the maximum pointwise error and the corresponding

rate of convergence for Example 6.1 with ε = 10−4, 10−8

which is enough to show the singularly perturbed nature

of the problem. The rapid decrease in the error after ex-

trapolation can be observed from these results. Moreover,

improvement in the rate of convergence from first order to

second order is also evident as claimed by the theoretical

finding. The proposed improvement is compared with re-

sults on Shishkin type meshes in Table 2 for Example 6.2

with ε = 10−8. The numerical approximation on the B-S-

mesh also results in first-order convergence before extrap-

olation and second order convergence after extrapolation.

But the advantage of the adaptive grid is that it does not

need any apriori information about the location andwidth

of the layer. The numerical results are the clear illustration

of the error estimates.

7 Concluding remarks

In this work, a higher order accurate method is used to

compute the solution of a class of parameterized nonlin-

ear singularly perturbed differential equation. First, we

use the backward Euler difference scheme on the adap-

tive grid, then Richardson extrapolation technique is used

on the computed solution. Clearly, after extrapolation the

error of the numerical solution is considerably decreased.

Theoretical estimates are supported with the help of nu-

merical results. The advantage of the adaptive grid over

Shishkin type meshes is evident from the theoretical es-
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Fig. 1: Numerical solution with N = 40 and ε = 2−8.
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Fig. 2: Error behaviour with N = 20 and ε = 10−2.
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Fig. 3: Loglog plot of maximum point-wise errors with ε = 10−8.

timates obtained as well as from the numerical results

shown.
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Table 2: ENε,u and the corresponding r
N
ε,u for Example 6.2.

N S-mesh B-S-mesh Adaptive grid

before 1.488e-2 1.545e-2 1.859e-2

32 rate 0.705 0.932 0.959

after 4.643e-4 3.850e-4 6.346e-4

rate 1.403 1.769 1.998

before 5.399e-3 4.141e-3 4.411e-3

128 rate 0.794 0.983 1.014

after 6.154e-5 4.647e-5 3.590e-5

rate 1.586 1.968 2.028

before 1.759e-3 1.053e-3 1.087e-3

512 rate 0.843 0.995 1.003

after 6.557e-6 4.181e-6 2.185e-6

rate 1.686 1.986 2.007

References

[1] Amiraliyev, G.M. and Duru, H. A note on parameterized singular

perturbation problem. J. Comput. Appl. Math., 182:233–242

(2005).

[2] Amiraliyeva, I.G. and Amiraliyev, G.M. Uniform difference

method for a parameterized singularly perturbed delay differ-

ential equations. Numer. Alog., 52:509–521 (2009).

[3] Cen, Z. A second-order difference scheme for a parameter-

ized singular perturbation problem. J. Comput. Appl. Math.,

221:174–182 (2008).

[4] Chen, Y. Uniform convergence analysis of finite difference

approximations for singularly perturbation problem on an

adaptive grid. Adv. Comput. Math., 24:197–212 (2006).

[5] Das, P. and Srinivasan, N. Richardson extrapolation method for

singularly perturbed convection-diffusion problems on adap-

tively generated mesh. Comput. Model. Eng. Sci., 90:463–485

(2013).

[6] Das, P. Comparison of A priori and A posteriori Meshes for

Singularly Perturbed Nonlinear Parameterized Problems. J.

Comput. Appl. Math., 290:16–25 (2015).

[7] Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E. and

Shishkin, G.I. Robust Computational Techniques for Boundary

Layers. Chapman & Hall/CRC Press, Boca Raton, FL (2000).

[8] Jankowski, T. and Lakshmikantham, V. Monotone iterations for

diffrential equation with parameter. J. Appl. Math. stoch. Anal.,

10(3):273–278 (1997).

[9] Kellogg, R.B. and Tsan, A. Analysis of some differences approx-

imations for a singular perturbation problem without turning

point. Math. Comp., 32: 1025–1039 (1978).

[10] Kopteva, N. and Stynes, M. A robust adaptive method for a

quasi-linear one dimensional convection-diffusion problem.

SIAM J. Numer Anal., 39:1446–1467 (2001).

[11] Liu, X. and Mcare, F.A. A Monotone iterative methods for

boundary value problems of parameteric differential equation.

J. Appl. Math. stoch. Anal., 14(2):183–187 (2001).

[12] Mackenzie, J. Uniform convergence analysis of an upwind

finite differences approximation of a convection-diffusion

boundary value problem on an adaptive grid. IMA J. Numer

Anal., 19:233–249 (1999).

[13] Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. Fitted numerical

methods for singular perturbation problems revised edition.

World Scientific, Singapore (2012).

[14] Mohapatra, J. and Natesan, S. Unformaly convergent second-

order numetical method for singularly perturbed delay differ-

ential equations. Neural Parallel Sci. Comput. , 16:353–370

(2008).

[15] Mohapatra, J. and Natesan, S. Parameter–uniform numer-

ical method for global solution and global normalized flux

of singularly perturbed boundary value problems using grid

equidistribution. Comput. Math. Appl., 60:1924–1939 (2010).

[16] Natividad, M.C. and Stynes, M. Richardson extrapolation for

a convection-diffusion problem using a Shishkin mesh. Appl.

Numer. Math., 45:315–329 (2003).

[17] Pomentale, T. A constructive theorem of existence and unique-

ness for problem y′ = f (x, y, λ), y(a) = α, y(b) = β. Z. Angrew.

Math. Mech., 56(8):387–388 (1976).

[18] Ronto, M. and Csikos-Marinets, T. On the investigation of

some non-linear boundary value problems with parameter.

Math. Notes, Miscolc., 1:157–166 (2000).

[19] Roos, H.G., Stynes, M. and Tobiska, L. Numerical methods for

singularly perturbed differential equations. Springer, Berlin

(1996).

[20] Shakti, D. and Mohapatra, J. Layer-adapted meshes for param-

eterized singular perturbation problem. Procedia Engineering,

127:539–544, (2015).

[21] Turkyilmazoglu, M. Analytic approximate solutions of parame-

terized unperturbed and singularly perturbed boundary value

problems. Appl. Math. Model., 35:3879–3886 (2011).

[22] Vulanović, R., Herceg, D. and Petrović, N. On the extrapolation

of a singulalrly perturbed boundary value problem. Comput-

ing, 36:69–79 (1986).

[23] Xie, F., Wang, J., Zhang, W. and He, M. A novel method for a

class of parameterized singularly perturbed boundary value

problems. J. Comput. Appl. Math., 213:258–267 (2008).

Brought to you by | New York University

Authenticated

Download Date | 7/4/17 9:52 AM


	A second order numerical method for a class of parameterized singular perturbation problems on adaptive grid
	1 Introduction
	2 Analytical results
	3 Numerical schemes
	4 The nonuniform mesh
	5 Error estimates
	6 Numerical Results
	7 Concluding remarks


