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Abstract In this paper, we consider a single server feedback retrial queueing system with multiple

working vacations and vacation interruption. An arriving customer may balk the system at some

particular times. As soon as orbit becomes empty at regular service completion instant, the server

goes for a working vacation. The server works at a lower service rate during working vacation (WV)

period. After completion of regular service, the unsatisfied customer may rejoin into the orbit to get

another service as feedback customer. The normal busy server may get to breakdown and the ser-

vice channel will fail for a short interval of time. The steady state probability generating function for

the system size is obtained by using the supplementary variable method. Some important system

performance measures are obtained. Finally, some numerical examples and cost optimization anal-

ysis are presented.
� 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In queueing theory, vacation queues and retrial queues have

been intensive research topics for long time. We can find gen-
eral models in vacation queues from Ke et al. [1] and in retrial
queues from Artalejo and Gomez-Corral [2]. In retrial

queueing system, retrial queues with repeated attempts are
characterized by the fact that an arriving customer finds the
server busy upon arrival is requested to leave the service area
and join a retrial queue called orbit. After some time the

customer in the orbit can repeat their request for service. An
arbitrary customer in the orbit who repeats the request for ser-
vice is independent of the rest of the customers in the orbit.

Such queues play a special role in computer and telecommuni-
cation systems.

The concept of balking (customers decide not to join the
line at all if he finds the server is unavailable upon arrival)

was first studied by Haight in 1957. There are many situations
where the customers may be impatient, such as impatient tele-
phone switchboard customers, web access, including call cen-

ters and computer systems. Ke [3] studied an M[X]/G/1
queue with variant vacations and balking. Some of the authors
working
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like Wang and Li [4], and Gao and Wang [5] discussed about
the concept balking.

One additional feature that has been widely discussed in

retrial queueing systems is the Bernoulli feedback of cus-
tomers. Many queueing situations have the feature that the
customers may be served repeatedly for a certain reason. When

the service of a customer is unsatisfied, it may be retried again
and again until a successful service completion. These queue-
ing models arise in the stochastic modeling of many real-life

situations. For example, in data transmission, a packet trans-
mitted from the source to the destination may be returned
and it may continue this process until the packet is finally
transmitted. The retrial queue with feedback can be used to

model the Automative Repeat re-Quest (ARQ) protocol in a
high frequency communication network. In ARQ, if the sender
does not receive an acknowledgment before timeout, it usually

re-transmits the frame/packet until the sender receives an
acknowledgment or exceeds a predefined number of retrans-
missions. These types of retransmissions are called feedback.

Ke and Chang [6] have discussed Modified vacation policy
for M/G/1 retrial queue with balking and feedback. Some of
the authors like Baruah et al. [7], Krishnakumar et al. [8]

and Rajadurai et al. [9] have discussed the concept of
feedback.

In the queueing literature, mostly it is assumed that the ser-
ver is available all the time on permanent basis. But this is

unrealistic due to heavy influence of breakdowns on the server.
Thus, it is important to study retrial queue with breakdowns to
implement retrial queueing models practically. Choudhury and

Ke [10] have studied the batch arrival retrial queue with Ber-
noulli vacations and delaying repair. Recently authors like
Choudhury and Deka [11], Yang et al. [12], Rajadurai et al.

[13–15] and Dimitriou [16,17] discussed about the retrial
queueing systems with the concept of breakdown and repair.

In working vacation period (WV), the server gives service to

customer at lower service rate, but the server stops the service
completely in the normal vacation period. This queueing sys-
tem has major applications in providing services such as net-
work service, web service, file transfer service and mail

service. In 2002, Servi and Finn [18] have introduced an M/
M/1 queueing system with working vacations. Wu and Takagi
[19] have extended the M/M/1/WV queue to an M/G/1/WV

queue. Very recently, Arivudainambi et al. [20] have intro-
duced the single working vacation concept in the M/G/1 retrial
queue. Chandrasekaran et al. [21] have presented a short sur-

vey on working vacation queueing models. A retrial queueing
system with non-persistent customers and working vacations
has been discussed by Liu and Song [22].

Furthermore, during the working vacation period, if there

are customers at a service completion instant, the server can
stop the vacation and come back to regular busy state. This
policy is called vacation interruption. Li and Tian [23] have

presented an M/M/1 queueing model with working vacations
and vacation interruption. Some of the authors like Gao and
Liu [24], Gao et al. [25], Zhang and Liu [26], Zhang and

Hou [27] have analyzed a single server retrial queue with work-
ing vacations and vacation interruptions.

In this paper, we have generalized the work of Gao et al.

[25] and Arivudainambi et al. [20] by incorporating the concept
of balking, feedback and subject to server breakdown and
repair. To the author’s best of knowledge, there is no work
published in the queueing literature with the combination of
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
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retrial queueing system with general retrial times, feedback,
balking, multiple working vacations and vacation interruption,
where the server subjects to breakdown and repair by using the

method of supplementary variable technique. The mathemati-
cal results and theory of queues of this model provide a specific
and convincing application in Simple Mail Transfer Protocol

(SMTP) mail system which uses to deliver the messages
between mail servers and computer processing system. Our
model is helpful to managers who can design a system with

economic management.
The rest of this work is given as follows. The detailed math-

ematical description and practical applications of our model
are given in Section 2. The steady state joint distribution of

the server state and the number of customers in the system
and its orbit are obtained in Section 3. Some system perfor-
mance measures and reliability measures are obtained in Sec-

tion 4. In Section 5, conditional stochastic decomposition is
shown good for our model. Important special cases of this
model are given in Section 6. Cost optimization analysis is dis-

cussed in Section 7. In Section 8, the effects of various param-
eters on the system performance are analyzed numerically.
Summary of the work and some future directions are presented

in Section 9.
2. Description of the model and its applications

In this paper, we consider a single server retrial queueing sys-
tem with balking and feedback under multiple working vaca-
tion policy, where the busy server is subjected to breakdown
and repair. The detailed description of model is given as

follows:
The arrival Process: The primary customers arrive at the

system according to a Poisson process of rate k.
The retrial process: We assume that there is no waiting

space and therefore if an arriving customer finds that the
server is free, the customer occupies it immediately. Other-

wise, the server is busy or working vacation or breakdown;
the arrivals either leave the system with probability (1 � b)
or join pool of blocked customers called an orbit with

probability b in accordance with FCFS discipline, which
means that only the customer at the head of the orbit is
allowed to access the server. We assume that inter-retrial
times follow a general random variable R with an arbitrary

distribution R(t) having corresponding Laplace Stieltjes
Transform (LST) R*(#).

The working vacation process: The server begins a working

vacation each time when the orbit becomes empty and the
vacation time follows an exponential distribution with
parameter h. If any customers arrive in a vacation period,

the server continues to work at a lower rate. The working
vacation period is an operation period at a lower speed. If
any customers in the orbit are at a service completion instant
in the vacation period, the server will stop the vacation and

come back to the normal busy period which means vacation
interruption happens. Otherwise, it continues the vacation.
When a vacation ends, if there are customers in the orbit,

the server switches to the normal working level. Otherwise,
the server begins another vacation. During the working vaca-
tion period, the service time follows a general random variable

Sv with distribution function (d.f.) Sv(t), LST S�
vðxÞ and

S�0
v ðhÞ ¼

R1
0

xe�hxdSvðxÞ.
trial queue with subject to server breakdown and repair under multiple working
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The regular service process: Whenever a new customer or
retry customer arrives at the server idle state then the server
immediately starts normal service for the arrivals. The service

time follows a general distribution and it is denoted by the ran-
dom variable Sb with distribution function Sb(t) having LST
S�
bð#Þ and the first and second moments are b(1) and b(2).
The feedback rule: After completion of regular service for

each customer, the unsatisfied customers may rejoin into the

orbit as a feedback customer for receiving another service with
probability p(0 6 p 6 1) or may leave the system with comple-
ment probability q(=1 � p).

The breakdown process: The regular busy server may break-
down at any instance and the service channel will fail for a
short interval of time. i.e., server is down for a short interval

of time. The breakdown, i.e., server’s life times, is generated
by exogenous Poisson processes with rates a which we may call
some sort of disaster during regular busy period.

The repair process: As soon as breakdown occurs the server
is sent for repair, during that time it stops providing service to
the primary customers till service channel is repaired. The cus-
tomer who was just being served before server breakdown

waits for the remaining service to complete. The repair time
(denoted by G) distribution of the server is assumed to be arbi-
trarily distributed with d.f. G(t), having LST G*(#) and the first

and second moments are g(1) and g(2).
We assume that inter-arrival times, retrial times, service

times, working vacation times and repair times are mutually

independent.

2.1. Practical application of the model

The proposed model has potential application in the transfer

model of an email system. In Simple Mail Transfer Protocol
(SMTP) mail system uses to deliver the messages between mail
servers for relaying. The mail transfer program contacts a ser-

ver on a remote machine; it forms a Transmission Control Pro-
tocol (TCP) connection over which it communicates. When the
TCP is connected, SMTP allows the sender to identify it and

specify the recipients and then transfers an email message.
For receiving messages, client applications usually use the
Internet Message Access Protocol (IMAP) to access their mail

box accounts on a mail server. Typically, contacting messages
arrive at the mail server following the Poisson stream.

At the arrival epoch, the arriving message starts its service
immediately if the server is free or else may join the buffer. In

the buffer, each message waits for some amount of time and
retries the service again. The mail server employs a spam filter
service in a low service rate to prevent spam mails. This is done

to filter the incoming message via the normal mail receiving
service. The target server is the same as sender’s mail server
and the sending message will be possibly retransmitted to the

server to request the receiving service from the buffer one more
time. The mail server may subject to electronic fail during ser-
vice period and receive repair immediately.

To keep the mail server functioning well, virus scan is an
important maintenance activity for the mail server. It can be
performed when the mail server is idle. During the period of
virus scan, the server can still provide its service, but with

lower processing speed. When the virus scan is done, there is
no mail in the buffer and the server takes another maintenance
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
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activity like power savings or again virus scanning. At the end
of the period of virus scan or lower processing service, if there
are any mails in the buffer, the mail server changes the service

rate and comes back to the normal service level. In this queue-
ing scenario, the buffer in the sender mail server, the receiver
mail server IMAP, the retransmission policy, the electronic fail

and the maintenance activities correspond to the orbit, the ser-
ver, the retrial, the breakdown and the working vacation pol-
icy respectively.

This model finds the another practical applications in the
telephone consultation in medical service systems, in the man-
ufacturing system, in performance analysis of Small Cell Net-
works, in a packet switched network to forward the packets

within a network for transmission, in computer networking
systems and communication systems.

3. Analysis of the steady state probabilities

In this section, we first develop the steady state equations for
the retrial system by treating the elapsed retrial times, the

elapsed times of normal service and lower speed service, and
the elapsed repair times as supplementary variables. Then we
derive the probability generating function (PGF) for the server

states, the PGF for number of customers in the system and
orbit.

3.1. The steady state equations

In steady state, we assume that R(0) = 0, R(1) = 1, Sb(0)
= 0, Sb(1) = 1, Sv(0) = 0, Sv(1) = 1 are continuous at
x = 0 and G(0) = 0, G(1) = 1 are continuous at y = 0. So

that the function a(x), lb(x), lv(x) and n(y) are the conditional
completion rates for retrial, normal service, lower rate service,
and repair respectively.

aðxÞdx ¼ dRðxÞ
1� RðxÞ ; lbðxÞdx ¼ dSbðxÞ

1� SbðxÞ ;

lvðxÞdx ¼ dSvðxÞ
1� SvðxÞ and nðyÞdy ¼ dGðyÞ

1� GðyÞ :

In addition, let R0ðtÞ;S0
bðtÞ;S0

vðtÞ and G0ðtÞ be the elapsed

retrial times, elapsed normal service times, elapsed lower rate
service times and elapsed repair times respectively at time t.
Further, introduce the random variable,

CðtÞ¼

0; if the server is inworkingvacationperiodat time tand the server is free;

1; if the server is innormal serviceperiodat time tand the server is free;

2; if the server is innormal serviceperiodat time tand the server isbusy;

3; if the server is inworkingvacationperiodat time tand the server is busy;

4; if the server isunder regular repairperiodat time t:

8>>>>>>>>>><
>>>>>>>>>>:

We also note that the states of the system at time t can be
described by the bivariate Markov process {C(t), N(t); tP 0}
where C(t) denotes the server state (0,1,2,3,4) depending on

the server is free or busy on both normal service and working
vacation periods and repair. N(t) denotes the number of cus-
tomers in the orbit. If C(t) = 1 and N(t) > 0, then R0(t) repre-
sent the elapsed retrial time, if C(t) = 2 and N(t)P 0 then

S0
bðtÞ corresponding to the elapsed time of the customer being
trial queue with subject to server breakdown and repair under multiple working
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served in normal busy period. If C(t) = 3 and N(t) P 0, then

S0
vðtÞ corresponding to the elapsed time of the customer being

served in lower rate service period. If C(t) = 4 and N(t)P 0,
then G0(t) corresponding to the elapsed time of the server

being repaired.
Let {tn, n 2 N} be the sequence of epochs at which a normal

service or a lower speed service completion occurs or a repair

period ends. The sequence of random vectors Zn = {C(tn+),
N(tn+)} forms a Markov chain which is embedded in the
retrial queueing system. It follows from Appendix A that

{Zn; n 2 N} is ergodic if and only if q < R�ðkÞ for our system
to be stable, where q ¼ pþ kbbð1Þð1þ agð1ÞÞ.

For the process {N(t), t P 0} we define the probabilities
P0(t) = P{C(t) = 0, N(t) = 0} and the probability densities
wnðx; tÞdx ¼ P CðtÞ ¼ 1;NðtÞ ¼ n; x 6 R0ðtÞ < xþ dx
� �

; for t P 0; x P 0 and n P 1;

Pb;nðx; tÞdx ¼ P CðtÞ ¼ 2;NðtÞ ¼ n; x 6 S0
bðtÞ < xþ dx

� �
; for t P 0; x P 0 and n P 0;

Pv;nðx; tÞdx ¼ P CðtÞ ¼ 3;NðtÞ ¼ n; x 6 S0
vðtÞ < xþ dx

� �
; for t P 0; x P 0 and n P 0;

Rnðx; y; tÞdy ¼ P CðtÞ ¼ 4;NðtÞ ¼ n; y 6 G0ðtÞ < yþ dy=S0
bðtÞ ¼ x

� �
; for t P 0; ðx; yÞ P 0 and n P 0:
The following probabilities are used in sequent sections:

P0(t) is the probability that the system is empty at time t
and the server is in working vacation.
wn(x, t) is the probability that at time t there are exactly n

customers in the orbit with the elapsed retrial time of the
test customer undergoing retrial is x.
Pb,n(x, t) is the probability that at time t there are exactly n

customers in the orbit with the elapsed normal service time
of the test customer undergoing service is x.
Pv,n(x, t) is the probability that at time t there are exactly n
customers in the orbit with the elapsed lower rate service

time of the test customer undergoing service is x.
Rn(x, y, t) is the probability that at time t there are exactly n
customers in the orbit with the elapsed normal service time

of the test customer undergoing service is x and the elapsed
repair time of server is y.

We assume that the stability condition is fulfilled and so
that we can set for tP 0, x P 0 and n P 1.

P0 ¼ lim
t!1

P0ðtÞ; wnðxÞ ¼ lim
t!1

wnðx; tÞ; Pb;nðxÞ ¼ lim
t!1

Pb;nðx; tÞ;
Pv;nðxÞ ¼ lim

t!1
Pv;nðx; tÞ; and Rnðx; yÞ ¼ lim

t!1
Rnðx; y; tÞ:

Using the method of supplementary variable technique, we
obtain the following system of equations that govern the
dynamics of the system behavior,

ðkþhÞP0 ¼ q

Z 1

0

Pb;0ðxÞlbðxÞdxþq

Z 1

0

Pv;0ðxÞlvðxÞdxþhP0

ð3:1Þ

dwnðxÞ
dx

þ ½kþ aðxÞ�wnðxÞ ¼ 0; n P 1 ð3:2Þ
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
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dPb;0ðxÞ
dx

þ ½kþ aþ lbðxÞ�Pb;0ðxÞ ¼ kð1� bÞPb;0ðxÞ; n ¼ 0;

ð3:3Þ

dPb;nðxÞ
dx

þ ½kþ aþ lbðxÞ�Pb;nðxÞ ¼ kð1� bÞPb;nðxÞ

þ kbPb;n�1ðxÞ þ
Z 1

0

Rnðx; yÞnðyÞdy; n P 1; ð3:4Þ

dPv;0ðxÞ
dx

þ ½kþ hþ lvðxÞ�Pv;0ðxÞ ¼ kð1� bÞPv;0ðxÞ; n ¼ 0;

ð3:5Þ
dPv;nðxÞ
dx

þ ½kþ hþ lvðxÞ�Pv;nðxÞ
¼ kð1� bÞPv;nðxÞ þ kbPv;n�1ðxÞ; n P 1; ð3:6Þ

dR0ðx; yÞ
dy

þ ½kþ nðyÞ�R0ðx; yÞ ¼ kð1� bÞR0ðx; yÞ; n ¼ 0;

ð3:7Þ

dRnðx; yÞ
dy

þ ½kþ nðyÞ�Rnðx; yÞ

¼ kð1� bÞRnðx; yÞ;þkbRn�1ðx; yÞ; n P 1; ð3:8Þ
The steady state boundary conditions at x= 0 and y= 0

are

wnð0Þ ¼ p

Z 1

0

Pb;n�1ðxÞlbðxÞdxþ q

Z 1

0

Pb;nðxÞlbðxÞdx

þ p

Z 1

0

Pv;n�1ðxÞlvðxÞdxþ q

Z 1

0

Pv;nðxÞlvðxÞdx ð3:9Þ

Pb;0ð0Þ ¼
Z 1

0

w1ðxÞaðxÞdxþ h
Z 1

0

Pv;0ðxÞdx; n ¼ 0;

ð3:10Þ

Pb;nð0Þ ¼
Z 1

0

wnþ1ðxÞaðxÞdxþ k
Z 1

0

wnðxÞdx

þ h
Z 1

0

Pv;nðxÞdx; n P 1; ð3:11Þ

Pv;nð0Þ ¼
kP0; n ¼ 0

0; n P 1

�
ð3:12Þ

Rnðx; 0Þ ¼ aPbðxÞ; n P 1: ð3:13Þ
trial queue with subject to server breakdown and repair under multiple working
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The normalizing condition is

P0 þ
X1
n¼1

Z 1

0

wnðxÞdxþ
X1
n¼0

Z 1

0

Pb;nðxÞdxþ
Z 1

0

Pv;nðxÞdx
�

þ
Z 1

0

Z 1

0

Rnðx; yÞdxdy
�

¼ 1 ð3:14Þ
3.2. The steady state solutions of the model

The probability generating function technique is used here to

obtain the steady state solution of the retrial queueing model.
To solve the above equations, we define the generating func-
tions for |z| 6 1, as follows:

wðx; zÞ ¼
X1

n¼1
wnðxÞzn; wð0; zÞ ¼

X1
n¼1

wnð0Þzn; Pbðx; zÞ
¼

X1
n¼0

Pb;nðxÞzn; Pbð0; zÞ
¼

X1
n¼0

Pb;nð0Þzn; Pvðx; zÞ ¼
X1

n¼0
Pv;nðxÞzn; Pvð0; zÞ

¼
X1

n¼0
Pv;nð0Þzn;

Rðx; y; zÞ ¼
X1

n¼0
Rnðx; yÞzn and Rðx; 0; zÞ ¼

X1
n¼0

Rnðx; 0Þzn

Multiplying the steady state equation and steady state
boundary condition (3.1)–(3.13) by zn and summing over n,

(n= 0,1,2, . . .)

@wðx; zÞ
@x

þ ½kþ aðxÞ�wðx; zÞ ¼ 0 ð3:15Þ

@Pbðx; zÞ
@x

þ ½kbð1� zÞÞ þ aþ lbðxÞ�Pbðx; zÞ

¼
Z 1

0

Rðx; y; zÞnðyÞdy ð3:16Þ

@Pvðx; zÞ
@x

þ ½kbð1� zÞÞ þ hþ lvðxÞ�Pvðx; zÞ ¼ 0: ð3:17Þ

@Rðx; y; zÞ
@y

þ ½kbð1� zÞ þ nðyÞ�Rðx; y; zÞ ¼ 0 ð3:18Þ

wð0; zÞ ¼ ðpzþ qÞ
Z 1

0

Pbðx; zÞlbðxÞdx

þ ðpzþ qÞ
Z 1

0

Pvðx; zÞlvðxÞdx� kP0 ð3:19Þ

Pvð0; zÞ ¼ kP0 ð3:20Þ

Pbð0; zÞ ¼ 1

z

Z 1

0

wðx; zÞaðxÞdxþ k
Z 1

0

wðx; zÞdx

þ h
Z 1

0

Pvðx; zÞdx; ð3:21Þ

Rðx; 0; zÞ ¼ aPbðx; zÞ ð3:22Þ
Solving the partial differential Eqs. (3.15)–(3.18), it follows

that

wðx; zÞ ¼ wð0; zÞ½1� RðxÞ� expf�kxg ð3:23Þ

Pbðx; zÞ ¼ Pbð0; zÞ½1� SbðxÞ� expf�AbðzÞxg ð3:24Þ
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Pvðx; zÞ ¼ Pvð0; zÞ½1� SvðxÞ� expf�AvðzÞxg ð3:25Þ

Rðx; y; zÞ ¼ Rðx; 0; zÞ½1� GbðyÞ� expf�bðzÞyg ð3:26Þ
where AbðzÞ ¼ bðzÞ þ að1 � G�ðbðzÞÞÞ; AvðzÞ ¼ h þ kbð1 � zÞ
and bðzÞ ¼ kbð1 � zÞ:

Inserting Eqs. (3.20), (3.23), (3.25) in (3.21) and make some
manipulation, finally we get,

Pbð0; zÞ ¼ wð0; zÞ
z

½R�ðkÞ þ zð1� R�ðkÞÞ� þ kP0VðzÞ ð3:27Þ

where VðzÞ ¼ h
hþkbð1�zÞ 1� S�

vðAvðzÞÞ
� �

.

Using (3.24), (3.25) in (3.19), we get

wð0; zÞ ¼ ðpzþ qÞPbð0; zÞS�
bðAbðzÞÞ þ ðpz

þ qÞPvð0; zÞS�
vðAvðzÞÞ � kP0 ð3:28Þ

Using (3.28) and (3.27), we get

z�ðpzþqÞðR�ðkÞþ zð1�R�ðkÞÞÞS�
bðAbðzÞÞ

	 

Pbð0;zÞ

¼ kP0 ðpzþqÞS�
vðAvðzÞÞ�1

	 
ðR�ðkÞþ zð1�R�ðkÞÞÞþ zVðzÞ� �
ð3:29Þ

From the above equation, we know that the key element for

obtaining w(0, z) is to find the zeros of fðzÞ ¼
z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞ ¼ 0 in the range

0 < z < 1 for the equation f(z) = 0 (from Gao et al. [25]).
To this end, we give the following lemma.

Lemma 3.1. If q < R�ðkÞ, the equation z� ðpzþ qÞðR�ðkÞþ
zð1� R�ðkÞÞÞS�

bðAbðzÞÞ ¼ 0 has no roots in the range 0 < z < 1

and has the minimal nonnegative root z = 1.

Proof. We only need to prove that

uðzÞ , ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

is a probability generating function of the number of cus-
tomers that arrive in the system. Denote by U the time period

from the epoch a service completion occurs, leaving the orbit
non-empty, to the next service completion epoch, by NU the
number of primary customers that arrive during U and define

ujðtÞdt ¼ Pðt < U 6 tþ dt;NðUÞ ¼ jÞ:
Then,

ujðtÞ ¼ e�ktaðtÞ � ajðtÞ þ ð1� dj;0Þke�ktð1� RðtÞÞ � aj�1ðtÞ;
j ¼ 0; 1; 2; . . .

where * means convolution, a(t) is the p.d.f. of inter-retrial

times, b(t) is the p.d.f. of normal service times and

ajðtÞdt ¼ e�kt ðktÞ j
j!
bðtÞ. Denote by NU(z) the probability generat-

ing function of NU, we have that

NUðzÞ¼
X1
j¼0

zj
Z 1

0

ujðtÞdt

¼
X1
j¼0

zj
Z 1

0

e�ktaðtÞ�ajðtÞþð1�dj;0Þke�ktð1�RðtÞÞ �aj�1ðtÞ
	 


dt

¼ðpzþqÞðR�ðkÞþ zð1�R�ðkÞÞÞS�
bðAbðzÞÞ

¼ uðzÞ;
trial queue with subject to server breakdown and repair under multiple working
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which proves the expected result that uðzÞ,ðpzþ qÞ
ðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞ is exactly a probability

generating function. From assumption q < R�ðkÞ, we have

E½Nu� ¼ d
dz
uðzÞjz¼1 ¼ 1� ðR�ðkÞ � qÞ < 1 and the convex func-

tion u(z) is a monotonically increasing function of z for
Pbðx; zÞ ¼
kP0 ðpzþ qÞS�

vðAvðzÞÞ � 1
	 
ðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �½1� SbðxÞ� expf�AbðzÞxg

z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

� �
ð3:34Þ

Pvðx; zÞ ¼ kP0½1� SvðxÞ� expf�AvðzÞxg ð3:35Þ

Rðx; zÞ ¼ kaP0 1� G�
bðbðzÞÞ

	 
 ðpzþ qÞS�
vðAvðzÞÞ � 1

	 
ðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �½1� SbðxÞ� expf�AbðzÞxg
bðzÞðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞÞ
� �

ð3:36Þ
0 6 z 6 1, and u(0) = P(NU = 0) < 1, u(1) = 1. So we can
easily prove the expected result of Lemma 3.1. h

Then for q < R�ðkÞ, z� ðpzþ qÞðR�ðkÞ þ zð1�
R�ðkÞÞÞS�

bðAbðzÞÞ never vanishes in the range 0 < z < 1, and

from (3.20) and (3.27) in (3.28), we obtain that

wð0; zÞ ¼ zkP0½ðpzþ qÞ S�
vðAvðzÞÞ þ VðzÞS�

bðAbðzÞÞ
	 
� 1�

z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

� �
ð3:30Þ

From (3.29), we get

Pbð0; zÞ ¼ kP0½ððpzþ qÞS�
vðAvðzÞÞ � 1ÞðR�ðkÞ þ zð1�R�ðkÞÞÞ þ zVðzÞ�

z� ðpzþ qÞðR�ðkÞ þ zð1�R�ðkÞÞÞS�
bðAbðzÞÞ

� �
ð3:31Þ

Using (3.24), (3.31) and (3.22), we get
Rðx; 0; zÞ ¼ kaP0 ððpzþ qÞS�
vðAvðzÞÞ � 1ÞðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �½1� SbðxÞ� expf�AbðzÞxg

z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

� �
ð3:32Þ
Using (3.20), (3.30)–(3.32) in (3.23)–(3.26), then we get the

limiting probability generating functions w(x, z), Pb(x, z),
Pv(x, z) and R(x, z).

Next we are interested in investigating the marginal orbit

size distributions due to system state of the server in following
theorem.

Theorem 3.1. Under the stability condition q < R�ðkÞ, the
stationary distributions of the number of customers in the

system states are given by
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
vacation policy, Alexandria Eng. J. (2017), http://dx.doi.org/10.1016/j.aej.2017.01.0
wðx;zÞ¼ zkP0 ðpzþqÞ S�
vðAvðzÞÞþVðzÞS�

bðAbðzÞÞ
	 
�1

� �ð1�RðxÞÞe�kx

z�ðpzþqÞðR�ðkÞþ zð1�R�ðkÞÞÞS�
bðAbðzÞÞ

� �
ð3:33Þ
where AbðzÞ¼ bðzÞþað1�G�ðbðzÞÞÞ;AvðzÞ¼ hþkbð1� zÞ and
bðzÞ¼ kbð1� zÞ:

VðzÞ ¼ h
hþ kbð1� zÞ ½1� S�

vðAvðzÞÞ�

From Theorem 3.1, we focus on the marginal generating
functions of the orbit size and the server states given in the fol-

lowing Corollary 3.1.
Corollary 3.1. Under the stability condition q < R�ðkÞ, the
stationary joint distributions of the number of customers in the
orbit when server being idle, busy, on vacation and under repair
are given by

wðzÞ ¼
Z 1

0

wðx; zÞdx

¼ zð1�R�ðkÞÞP0 ðpzþ qÞ S�
vðAvðzÞÞ þVðzÞS�

bðAbðzÞÞ
	 
� 1

� �
z� ðpzþ qÞðR�ðkÞ þ zð1�R�ðkÞÞÞS�

bðAbðzÞÞ
� �

ð3:37Þ
trial queue with subject to server breakdown and repair under multiple working
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PbðzÞ ¼
Z 1

0

Pbðx; zÞdx ¼ kP0ð1� S�
bðAbðzÞÞÞ ðpzþ qÞS�

vðAvðzÞÞ � 1
	 
ðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �

AbðzÞ z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

	 

( )

ð3:38Þ

PvðzÞ ¼
Z 1

0

Pvðx; zÞdx ¼ kP0VðzÞ
h

� �
ð3:39Þ

RðzÞ ¼
Z 1

0

Rðx; zÞdx ¼ kaP0 1� S�
bðAbðzÞÞ

	 

1� G�

bðbðzÞÞ
	 
 ððpzþ qÞS�

vðAvðzÞÞ � 1ÞðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �
ðAbðzÞ � bðzÞÞðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞÞ
� �

ð3:40Þ
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Applying the normalizing condition P0 + w(1) + Pb(1)

+ Pv(1) + R(1) = 1 and using the equations by setting z = 1
in (3.37)–(3.40), we get
P0 ¼ R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ
qR�ðkÞ þ k

h ð1� S�
vðhÞÞ½ðb� pÞ þ ð1� bÞR�ðkÞ� þ kbð1Þð1þ agð1ÞÞ ðp� bÞS�

vðhÞ þ ð1� bÞð1� S�
vðhÞÞR�ðkÞ	 


( )
ð3:41Þ
Corollary 3.2. Under the stability condition q < R�ðkÞ.
The probability generating function of the number of

customers in the system

KsðzÞ¼NrsðzÞ
DrðzÞ ¼P0þwðzÞþ zðPbðzÞþPvðzÞþRðzÞÞ ð3:42Þ

NrsðzÞ¼P0

bð1� zÞ

z�ðpzþqÞðR�ðkÞþ zð1�R�ðkÞÞÞð
S�
bðAbðzÞÞ


ððkzVðzÞ=hÞþ1Þ
þzð1�R�ðkÞÞ ðpzþqÞðS�

vðAvðzÞÞ
�

þVðzÞS�
bðAbðzÞÞÞ�1

�

2
666664

3
777775

þzð1�S�
bðAbðzÞÞÞ ððpzþqÞS�

vðAvðzÞÞ�1ÞðR�ðkÞ�
þzð1�R�ðkÞÞÞþ zVðzÞ�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

DrðzÞ ¼ bð1� zÞ z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

	 

The probability generating function of the number of cus-

tomers in the orbit

KoðzÞ ¼ NroðzÞ
DrðzÞ ¼ P0 þ wðzÞ þPbðzÞ þPvðzÞ þ RðzÞ ð3:43Þ
NroðzÞ ¼ P0

bð1� zÞ z� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞ

	 
ððkVðzÞ=hÞ þ 1Þ
þzð1� R�ðkÞÞ ðpzþ qÞðS�

vðAvðzÞÞ þ VðzÞS�
bðAbðzÞÞÞ � 1

� �
" #

þ 1� S�
bðAbðzÞÞ

	 
 ððpzþ qÞS�
vðAvðzÞÞ � 1ÞðR�ðkÞ þ zð1� R�ðkÞÞÞ þ zVðzÞ� �

8>><
>>:

9>>=
>>;
where P0 is given in Eq. (3.41).
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4. System performance measures of the model

In this section, we derive some system probabilities, mean

number of customers in the system and its orbit, reliability
analysis, mean busy period and mean busy cycle of this model.

4.1. System state probabilities

If the system satisfies the stability condition q < R�ðkÞ, then
from Eqs. (3.34)–(3.37), by setting z ? 1 and applying l’Hôpi-
tal’s rule whenever necessary, we get the following results

(i) Let w be the steady state probability that the server is
idle during the retrial time

w ¼
P0ð1�R�ðkÞÞ pþ 1� S�

vðhÞ
	 
ððkb=hÞ þ kbbð1Þð1þ agð1ÞÞÞ

� 

R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ

8<
:

9=
;

ð4:1Þ
(ii) Let Pb be the steady-state probability that the server is

busy,
trial queue with subject to server breakdown and repair under multiple working
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Pb ¼
kP0b

ð1Þ pS�
vðhÞ þ 1� S�

vðhÞ
	 
ððkb=hÞ þ R�ðkÞÞ	 


R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ

( )

ð4:2Þ
(iii) Let Pv be the steady-state probability that the server is

on working vacation,

Pv ¼ kP0 1� S�
vðhÞ

	 

=h

� � ð4:3Þ
(iv) Let R be the steady state probability that the server is

under repair

R ¼ akP0g
ð1Þbð1Þ pS�

vðhÞ þ 1� S�
vðhÞ

	 
ððkb=hÞ þ R�ðkÞÞ	 

R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ

( )

ð4:4Þ
4.2. Mean system size and orbit size

If the system in steady state condition q < R�ðkÞ,

(i) The expected number of customers in the orbit (Lq) is
obtained by differentiating (3.43) with respect to z and
evaluating at z = 1

Lq ¼ K0
oð1Þ ¼ lim

z!1

d

dz
KoðzÞ

¼ P0

Nr000q ð1ÞDr00qð1Þ �Dr000q ð1ÞNr00qð1Þ
3 Dr00qð1Þ
� 
2

2
64

3
75 ð4:5Þ

Nr00qð1Þ ¼ �2b
kb
h
ð1� pÞð1� S�

vðhÞÞ þ ð1� bÞðp� R�ðkÞÞ
� �

� 2kbbð1Þð1þ agð1ÞÞððp� bÞS�
vðhÞ

þ bð1� R�ðkÞÞð1� S�
vðhÞÞÞ

Nr000q ð1Þ ¼ � 3ðkbÞ2ðbð2Þð1þ agð1ÞÞ2 þ abð1Þgð2ÞÞððp� bÞS�
vðhÞ

þ ð1� bÞR�ðkÞð1� S�
vðhÞÞÞ

� 3kbbð1Þð1þ agð1ÞÞ

�

2ðkb=hÞðqþ kbÞð1� ð1� hÞS�
vðhÞÞ

þS�
vðhÞð1� R�ðkÞÞðpþ ðk� 2ÞbÞ

þ2bð1� R�ðkÞÞðð1� hÞ � ðkþ bS�
vðhÞÞÞ

0
BBB@

1
CCCA

� 6ðkb=hÞ2ð1� S�
vðhÞ þ hS�0

v ðhÞÞððb� pÞ

þ ð1� bÞR�ðkÞ þ bbð1Þð1þ agð1ÞÞð1� R�ðkÞ � kÞÞ

� 6bðð1� R�ðkÞÞ=hÞðkð1� S�
vðhÞÞðpðb� hÞ þ bÞ � pÞ

Dr00qð1Þ ¼ �2bðR�ðkÞ � p� kbbð1Þð1þ agð1ÞÞÞ
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
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Dr000q ð1Þ ¼ 3b½kbbð1Þðq� R�ðkÞÞð1þ agð1ÞÞ þ 2pð1� R�ðkÞÞ
þ ðkbÞ2ðbð2Þð1þ agð1ÞÞ2 þ abð1Þgð2ÞÞ�

(ii) The expected number of customers in the system (Ls) is

obtained by differentiating (3.42) with respect to z and
evaluating at z = 1

Ls ¼K0
sð1Þ¼ lim

z!1

d

dz
KsðzÞ¼P0

Nr000s ð1ÞDr00qð1Þ�Dr000q ð1ÞNr00qð1Þ
3 Dr00qð1Þ
� 
2

2
64

3
75

Nr000s ð1Þ¼Nr000q ð1Þ�6kbbð1Þð1þagð1ÞÞ pS�
vðhÞ

	
þR�ðkÞð1�S�

vðhÞÞ

�6ðkb=hÞð1�R�ðkÞÞ 1�S�

vðhÞ
	 


ð4:6Þ
(iii) The average time a customer spends in the system (Ws)

and the average time a customer spends in the queue
(Wq) are found by using the Little’s formula

Ws ¼ Ls

k
and Wq ¼ Lq

k
: ð4:7Þ
4.3. Reliability measures

In the retrial queueing system with unreliable server, the relia-
bility measures will provide the information which is required

for the improvement of the system. To justify and validate the
analytical results of this model, the availability measure (Av) is
obtained as follows:

(i) The steady state availability Av, which is the probability
that the server is either working for a primary customer

or in an idle period such that the steady state availability
of the server is given by

Av¼1�lim
z!1

ðRðzÞÞ¼1�Rð1Þ

¼1� akP0g
ð1Þbð1Þ pS�

vðhÞþð1�S�
vðhÞÞððkb=hÞþR�ðkÞÞ	 


R�ðkÞ�p�kbbð1Þð1þagð1ÞÞ

( )
4.4. Mean busy period and busy cycle

Let E(Tb) and E(Tc) be the expected length of busy period and

busy cycle under the steady state conditions. The results follow
directly by applying the argument of an alternating renewal
process [10] which leads to

P0 ¼ EðT0Þ
EðTbÞ þ EðT0Þ ; EðTbÞ ¼ 1

k
1

P0

� 1

� �
and

EðTcÞ ¼ 1

kP0

¼ EðT0Þ þ EðTbÞ ð4:8Þ

where T0 is length of the system in empty state and
EðT0Þ ¼ ð1=kÞ. Substituting Eq. (3.39) into (4.8) and using
the above results, then we can get
trial queue with subject to server breakdown and repair under multiple working
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E½Tb� ¼ 1

k

pð1� R�ðkÞÞ þ k
h 1� S�

vðhÞ
	 
½ðb� pÞ þ ð1� bÞR�ðkÞ� þ kbð1Þð1þ agð1ÞÞ ðp� bÞS�

vðhÞ þ ð1� bÞð1� S�
vðhÞÞR�ðkÞ � b

	 

R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ

( )

ð4:9Þ

E½Tc� ¼ 1

k

qR�ðkÞ þ k
h 1� S�

vðhÞ
	 
½ðb� pÞ þ ð1� bÞR�ðkÞ� þ kbð1Þð1þ agð1ÞÞ ðp� bÞS�

vðhÞ þ ð1� bÞð1� S�
vðhÞÞR�ðkÞ	 


R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ

( )
ð4:10Þ
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5. Conditional stochastic decomposition

In this section, we will study the conditional stochastic decom-

position property of the number of customers in the orbit. The
number of customers in the orbit is distributed as the sum of
two independent random variables. Let Nb be the conditional

orbit size of our retrial queuing system given that server is busy
and N0 be the conditional orbit size of the M/G/1 feedback
retrial queueing system with balking given that the server is

busy, which is discussed in Theorem 5.1.

Theorem 5.1. The conditional orbit size Nb given that the server
is busy can be decomposed into the sum of two independent
random variables Nb = N0 + Nc.

where N0 has the generating function N0(z) as follows,

N0ðzÞ ¼
S�
bðAbðzÞÞ � 1

	 
� ðR�ðkÞ � p� kbbð1Þð1þ agð1ÞÞÞ
ðz� ðpzþ qÞðR�ðkÞ þ zð1�R�ðkÞÞÞS�

bðAbðzÞÞÞ � ðkbð1Þð1þ agð1ÞÞÞ

( )
N0ðzÞ ¼ UðzÞ
Uð1Þ ¼

S�
bðAbðzÞÞ � 1

	 
� ðR�ðkÞ � p� kbbð1Þð1þ agð1ÞÞÞ
ðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞÞ � ðkbð1Þð1þ agð1ÞÞÞ

( )
and Nc is the additional queue length due to vacations with the
probability generating function Nc(z) as follows,
NcðzÞ ¼

kbðzÞVðzÞðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbðzÞÞÞ

þhð1� S�
bðAbðzÞÞÞ ððpzþ qÞS�

vðAvðzÞÞ � 1ÞðR�ðkÞ þ zð1� R�ðkÞÞÞ� �
( )

� kbð1Þð1þ agð1ÞÞ

bðzÞ ð1� S�
vðAvðzÞÞÞðR�ðkÞ þ pÞ þ hbð1Þð1þ agð1ÞÞ ð1� S�

vðAvðzÞÞÞR�ðkÞ þ pS�
vðAvðzÞÞ

	 
� 

� 1� S�

bðAbðzÞÞ
	 
 :
NbðzÞ ¼ PbðzÞþPvðzÞþRðzÞ
Pbð1ÞþPvð1ÞþRð1Þ

¼

kbðzÞVðzÞðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�
bðAbð

þhð1� S�
bðAbðzÞÞÞ ðpzþ qÞS�

vðAvðzÞÞ � 1
	 
ðR�ðkÞ þ zð1��

(
bðzÞ 1�S�v ðAvðzÞÞð ÞðR�ðkÞþpÞþhbð1Þð1þagð1ÞÞ 1�S�v ðAvðzÞÞð ÞR�ðkÞþpS�

v ðAvðð
� ðR�ðkÞ�p�kbbð1Þð1þagð1ÞÞÞ

z�ðpzþqÞðR�ðkÞþzð1�R�ðkÞÞÞS�
b
ðAbðzÞÞð Þ

NbðzÞ ¼ N0ðzÞ �NcðzÞ
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Proof. The mathematical version of the stochastic decompo-
sition law is Nb(z) = N0(z) Nc(z).

We know that the M/G/1 feedback retrial queuing system

with balking and service breakdown, the marginal function of
the number of customers in the orbit when the server is busy is
given by
UðzÞ ¼ R�ðkÞ � p� kbbð1Þð1þ agð1ÞÞ
qR�ðkÞ þ kbð1Þð1þ agð1ÞÞðp� bÞ

( )

� R�ðkÞ S�
bðAbðzÞÞ � 1

	 

bðz� ðpzþ qÞðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðAbðzÞÞÞ
� �

and the probability that the server is busy is given by

Uð1Þ ¼ R�ðkÞðkbð1Þð1þagð1ÞÞÞ
bðqR�ðkÞþkbð1Þð1þagð1ÞÞðp�bÞÞ

n o
, then for the generating func-

tion N0(z), we have
From Eqs. (3.38)–(3.40), we know that for our retrial
system the generating function of Nb is given by
zÞÞÞ
R�ðkÞÞÞ�

)
ðzÞÞÞÞ

trial queue with subject to server breakdown and repair under multiple working
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From above stochastic decomposition law, we observe that

Nb(z) = N0(z) Nc(z) which conform the decomposition result
of Gao et al. [25], also valid for this special vacation system.

This completes the proof. h
6. Special cases

In this section, we analyze some special cases of our model,
which are consistent with the existing literature.

Case 1: No balking, No feedback and No breakdown.

Let b = 1 and p = a= 0. Our model can be reduced to a
single server retrial queueing system with working vacations.
In this case, Ks(z) can be simplified to the following expres-

sions.

KsðzÞ ¼ P0

ð1� zÞ
ðz� ðR�ðkÞ þ zð1�R�ðkÞÞÞS�

bðAbðzÞÞÞððkVðzÞ=hÞ þ 1Þ

þzð1�R�ðkÞÞ S�
vðAvðzÞÞ þVðzÞS�

bðAbðzÞÞ
	 
� 1
� �

2
4

3
5

þð1�S�
bðAbðzÞÞÞ ðS�

vðAvðzÞÞ� 1ÞðR�ðkÞ þ zð1�R�ðkÞÞÞ þ zVðzÞ� �

8>>>><
>>>>:

9>>>>=
>>>>;

ð1� zÞðz� ðR�ðkÞ þ zð1�R�ðkÞÞÞS�
bðAbðzÞÞÞ

This coincides with the result of Gao et al. [25].

Case 2: No balking, No feedback, No vacation interruption

and No breakdown.

Let (b, p, a, h)? (1, 0, 0, 0) our model can be reduced to
M/G/1 retrial queue with single working vacation.
KsðzÞ ¼ S�
vðkÞðR�ðkÞ � kbð1ÞÞ

kEðSvÞ � R�ðkÞS�
vðkÞ

( )
S�
vðk� kzÞ � 1

	 
ðR�ðkÞ þ zð1� R�ðkÞÞÞ þ ð1� zÞR�ðkÞS�
vðkÞ

� �
S�
bðk� kzÞ

S�
vðkÞðz� ðR�ðkÞ þ zð1� R�ðkÞÞÞS�

bðk� kzÞÞ
� �
This coincides with the result of Arivudainambi et al. [20].

Case 3: No retrial, No balking, No feedback and No
breakdown.

Let (p, b, a) ? (0, 1, 0) and R�ðkÞ? 1. Suppose that there is
no retrial time in the system then we get an M/G/1 queue with
working vacations.
KsðzÞ ¼
ð1� kbð1ÞÞfð1� zÞ ðz� S�

bðAbðzÞÞÞððkzVðzÞ=hÞ þ 1Þ� �þ z 1� S�
bðAbðzÞÞ

	 

S�
vðAvðzÞÞ þ zVðzÞ � 1

� �g
ð1þ ðk=hÞ 1� S�

vðhÞ
	 
� kbð1ÞS�

vðhÞÞð1� zÞ z� S�
bðAbðzÞÞ

	 

( )
This coincides with the result of Zhang and Hou [27].

Case 4: No Vacation, No balking, No feedback and No
breakdown.
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Let we assume (p, a, b, lv, h) ? (0, 0, 1, 0, 0). Then we get a
single server retrial queueing system with general retrial times.

KsðzÞ ¼
½R�ðkÞ � kbð1Þ�½z� 1�S�

b½k� kz�
n o

z� ½R�ðkÞ þ zð1� R�ðkÞÞ�S�
b½k� kz�� � ;

Lq ¼ k2bð2Þ þ 2kbð1Þ½1� R�ðkÞ�
2½R�ðkÞ � kbð1Þ�

These coincide with the result of Gomez-Corral [28].

7. Cost optimization analysis

In order to carry out cost analysis, the optimum design of a

retrial queueing system is to determine the optimal system
parameters, such as optimal mean service rate or optimal num-
ber of servers (see in [29,30]). In this section, the optimal design

of the single server feedback retrial queue with subject to server
breakdown and repair under multiple working vacations is
addressed. Based on the definitions of cost elements (Ch, Co,

Cs and Ca) and cost structure listed below, the total expected
cost function per unit time is given by

TC ¼ ChLs þ Co

EðTbÞ
EðTcÞ þ Cs

1

EðTcÞ þ Ca

EðT0Þ
EðTcÞ

¼ ChLs þ Coð1� P0Þ þ Cskþ CaP0

where Ch is the holding costs per unit time for each customer
present in the system, Co is the cost per unit time for keeping
the server on and in operations, Cs is setup cost per busy cycle

and Ca is the startup cost per unit time for the preparation
work of the server before starting the service.
If we assume exponential retrial times, service times, work-
ing vacation times and repair times then for the following val-

ues of the cost elements and other parameters such as: k = 1;
lb = 5; lv = 3; a = 2; b = 0.5; n = 2; h = 1; a = 0.3;
p= 0.5; Ch = $ 5, Co = $ 100, Cs = $ 1000 and Ca = $

100, we find the total expected cost per unit of time TC= $
200.1620.
Moreover, we can examine the behavior of the expected
cost function under different values of the cost parameters.

Let us fix the system parameters values as follows: k= 1;
lb = 5; lv = 3; a = 2; b = 0.5; n = 2; h = 1; a = 0.3;
p= 0.5. Tables 1–3 illustrate the effects of (Ch, Co), (Co, Ca)
trial queue with subject to server breakdown and repair under multiple working
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Figure 1 TC versus k.

Figure 2 TC versus p.

Table 1 Effects of (Ch, Co) on the expected cost function TC with Cs = $1000 and Ca = $100.

(Ch, Co) (5, 100) (5, 110) (5, 120) (10, 100) (15, 100)

TC 200.1620 201.1797 202.1974 200.3239 200.4859

Table 2 Effects of (Co, Ca) on the expected cost function TC with Ch = $5 and Cs = $1000.

(Co, Ca) (100, 100) (125, 100) (150, 100) (100, 110) (100, 120)

TC 200.1620 202.7062 205.2505 209.1443 218.1265

Table 3 Effects of (Ca, Cs) on the expected cost function TC with Ch = $5 and Co = $100.

(Ca, Cs) (100, 1000) (110, 1000) (120, 1000) (100, 1050) (100, 1100)

TC 200.1620 209.1443 218.1265 205.1620 210.1620
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and (Cs, Ca) on the expected cost function, respectively. It can
be see that the expected cost function shows a linearly increas-
ing trend with increasing cost parameters.

Similarly, a sensitivity analysis of some of the parameters
on the system can be conducted. Fixing the base values given
above, one parameter can be varied at a time and the corre-

sponding objective function value can be computed. The
graphs (from Figs. 1–3) show the effect of some of the system
parameters (k, p, a) on the total expected cost per unit of time.

8. Numerical examples

In this section, we present some numerical examples using

MATLAB in order to illustrate the effect of various parame-
ters in the system performance measures. Without loss of gen-
erality, we assume that the retrial times, service times, working

vacation times and repair times are exponentially, Erlangianly
and hyper-exponentially distributed with the parameters a, lv,
lb and n. The arbitrary values to the parameters are so chosen
such that they satisfy the stability condition. The following
Figure 3 TC versus a.

trial queue with subject to server breakdown and repair under multiple working
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Table 4 The effect of feedback probability (p) on P0, Lq and w.

Service distribution Exponential Erlang-2 stage Hyper-Exponential

p P0 Lq w P0 Lq w P0 Lq w

Feedback probability

0.10 0.8664 0.1440 0.0199 0.7209 0.2764 0.0592 0.8453 0.1307 0.0275

0.20 0.8440 0.1461 0.0341 0.6751 0.2799 0.0896 0.8224 0.1311 0.0457

0.30 0.8154 0.1488 0.0523 0.6166 0.2848 0.1283 0.7930 0.1316 0.0690

0.40 0.7774 0.1525 0.0764 0.5394 0.2923 0.1794 0.7540 0.1325 0.1000

0.50 0.7245 0.1576 0.1099 0.4327 0.3056 0.2500 0.6995 0.1341 0.1432

Table 5 The effect of vacation rate (h) on P0, Lq and Pv.

Vacation distribution Exponential Erlang-2 stage Hyper-Exponential

h P0 Lq Pv P0 Lq Pv P0 Lq Pv

Vacation rate

1.00 0.6883 0.4325 0.1147 0.3601 0.8338 0.1100 0.6257 0.3802 0.1477

1.50 0.6926 0.3310 0.1066 0.3643 0.6081 0.0992 0.6371 0.2638 0.1357

2.00 0.6964 0.2918 0.0995 0.3681 0.4924 0.0901 0.6470 0.2050 0.1254

2.50 0.6997 0.2749 0.0933 0.3714 0.4132 0.0825 0.6555 0.1682 0.1165

3.00 0.7026 0.2674 0.0878 0.3744 0.3483 0.0761 0.6630 0.1419 0.1088

Table 6 The effect of lower speed service rate (lv) on P0, Lq and Pv.

Vacation distribution Exponential Erlang-2 stage Hyper-Exponential

lv P0 Lq Pv P0 Lq Pv P0 Lq Pv

Lower service rate

4.00 0.6646 0.0381 0.1329 0.3857 0.0429 0.1389 0.6621 0.1097 0.0834

5.00 0.6841 0.0340 0.1140 0.4021 0.0415 0.1229 0.6701 0.0898 0.0771

6.00 0.6987 0.0308 0.0998 0.4151 0.0399 0.1101 0.6770 0.0727 0.0716

7.00 0.7101 0.0281 0.0888 0.4257 0.0384 0.0998 0.6830 0.0579 0.0669

8.00 0.7192 0.0259 0.0799 0.4345 0.0370 0.0912 0.6883 0.0448 0.0627

Table 7 The effect of repair rate (n) on P0, Lq and R.

Repair distribution Exponential Erlang-2 stage Hyper-Exponential

n P0 Lq R P0 Lq R P0 Lq R

Repair rate

1.00 0.6402 0.1554 0.0254 0.2535 0.3016 0.1259 0.6258 0.1327 0.0239

2.00 0.6509 0.1381 0.0127 0.2983 0.2584 0.0640 0.6363 0.1160 0.0114

3.00 0.6545 0.1321 0.0085 0.3135 0.2401 0.0429 0.6395 0.1105 0.0075

4.00 0.6563 0.1290 0.0064 0.3212 0.2304 0.0323 0.6411 0.1078 0.0056

5.00 0.6574 0.1271 0.0051 0.3259 0.2244 0.0258 0.6421 0.1062 0.0044
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tables give the computed values of various characteristics of
our model like, probability that the server is idle on working
vacation P0, the mean orbit size Lq, probability that server is

idle during retrial rime (w), regular busy (Pb), lower rate
service (Pv) and under repair (R) respectively. Note that the
exponential distribution is f(x) = /e�/x, x > 0, Erlang

distribution is fðxÞ ¼ /n

ðn�1Þ! x
n�1e�/x; x > 0, where n= 2

and hyper-exponential distribution is fðxÞ ¼ c/e�/x þ ð1� cÞ
/2e�/2x; x > 0.
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback retr
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Algorithm to compute Lq:

Begin

input: k, a, lb, p, b, h, lv, a, and n.
Compute: w from Eq. (4.1).

Compute: Pb from Eq. (4.2).

Compute: Pv from Eq. (4.3).

Compute: R from Eq. (4.4).

Compute: Lq from Eq. (4.5).

Output: Lq.
ial queue with subject to server breakdown and repair under multiple working
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Table 4 shows that when feedback probability (p) increases,
Figure 5 Lq versus h.

Figure 6 P0 versus lb.
then the probability that server is idle on working vacation

P0 decreases the mean orbit size Lq increases and the probabil-
ity that server is idle during retrial time w also increases for the
values of k= 0.5; lb = 8; a= 5; b= 0.8; h= 1; lv = 4;

a = 0.2 and n = 2. Table 5 shows that when vacation rate
(h) increases, the probability that server is idle on working
vacation P0 increases, then the mean orbit size Lq decreases

and probability that server is on working vacation Pv also
decreases for the values of k= 1; lb = 10; a = 5; b = 0.8;
p = 0.3; lv = 5; a= 0.2 and n = 5.

As expected from Table 5, increasing h decreases the value
of the Lq, Pv and other performance measures. Based on the
above, it is smaller for large values of lv and turns to zero
when lv = lb. Another important case is lv = 0, i.e., the ser-

ver cannot provide service during a vacation period; the effect
of the vacation rate h has a noticeable effect on the system per-
formance and cannot be ignored.

Table 6 shows that when lower speed service rate (lv)
increases, the probability that server is idle on working vaca-
tion P0 increases, then the mean orbit size Lq decreases and

probability that server is on working vacation Pv also
decreases for the values of k= 1; lb = 10; a = 3; b = 0.2;
p = 0.3; h= 1; lv = 5 and a = 0.2. Table 7 shows that when
repair rate (n) increases, the probability that server is idle on

working vacation P0 increases, then the mean orbit size Lq

decreases and probability that server is under repair R also
decreases for the values of k = 1; lb = 8; a = 5; b = 0.3;

p = 0.3; h= 1; lv = 5 and a = 0.3.
For the effect of the parameters k, a, lb, lv, b, p, h, a, n on

the system performance measures, two dimensional graphs are

drawn in Figs. 4–8. Figs. 4 and 5 show that the mean orbit size
Lq decreases for the increasing the value of the retrial rate (a)
and vacation rate (h). Fig. 6 shows that the probability that the

server is idle on working vacation P0 increases for the increas-
ing value of normal service rate (lb). In Fig. 7, we examine the
behavior of the mean orbit size Lq decreases for increasing the
value of lower speed service rate (lv). In Fig. 8, we depict

the behavior of the server’s availability (Av) decreases for
increasing the value of the breakdown rate (a).
Figure 4 Lq versus a. Figure 7 Lq versus lv.
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Figure 8 Av versus a.

Figure 9 Lq versus b and p.

Figure 10 Lq versus k and a.

Figure 11 Lq versus lb and lv.
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Three dimensional graphs are illustrated in Figs. 9–12. In

Fig. 9, the surface displays an upward trend as expected for
increasing the value of balking probability (b) and feedback
probability (p) against the mean orbit size Lq. In Fig. 10, we

examine the behavior of the mean orbit size Lq increases for
increasing the value of arrival rate (k) and the breakdown rate
(a). In Fig. 11, the surface displays the downward trend as

expected for increasing the value of the normal/lower speed
service rates (lb, lv) against the mean orbit size Lq. In
Fig. 12, we examine the behavior of the mean orbit size Lq

decreases for increasing the value of vacation rate (h) and

repair rate (n).
From the above numerical examples, we observed that the

influence of parameters on the performance measures in the

system and know that the results are coincident with the prac-
tical situations.

9. Conclusion

In this investigation, we have studied a single server retrial
queueing system with balking and feedback under multiple

working vacation policy, where the busy server is subjected
to breakdown and repair. The necessary and sufficient condi-
tion for the system to be stable is obtained. The analytical
results that are validated with the help of numerical illustra-

tions may be useful in various real-life situations to design
the outputs. The probability generating functions for the num-
bers of customers in the system when it is free, busy, on work-

ing vacation and under repair are found by using the
supplementary variable technique. Some important system
performance measures are obtained. The explicit expressions

for the average queue length of orbit and system have been
obtained. Finally, some numerical examples and cost opti-
mization analysis are presented to study the impact of the sys-

tem parameters and cost elements. The novelty of this
investigation is the introduction of balking, server breakdown
and repair in the presence of retrial queues with multiple work-
ing vacation policy. The motivation for this model comes from

wide range applications in many real-time systems, for exam-
ple in computer and communication network where messages
are processed by a single server under working vacations and

vacation interruption policy. Moreover, our model can be con-
sidered as a generalized version of many existing queueing
trial queue with subject to server breakdown and repair under multiple working
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Figure 12 Lq versus h and n.
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models [25,20] equipped with many features and associated
with many practical situations.

The present investigation includes features simultaneously
such as

� Retrial queues
� Feedback

� Balking
� Multiple working vacations
� Vacation interruption

� Breakdowns and repairs

Our suggested model has potential practical real-life appli-
cation in Simple Mail Transfer Protocol (SMTP) mail system

uses to deliver the messages between mail servers. Other appli-
cations are in computer processing system and telephone con-
sultation of medical service systems. This work can be further

extended in many directions by incorporating the concepts of
batch arrival, bulk service, working breakdowns, immediate
Bernoulli feedbacks. Hopefully, this investigation will be of

great help for the system managers to make decisions regarding
the size of the system and other factors in a well-to-do manner.
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Appendix A

The embedded Markov chain {Zn; n 2 N} is ergodic if and
only if q < R�ðkÞ for our system to be stable, where

q ¼ pþ kbbð1Þð1þ agð1ÞÞ
Please cite this article in press as: P. Rajadurai et al., A study on M/G/1 feedback re
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Proof. To prove the sufficient condition of ergodicity, it is very
convenient to use Foster’s criterion (see Pakes [31]), which

states that the chain {Zn; n 2 N} is an irreducible and aperiodic
Markov chain is ergodic if there exists a nonnegative function f
(j), j 2 N and e> 0, such that mean drift wj = E[f(zn+1) � f

(zn)/zn = j] is finite for all j 2 N and wj 6 �e for all j 2 N,
except perhaps for a finite number j’s. In our case, we consider
the function f(j) = j. Then we have

wj ¼
pþ kbbð1Þð1þ agð1ÞÞ � 1; j ¼ 0;

pþ kbbð1Þð1þ agð1ÞÞ � R�ðkÞ; j ¼ 1; 2; . . .

(

Clearly the inequality pþ kbbð1Þð1þ agð1ÞÞ < R�ðkÞ is sufficient
condition for Ergodicity. h

To prove the necessary condition, as noted in Sennott et al.
[32], if the Markov chain {Zn; nP 1} satisfies Kaplan’s condi-
tion, namely, wj < 1 for all j P 0 and there exits j0 2 N such

that wj P 0 for jP j0. Notice that, in our case, Kaplan’s con-
dition is satisfied because there is a k such that mij = 0 for
j< i � k and i > 0, where M = (mij) is the one step transition

matrix of {Zn; n 2 N}. Then pþ kbbð1Þð1þ agð1ÞÞ P R�ðkÞ
implies the non-Ergodicity of the Markov chain.
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