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Abstract In this paper, we consider a single server feedback retrial queueing system with multiple
working vacations and vacation interruption. An arriving customer may balk the system at some
particular times. As soon as orbit becomes empty at regular service completion instant, the server
goes for a working vacation. The server works at a lower service rate during working vacation (WV)
period. After completion of regular service, the unsatisfied customer may rejoin into the orbit to get
another service as feedback customer. The normal busy server may get to breakdown and the ser-

vice channel will fail for a short interval of time. The steady state probability generating function for
the system size is obtained by using the supplementary variable method. Some important system
performance measures are obtained. Finally, some numerical examples and cost optimization anal-

ysis are presented.

© 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In queueing theory, vacation queues and retrial queues have
been intensive research topics for long time. We can find gen-
eral models in vacation queues from Ke et al. [1] and in retrial
queues from Artalejo and Gomez-Corral [2]. In retrial
queueing system, retrial queues with repeated attempts are
characterized by the fact that an arriving customer finds the
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server busy upon arrival is requested to leave the service area
and join a retrial queue called orbit. After some time the
customer in the orbit can repeat their request for service. An
arbitrary customer in the orbit who repeats the request for ser-
vice is independent of the rest of the customers in the orbit.
Such queues play a special role in computer and telecommuni-
cation systems.

The concept of balking (customers decide not to join the
line at all if he finds the server is unavailable upon arrival)
was first studied by Haight in 1957. There are many situations
where the customers may be impatient, such as impatient tele-
phone switchboard customers, web access, including call cen-
ters and computer systems. Ke [3] studied an MPXG/1
queue with variant vacations and balking. Some of the authors
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like Wang and Li [4], and Gao and Wang [5] discussed about
the concept balking.

One additional feature that has been widely discussed in
retrial queueing systems is the Bernoulli feedback of cus-
tomers. Many queueing situations have the feature that the
customers may be served repeatedly for a certain reason. When
the service of a customer is unsatisfied, it may be retried again
and again until a successful service completion. These queue-
ing models arise in the stochastic modeling of many real-life
situations. For example, in data transmission, a packet trans-
mitted from the source to the destination may be returned
and it may continue this process until the packet is finally
transmitted. The retrial queue with feedback can be used to
model the Automative Repeat re-Quest (ARQ) protocol in a
high frequency communication network. In ARQ, if the sender
does not receive an acknowledgment before timeout, it usually
re-transmits the frame/packet until the sender receives an
acknowledgment or exceeds a predefined number of retrans-
missions. These types of retransmissions are called feedback.
Ke and Chang [6] have discussed Modified vacation policy
for M/G/1 retrial queue with balking and feedback. Some of
the authors like Baruah et al. [7], Krishnakumar et al. [§]
and Rajadurai et al. [9] have discussed the concept of
feedback.

In the queueing literature, mostly it is assumed that the ser-
ver is available all the time on permanent basis. But this is
unrealistic due to heavy influence of breakdowns on the server.
Thus, it is important to study retrial queue with breakdowns to
implement retrial queueing models practically. Choudhury and
Ke [10] have studied the batch arrival retrial queue with Ber-
noulli vacations and delaying repair. Recently authors like
Choudhury and Deka [11], Yang et al. [12], Rajadurai et al.
[13-15] and Dimitriou [16,17] discussed about the retrial
queueing systems with the concept of breakdown and repair.

In working vacation period (WYV), the server gives service to
customer at lower service rate, but the server stops the service
completely in the normal vacation period. This queueing sys-
tem has major applications in providing services such as net-
work service, web service, file transfer service and mail
service. In 2002, Servi and Finn [18] have introduced an M/
M/1 queueing system with working vacations. Wu and Takagi
[19] have extended the M/M/1/WV queue to an M/G/1/WV
queue. Very recently, Arivudainambi et al. [20] have intro-
duced the single working vacation concept in the M/G/1 retrial
queue. Chandrasekaran et al. [21] have presented a short sur-
vey on working vacation queueing models. A retrial queueing
system with non-persistent customers and working vacations
has been discussed by Liu and Song [22].

Furthermore, during the working vacation period, if there
are customers at a service completion instant, the server can
stop the vacation and come back to regular busy state. This
policy is called vacation interruption. Li and Tian [23] have
presented an M/M/1 queueing model with working vacations
and vacation interruption. Some of the authors like Gao and
Liu [24], Gao et al. [25], Zhang and Liu [26], Zhang and
Hou [27] have analyzed a single server retrial queue with work-
ing vacations and vacation interruptions.

In this paper, we have generalized the work of Gao et al.
[25] and Arivudainambi et al. [20] by incorporating the concept
of balking, feedback and subject to server breakdown and
repair. To the author’s best of knowledge, there is no work
published in the queueing literature with the combination of

retrial queueing system with general retrial times, feedback,
balking, multiple working vacations and vacation interruption,
where the server subjects to breakdown and repair by using the
method of supplementary variable technique. The mathemati-
cal results and theory of queues of this model provide a specific
and convincing application in Simple Mail Transfer Protocol
(SMTP) mail system which uses to deliver the messages
between mail servers and computer processing system. Our
model is helpful to managers who can design a system with
economic management.

The rest of this work is given as follows. The detailed math-
ematical description and practical applications of our model
are given in Section 2. The steady state joint distribution of
the server state and the number of customers in the system
and its orbit are obtained in Section 3. Some system perfor-
mance measures and reliability measures are obtained in Sec-
tion 4. In Section 5, conditional stochastic decomposition is
shown good for our model. Important special cases of this
model are given in Section 6. Cost optimization analysis is dis-
cussed in Section 7. In Section 8, the effects of various param-
eters on the system performance are analyzed numerically.
Summary of the work and some future directions are presented
in Section 9.

2. Description of the model and its applications

In this paper, we consider a single server retrial queueing sys-
tem with balking and feedback under multiple working vaca-
tion policy, where the busy server is subjected to breakdown
and repair. The detailed description of model is given as
follows:

The arrival Process: The primary customers arrive at the
system according to a Poisson process of rate A.

The retrial process: We assume that there is no waiting
space and therefore if an arriving customer finds that the
server is free, the customer occupies it immediately. Other-
wise, the server is busy or working vacation or breakdown;
the arrivals either leave the system with probability (1 — b)
or join pool of blocked customers called an orbit with
probability 4 in accordance with FCFS discipline, which
means that only the customer at the head of the orbit is
allowed to access the server. We assume that inter-retrial
times follow a general random variable R with an arbitrary
distribution R(f) having corresponding Laplace Stieltjes
Transform (LST) R*(¥).

The working vacation process: The server begins a working
vacation each time when the orbit becomes empty and the
vacation time follows an exponential distribution with
parameter 0. If any customers arrive in a vacation period,
the server continues to work at a lower rate. The working
vacation period is an operation period at a lower speed. If
any customers in the orbit are at a service completion instant
in the vacation period, the server will stop the vacation and
come back to the normal busy period which means vacation
interruption happens. Otherwise, it continues the vacation.
When a vacation ends, if there are customers in the orbit,
the server switches to the normal working level. Otherwise,
the server begins another vacation. During the working vaca-
tion period, the service time follows a general random variable
S, with distribution function (d.f.) S,(7), LST S(x) and
S7(0) = [ xe ™dS,(x).
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The regular service process: Whenever a new customer or
retry customer arrives at the server idle state then the server
immediately starts normal service for the arrivals. The service
time follows a general distribution and it is denoted by the ran-
dom variable S, with distribution function S,(¢) having LST

*(19) and the first and second moments are " and @,

The feedback rule: After completion of regular service for
each customer, the unsatisfied customers may rejoin into the
orbit as a feedback customer for receiving another service with
probability p(0 < p < 1) or may leave the system with comple-
ment probability ¢(=1 — p).

The breakdown process: The regular busy server may break-
down at any instance and the service channel will fail for a
short interval of time. i.e., server is down for a short interval
of time. The breakdown, i.e., server’s life times, is generated
by exogenous Poisson processes with rates o which we may call
some sort of disaster during regular busy period.

The repair process: As soon as breakdown occurs the server
is sent for repair, during that time it stops providing service to
the primary customers till service channel is repaired. The cus-
tomer who was just being served before server breakdown
waits for the remaining service to complete. The repair time
(denoted by G) distribution of the server is assumed to be arbi-
trarily distributed with d.f. G(¢), having LST G™(¢) and the first
and second moments are g and g®.

We assume that inter-arrival times, retrial times, service
times, working vacation times and repair times are mutually
independent.

2.1. Practical application of the model

The proposed model has potential application in the transfer
model of an email system. In Simple Mail Transfer Protocol
(SMTP) mail system uses to deliver the messages between mail
servers for relaying. The mail transfer program contacts a ser-
ver on a remote machine; it forms a Transmission Control Pro-
tocol (TCP) connection over which it communicates. When the
TCP is connected, SMTP allows the sender to identify it and
specify the recipients and then transfers an email message.
For receiving messages, client applications usually use the
Internet Message Access Protocol (IMAP) to access their mail
box accounts on a mail server. Typically, contacting messages
arrive at the mail server following the Poisson stream.

At the arrival epoch, the arriving message starts its service
immediately if the server is free or else may join the buffer. In
the buffer, each message waits for some amount of time and
retries the service again. The mail server employs a spam filter
service in a low service rate to prevent spam mails. This is done
to filter the incoming message via the normal mail receiving
service. The target server is the same as sender’s mail server
and the sending message will be possibly retransmitted to the
server to request the receiving service from the buffer one more
time. The mail server may subject to electronic fail during ser-
vice period and receive repair immediately.

To keep the mail server functioning well, virus scan is an
important maintenance activity for the mail server. It can be
performed when the mail server is idle. During the period of
virus scan, the server can still provide its service, but with
lower processing speed. When the virus scan is done, there is
no mail in the buffer and the server takes another maintenance

activity like power savings or again virus scanning. At the end
of the period of virus scan or lower processing service, if there
are any mails in the buffer, the mail server changes the service
rate and comes back to the normal service level. In this queue-
ing scenario, the buffer in the sender mail server, the receiver
mail server IMAP, the retransmission policy, the electronic fail
and the maintenance activities correspond to the orbit, the ser-
ver, the retrial, the breakdown and the working vacation pol-
icy respectively.

This model finds the another practical applications in the
telephone consultation in medical service systems, in the man-
ufacturing system, in performance analysis of Small Cell Net-
works, in a packet switched network to forward the packets
within a network for transmission, in computer networking
systems and communication systems.

3. Analysis of the steady state probabilities

In this section, we first develop the steady state equations for
the retrial system by treating the elapsed retrial times, the
elapsed times of normal service and lower speed service, and
the elapsed repair times as supplementary variables. Then we
derive the probability generating function (PGF) for the server
states, the PGF for number of customers in the system and
orbit.

3.1. The steady state equations

In steady state, we assume that R(0) = 0, R(co) = 1, S,(0)
=0, Splo0) =1, S,(0) =0, S (oc0) =1 are continuous at
x =0 and G(0) = 0, G(co) = 1 are continuous at y = 0. So
that the function a(x), us(x), u,(x) and &(y) are the conditional
completion rates for retrial, normal service, lower rate service,
and repair respectively.

. dR(x) _ dSy(x)
ax)dy = —prs t()dx = %w
_dS\(v) _ dG(y)
yl,(x)dx = m and é(y)dy = 1—7G(y)

In addition, let R°(z), S(1), S°(r) and G°(¢) be the elapsed
retrial times, elapsed normal service times, elapsed lower rate
service times and elapsed repair times respectively at time ¢.
Further, introduce the random variable,

0, iftheserverisin working vacation period at time 7 and the server is free,

1, iftheserverisin normalservice period at time t and the server is free,
C(1)=4 2, iftheserverisin normalservice period at time ¢ and the server is busy,

3, iftheserverisin working vacation period at time 7 and the server is busy,

4, iftheserverisunder regular repair period at time 7.

We also note that the states of the system at time ¢ can be
described by the bivariate Markov process {C(r), N(t); t = 0}
where C(¢) denotes the server state (0,1,2,3,4) depending on
the server is free or busy on both normal service and working
vacation periods and repair. N(f) denotes the number of cus-
tomers in the orbit. If C(¢) = 1 and N(z) > 0, then R°(¢) repre-
sent the elapsed retrial time, if C(f) = 2 and N(¢) = 0 then
S%(#) corresponding to the elapsed time of the customer being
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i i = > dll ,
served in normal. busy period. If C(f) 3 and N(1) = 0, then 50(X) gt iy ()] he(x) = A1 — BYp(x), n=0,
S°(1) corresponding to the elapsed time of the customer being dx
served in lower rate service period. If C(r) = 4 and N(¢) = 0 (33)
then G°(f) corresponding to the elapsed time of the server
being repaired. dllp,(x) ., _
. ———— 4 A+ o+ (X)), (x) = A(1 — b)), (x

Let {z,, n € N} be the sequence of epochs at which a normal dx [ s ( MM () ( M)
service or a lower speed service completion occurs or a repair IbIl / -

. h.n— + R" b) ) d b 2 17 3'4
period ends. The sequence of random vectors Z,, = {C(z,+), + a1 () 0 (v, )e0)dy, n (34)
N(t,+)} forms a Markov chain which is embedded in the

. . . dHV 5 .
retrial queueing sys'ter'n. It follovys from*Appendlx A that o(x) F 2+ 0+ () o(x) = A(1 — B),(x), n=0,
{Z,; n € N} is ergodic if and only if p < R*(4) for our system dx
to be stable, where p = p + 1" (1 + agh). (3:5)

For the process {N(f), t = 0} we define the probabilities
Py(t) = P{C(r) = 0, N(t) = 0} and the probability densities
W, (x, t)dx = P{C(t) = 1,N(t) = n,x < R°(t) < x + dx} fort >0, x>0andn > 1,

I, (x, 0)dx = P{C(1) = 2, N(1) = n,x < Sj(1) < x + dx}, fort >0, x >0and n > 0,

1,,(x,0)dx = P{C(t) = 3, N(1) = n,x < 8°(t) < x + dx}, fort >0, x>0and n >0,

R,(x,y,t)dy = P{C(t =4, N(t) =ny <G(t) <y +dy/SHt) = x}, fort >0, (x,y) >0andn >0
i abiliti i i . dHl n

The following probabilities are used in sequent sections: d)v( X) D 04 g ()T ()

Py(1) is the probability that the system is empty at time ¢ = A1 = b)I,,(x) 4 AbIT,,_1(x), n = 1, (3.6)

and the server is in working vacation.

V,(x, 1) is the probability that at time ¢ there are exactly n dRy(x,y)

customers in the orbit with the elapsed retrial time of the dy A EDR(x,y) = A1 = b)Ro(x,), n =0,

test customer undergoing retrial is x. (3.7)

I, ,(x, t) is the probability that at time ¢ there are exactly n '

customers in the orbit with the elapsed normal service time dR,(x, )

of the test customer undergoing service is x. 7 + [A+ ()| Ru(x,y)

II, ,(x, 1) is the probability that at time ¢ there are exactly n y

customers in the orbit with the elapsed lower rate service = A1 = b)Ry(x,y), +AbR, 1 (x,y), n =1, (3.8)

time of the test customer undergoing service is x.

R,(x, y, t) is the probability that at time 7 there are exactly n
customers in the orbit with the elapsed normal service time
of the test customer undergoing service is x and the elapsed
repair time of server is y.

We assume that the stability condition is fulfilled and so
that we can set for t > 0, x > 0 and n > 1.

Py = limPO(t), W, (x) = lim\pn(x7 1), ,,(x) = limM,,(x,1),
1—00 1—00

II,,(x) = hmH‘n(x 1), and R,(x,y) = limR,(x,y,1).
1—00

Using the method of supplementary variable technique, we
obtain the following system of equations that govern the
dynamics of the system behavior,

(A+0)Py=gq /000 I 0 (x) wy (x)dx + q/ooc II, o (x) p, (x)dx + 0Py
(3.1)

Bul) 4 a0 =0,

A\

(3.2)

The steady state boundary conditions at x = 0 and y = 0
are

0 [ Mo O g [ (0 (0

[ @+ [0 (39

HbO / l// dx—O—@/ H»O d I’lZO7
(3.10)
11,,(0) = / | ‘m(x)a(x)dx +3 / " Y (x)dx
+9/ I,,(x nsl, (3.11)
m,0={ " :jol (3.12)
Ru(x,0) = ally(x), n > 1 (3.13)
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The normalizing condition is

Py + ZOO: /0“ v, (x)dx + ni:; (/000 I, (x)dx + /0Oc II, ,(x)dx

n=1

+ / / Rn(xw)dxdy) =1
0 JO

3.2. The steady state solutions of the model

(3.14)

The probability generating function technique is used here to
obtain the steady state solution of the retrial queueing model.
To solve the above equations, we define the generating func-
tions for |z| < 1, as follows:

2= " %)z
= My (x)
=3 T (0)2"s
=Y " M,,(0)"

= Z:ZORn(x,y)z” and R(x,0,z)

2= " (00" My(x,z)
H[,(O,Z)

,(x,2) = M, (x)2"; 11,(0,2)

R(x,y,z)

= Z:CZORn(x, 0)z"

Multiplying the steady state equation and steady state
boundary condition (3.1)-(3.13) by z” and summing over n,
n=0,1,2,..)

alﬁ( 2)

+[A+a(x)]y(x,z) =0 (3.15)
W + [4b(1 — 2)) + o+ p, (x)] 5 (x, 2)

= [ R 2z0)ar (3.16)

th [Ab(1 = 2)) + 0+ i, (x)] T, (x, z) = 0. (3.17)

%’yy’zﬁ [2b(1 = 2) + E()]R(x,y,2) = 0 (3.18)

002 =z 0) [ Ml (i
+z+a) /O (v, ) () dx — 2P, (3.19)
11,(0,z) = AP, (3.20)
2) = é /Ow W(x, 2)a(x)dx + A/OOG W(x, z)dx
+ 9/030 11, (x, z)dx (3.21)
R(x,0,z) = odly(x, 2) (3.22)

Solving the partial differential Eqgs. (3.15)—(3.18), it follows
that

Y(x,z) = R(x)] exp{—A4x}

II,(x,z) = I,(0,2)[1 — Sp(x)] exp{—A4,(z)x}

W(0,2)[1 — (3.23)

(3.24)

II,(x,z) = I1,(0,2)[1 — S,(x)] exp{—A4,(z)x}

R(x,y,z) = R(x,0,2)[1 — Gy(y)] exp{—b(z)y} (3.26)
where A4,(z) = b(z) + a(1 — G*(b(2))), A,(z) = 0 + Ab(1 — z)
and b(z) = Ab(1 — z2).

Inserting Egs. (3.20), (3.23), (3.25) in (3.21) and make some
manipulation, finally we get,

(3.25)

11,(0,z) = @ [R*(A) + z(1 = R*(A)] + APy V(2) (3.27)
where V(z) = g [1 = S1(4.(2))]-
Using (3.24), (3.25) in (3.19), we get
¥(0,2) = (pz + ¢)11,(0,2)S,(44(2)) + (pz
+ ¢)11,(0,2)S,(A,(z)) — APy (3.28)

Using (3.28) and (3.27), we get
(2= (pz+q)(R'(2) +2(1 = R (2))) S} (4s(2))) 11,0, 2)
= 1Py [((p=+ ), (A,(2) = 1) (R (A) +2(1 = R*(2))) +2V(2)]
(3.29)
From the above equation, we know that the key element for
obtaining ¥(0,z) is to find the zeros of f(z)=
z—(pz+q)(R*(A) + z(1 — R*(2)))S;(4,(z)) = 0 in the range
0 < z <1 for the equation f(z) = 0 (from Gao et al. [25]).
To this end, we give the following lemma.

Lemma 3.1. If p < R*(4), the equation z — (pz+ q)(R*(1)+
z(1 — R*(2)))S;(A4(2)) = 0 has no roots in the range 0 < z < 1
and has the minimal nonnegative root z = 1.

Proof. We only need to prove that

u(z) £ (pz+ q)(R*(2) + 2(1 = R'(2)))S;(4s(2))

is a probability generating function of the number of cus-
tomers that arrive in the system. Denote by U the time period
from the epoch a service completion occurs, leaving the orbit
non-empty, to the next service completion epoch, by Ny the
number of primary customers that arrive during U and define

wi(t)dt = P(t < U < t+dt,N(U) =)).
Then,

u(t) = e Ma(t) a;(t) + (1 - 5/,0)167)"(1 _

j=0,1,2,...

R(1)) * a1 (1),

where
times,

aj(t)dr = e~ (/1[! b(t). Denote by Ny/(z) the probability generat-
ing function of Ny, we have that

* means convolution, o(?) is the p.d.f. of inter-retrial
b(t) is the p.d.f. of normal service times and

0 00

A N
= E u;(t

:iz//ox )% () + (1= 8,0) 3¢~ (1— R(1)) %y (1)) di

+q) (R (A)+z(1-R(

~

N)S;(A4b(2))
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which proves the expected result that u(z)2(pz+q) Y(x.2) = {ZiPo [(pz+) (S:(4,(2)) + V(2)S;(45(2))) — 1] (1 7R(X))€”'"‘}
(R*(Z) +z(1 — R*(2)))S;(44(z)) is exactly a probability o 2= (pz+q)(R'(2) +2(1 = R'(2)))S, (45(2))
generating function. From assumption p < R*(1), we have (3.33)
E[N,) =4u(z)|.., =1 — (R*(4) — p) < 1 and the convex func-
tion u(z) is a monotonically increasing function of z for
_ [Py [((pz + 9)S,(A,(2)) — 1) (R'(4) +2(1 = R'(4))) +zV(2)][1 — Sb(x)]exp{_Ah(Z)x}}

ws) = { Sz (R T 20— RS (A .
II,(x,z) = APy[1 — S,(x)] exp{—4,(z)x} (3.35)
Aty = { P G (2 DS DR D+ - RO A - SilenCAD, (g

’ b(z)(z = (pz + q)(R'(2) + z(1 = R(2)))S,(45(2))) .
0<z<1, and u(0) = P(Ny =0) < L,u(l) = 1. So we can where Ap(z)=b(z)+o(l —G"(b(z2))),A,(z) =0+ 2b(1— z) and

easily prove the expected result of Lemma 3.1. O

Then for p < R'(A), z—(pz+q)(R* () +z(1—
R*(1)))S;(A5(z)) never vanishes in the range 0 < z < 1, and
from (3.20) and (3.27) in (3.28), we obtain that

20Po[(pz + q)(S,(4.(2)) + V(2)S,(45(2))) — 1]}
2= (pz+ q)(R*(4) + z(1 — R(2)))S;(4s(z))
(3.30)

0.2 = {

From (3.29), we get

0. - 2P0 LS ) -G 2R 421}
n 2= (pz+ (R (D) +2(1 = R (2)))S;(4,(2))
(3.31)
Using (3.24), (3.31) and (3.22), we get
D(R*(A) +z(1 = R (A

) +2V(2)][1 = Sp(x)] exp{—A,(2)

b(z)=2Ab(1—2z).

V(z) = [1 = 5,(4.(2))]

0
0+ 7b(1 —2)

From Theorem 3.1, we focus on the marginal generating
functions of the orbit size and the server states given in the fol-
lowing Corollary 3.1.

R(x,0,2) = {AO‘PO [((pz + 9)S)(Au(2)) —

2= (P2 + @) (R(A) +2(1 = R'(2)))S,(4s(2))

Using (3.20), (3.30)—(3.32) in (3.23)-(3.26), then we get the
limiting probability generating functions w(x, z), ITp(x, z),
I1,(x, z) and R(x, z).

Next we are interested in investigating the marginal orbit
size distributions due to system state of the server in following
theorem.

Theorem 3.1. Under the stability condition p < R*(1), the
stationary distributions of the number of customers in the
system states are given by

x}} (3.32)

Corollary 3.1. Under the stability condition p < R*(A), the
stationary joint distributions of the number of customers in the
orbit when server being idle, busy, on vacation and under repair
are given by

(2) /lﬁvz

{ (1= R (A)Ps [(p=+4) (S,(4,(2) + V(2)S,(4s(2))) — 1}}
2= (pz+ @) (R (4) +2(1 = R'(2)))S,(45(2))

(3.37)
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2. 2)dy — APo(1 = S,(45(2))) [((pz + 9) S, (4,(2)) — 1)(R*(2) +2(1 — R'(2))) + zV(z)]

)= [ e = { 4G) - (2 + (R () + 21 - R(2)S;(4:(2) } (3%
5 :/Om I, (x, 2)dx = {APOTV(Z)} (3.39)
U 2Py (1= S;(A45(2))) (1 = G;(b(2))) [((pz + 9)S(A4,(2)) = 1)(R*(A) + z(1 — R*(2))) + zV(2)]

R = | wes e { (4,(2) % BE)G — (pz + ) (R + 21— R () ;4 J oo
Applying the normalizing condition Py + (1) + II,(1)

+ II(1) + R(1) = 1 and using the equations by setting z = 1

in (3.37)—(3.40), we get

Py :{ R(2) —p— 2" (1 + o) } (3.41)

GR*(2) +5(1 = S1(0)[(b = p) + (1 = BYR ()] + 2BV (1 + agW) ((p = b)S;(0) + (1 = b)(1 = S;(0))R*(2))

Corollary 3.2. Under the stability condition p < R*(1).

The probability generating function of the number of
customers in the system

4. System performance measures of the model

In this section, we derive some system probabilities, mean
number of customers in the system and its orbit, reliability

K(2)= ];/)rly((zz)) Py (=) 2T (2) + () + R(2) (3.42) analysis, mean busy period and mean busy cycle of this model.
4.1. System state probabilities
(== (pz+q)(R*(4) +2(1-R*(4)))
S;(A5(2))) ((22V(2)/0) + 1) If the system satisfies the stability condition p < R*(1), then
b(l-z " . from Egs. (3.34)—(3.37), by setting z — 1 and applying I’'Hopi-
Nry(z) =P, +2(1= R () [(pz+9)(S;(4,(2) tal’s rule whenever necessary, we get the following results
’ +V(2)S;(Ap(2))) — 1]
+2(1 = Sy (A () [((Pz+9)S, (4s(2)) — D) (R'(2) (1) Let y be the steady state probability that the server is
P e idle during the retrial time
(1= R(1)+zV(2)]
Dr(z) = b(1 = 2)(z = (pz + q)(R"(2) + (1 = R*(2)))S;(45(2)))
Po(1 = R() (p+ (1 = $(0)) (6/0) + b (1 + g
The .probabilit.y generating function of the number of cus- Y= R(2) —p— 2BV (1 +agh)
tomers in the orbit
(4.1)
K,(z) = Nro(z) _ Po+y(z) + Iy(z) + I1,(z) + R(z)  (3.43) (i) Let I, be the steady-state probability that the server is
Dr(z) busy,
b1 - 2) (z = (pz + ) (R'(2) + 2(1 = R*(2)))S,(45(2))) (2 (2)/0) + 1)
Nr,(z) = Py +z(1 = R (2)) [(pz + @) (S,(4,(2)) + V(2) S, (4s(2))) — 1]
+(1 = 8,(4(2)) [((pz + 9) S, (4,(2) = D(R(2) +2(1 = R*(2))) + 2V (2)]

where Py is given in Eq. (3.41).
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n {APOW(pszt(e) + (1= S3(0))((2b/60) + R(2))) DY(1) = 36308 (g — R'(A))(1 +9g") + 2p(1 — R*(1))
b= () — 5 — 2pgD )
R (Z)—p =27 (1 +ag) + (b (B (1 + ag' ) +apMg®))
(4.2) (ii) The expected number of customers in the system (L;) is
(iii) Let I1, be the steady-state probability that the server is obtained by differentiating (3.42) with respect to z and
on working vacation, evaluating at z = 1
H" = {}LPO(I B ST(9)>/6} (43) " " " "
(iv) Let R be the steady state probability that the server is L,=K,(1)=lim— d K,(z) =P, Nrg' (1) Dry (1) 7D’42(1)N’q(1)
under repair hdz 3 <D”Z(1)>
NF (1) =Nrl (1) = 62680 (1+ gV (pS;(0
o [P B (pS1(0) + (1 = 5,(0)((28/6) + R (2)) s o i )1 S*ﬂg ( é;b )0(”1 ! ;* S0
R )= (1 52 ) R (D(1-5,(0))) ~ 6(2b/0)(1 - R (D) (1= 5(6))

(4.6)

(iii) The average time a customer spends in the system (W)
and the average time a customer spends in the queue
(W,) are found by using the Little’s formula

(4.4)

4.2. Mean system size and orbit size

If the system in steady state condition p < R*(4),

W, :% and W, = L7 (4.7)
(i) The expected number of customers in the orbit (L,) is ”
obtained by differentiating (3.43) with respect to z and
evaluating at z = 1 4.3. Reliability measures

In the retrial queueing system with unreliable server, the relia-

L,=K (1) =lim— d K,(2) bility measures will provide the information which is required
—ldz for the improvement of the system. To justify and validate the
NP()YDA(1) — DI (1N (1) analytical results of this model, the availability measure (A4,) is

=P, |2 4 L 1 (4.5) obtained as follows:

(i) The steady state availability A4,, which is the probability
b . that the server is either working for a primary customer
Nry(1) = —2b< 0 (I=p)(1=5,(0)) + (1 =b)(p — R*(Z))) or in an idle period such that the steady state availability

of the server is given by
= 226 (1 +agV)((p - 5)S(0)
+b(1 = R (2)(1 = S(0)))

A,=1-lim(R(z))=1-R(1)

_ J2aPogV B (pS(0)+(1-S,(0))((2b/0)+ R (2)))
R*(2)—p—2bpV (14agM)

N (1) = = 30262 (B (1 + 0g")” + 1) ((p — b)S3(0)

q

+ (1 =H)R(A)(1 = S5,(0)))

— 326N (1 + 0gM)

2(4b/0)(q+ ib)(1 — (1 — 0)S;(0)) 4.4. Mean busy period and busy cycle
x | +S5(0)(1 — R (L)(p+ (A —2)b) Let E(T}) and E(T,) be the expected length of busy period and
. . busy cycle under the steady state conditions. The results follow
+2b(1 = R*())((1 = 0) — (2 + bS,(0))) directly by applying the argument of an alternating renewal
5 process [10] which leads to
= 6(2b/0)"(1 = S;(0) + 0S7(0))((b — p) E(T) L
Pp=— ¥ ; E(T, :7(—71> and
+ (1= D)R () +bp (1 +0gV)(1 = R (4) — 7)) AR E AV
1
—6((1 = R (2))/0)(2(1 = S,0)(p(b — 0) + )~ p) BT =75, = ETo) + E(T)) “8)

| 1 where T, is length of the system in empty state and
Drj(1) = =2b(R*(4) —p — Wb (1 + ogM)) E(Ty) = (1/2). Substituting Eq. (3.39) into (4.8) and using
the above results, then we can get
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piy = L [PO=RO) +50 = S.0)[(b =) + (= HR ]+ A0 +28)((p = HS.0) + (1 =D)L= S,O)RG) )
" R(2) —p— V(1 + ag)
(4.9)

E[T(] =7

A

5. Conditional stochastic decomposition

In this section, we will study the conditional stochastic decom-
position property of the number of customers in the orbit. The
number of customers in the orbit is distributed as the sum of
two independent random variables. Let N, be the conditional
orbit size of our retrial queuing system given that server is busy
and N, be the conditional orbit size of the M/G/1 feedback
retrial queueing system with balking given that the server is
busy, which is discussed in Theorem 5.1.

Theorem 5.1. The conditional orbit size Ny, given that the server
is busy can be decomposed into the sum of two independent
random variables N, = Ny + N.,.

where N, has the generating function Ny(z) as follows,

No(e) = { (SiA(2) ~ 1) x (R ) —p— 25" (1 o) }
Gz + (R G 21— R ) S;(Au(2) % U1+ 2g0)

L[ qR (2) +4(1 = S;(0)[(b—p) + (1 = B)R (2)] + 2BV (1 + 0gM) ((p — b)S;(0) + (1 — b)(1 — S;(0)) R (4)) 4.10)
R (2) —p—bBY (1 + agh) ’

Proof. The mathematical version of the stochastic decompo-
sition law is Ny(z) = No(z) N(2).

We know that the M/G/1 feedback retrial queuing system
with balking and service breakdown, the marginal function of
the number of customers in the orbit when the server is busy is
given by

o(z) — R (2) —p— bV (1 + 0g)
R () + 21+ ag)(p — b)
" { R (2)(S3(45(2) — 1) }
b(z = (pz + q)(R'(2) + 2(1 = R*(2)))S;(44(2)))

and the probability that the server is busy is given by

— R (2) (2B (1+2g))
(1) = {bw<z>+zﬂ<”<1+ag<')><n—b>>
tion Ny(z), we have

}, then for the generating func-

Nofz) = (1) - {(z —(pz+q)(R(

and N, is the additional queue length due to vacations with the
probability generating function N.(z) as follows,

N.(z) =

(S5(A(2)) — 1) x (R(2) — p — 2BV (1 + agD)) }
(2) + 2(1 = R*(2)))S;(A(2))) x (AP (1 + agh))

IBEV(E)E = (02 + @) (R (D) +2(1 = R (1)))S)(4s(2))
+0(1 = $;(42) (= + DS, (A4,(2)) = DR (2) +=(1 = R'(2)))

| } < APV (1 + agh)

_ () +1L(2)+RE)
No(2) = By mr)

b(:) (1 = SR (2) +0) + 08V (1 4+ 9g) (1 = S(ADR () +pS;(A,(2)) ) X (1= S3(Ax(2)))

From Egs. (3.38)-(3.40), we know that for our retrial
system the generating function of N, is given by

{ W)V (2)(z = (pz + @) (R (2) + 2(1 = R*(4)))S;(4s(2))) }

A)+z(1 = R'(2)))]

+0(1 = 53(45(2))) [((z + @) S, (4,(2)) = 1) (R
b(=) (1=85 (4 (2))) (R* (1) +p)+08D (1-+0gM) ((1=8; (4,(2)
(R (2)—p=2bpD) (1+4g1)))
(2= (p=+a) (R ()+2(1-R* (2))) S} (4p(2)) )

Ny(z) = No(z) x N.(z)

(
)R ()+pS;(44(2))))
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From above stochastic decomposition law, we observe that
Ny(z) = No(z) N.(z) which conform the decomposition result
of Gao et al. [25], also valid for this special vacation system.

This completes the proof. [

6. Special cases

In this section, we analyze some special cases of our model,
which are consistent with the existing literature.

Case 1: No balking, No feedback and No breakdown.

Let b =1 and p = « = 0. Our model can be reduced to a
single server retrial queueing system with working vacations.
In this case, Ky(z) can be simplified to the following expres-
sions.

(2= (R (A) +2(1 = R () S, (A (2)))((4V(2)/0) + 1)

(1-2) A
+2(1 = R (2)[(8,(4,(2)) + V()8 (4s(2)) ~ 1]

+(1 = 83 (45(2)) [(S;(4,(2) = DR (2) +2(1 = R'(2))) + 2V(2)]

K@) =h (=2~ (R () +=(1 ~ R )S,(A))

This coincides with the result of Gao et al. [25].

Case 2: No balking, No feedback, No vacation interruption
and No breakdown.

Let (b, p, o, 0) - (1, 0, 0, 0) our model can be reduced to
M/G/1 retrial queue with single working vacation.

Let we assume (p, o, b, u,, 9) - (0,0, 1, 0, 0). Then we get a
single server retrial queueing system with general retrial times.
{1R () = 2811z = 118~ 4]}
s\Z) = ’ " " 5
' {z —[R*(A) +z(1 = R*(A))]S; [~ — )vz]}
2B 42201 — R¥(2)]
2R (2) — "]

q

These coincide with the result of Gomez-Corral [28].

7. Cost optimization analysis

In order to carry out cost analysis, the optimum design of a
retrial queueing system is to determine the optimal system
parameters, such as optimal mean service rate or optimal num-
ber of servers (see in [29,30]). In this section, the optimal design
of the single server feedback retrial queue with subject to server
breakdown and repair under multiple working vacations is
addressed. Based on the definitions of cost elements (C), C,,
Cy and C,) and cost structure listed below, the total expected
cost function per unit time is given by

E(T)) 1
TC = C,L; )
€= CuL+ Cops + Co gy

= C/lLs + Co(l - P()) + C_s/l + CaPO

E(Ty)
E(T.)

Ca

where Cj, is the holding costs per unit time for each customer
present in the system, C, is the cost per unit time for keeping
the server on and in operations, C; is setup cost per busy cycle
and C, is the startup cost per unit time for the preparation
work of the server before starting the service.

K(2) = {Sj(/l)(R*(/l) —B") } { [(S:(4—2z) = 1)(R*(2) + z(1 = R*(A))) + (1 = 2) R () S} (2)] S; (2 — /lz)}

JE(S,) — R (A)S(2)

This coincides with the result of Arivudainambi et al. [20].

Case 3: No retrial, No balking, No feedback and No
breakdown.

Let (p, b, #) — (0, 1,0) and R*(1) — 1. Suppose that there is
no retrial time in the system then we get an M/G/1 queue with
working vacations.

S (D~ (R(2) + 2(1 - R (D)8,(— 42))

If we assume exponential retrial times, service times, work-
ing vacation times and repair times then for the following val-
ues of the cost elements and other parameters such as: 1 = 1;
w=5 w=3 a=2;, b=05 ¢=2;, 0=1;, a«=0.3;
p=05 C,=8%$5 C,=8% 100, C;=8 1000 and C, = §
100, we find the total expected cost per unit of time 7C = §
200.1620.

k(o) {(1 — 2B = 2)[(2 = SyAEN (U1 )/0) + D] + 2(1 = S(An(2) [S:(4,(2) + V() - 1]}}
'Y (1+ 40 (1= 5,0) = 7,0 (1 =) (= = 5,(4:(2)))

This coincides with the result of Zhang and Hou [27].

Case 4: No Vacation, No balking, No feedback and No
breakdown.

Moreover, we can examine the behavior of the expected
cost function under different values of the cost parameters.
Let us fix the system parameters values as follows: 1 = 1;
w=5 w=3 a=2;, b=05 ¢=2;, 0=1;, a«a=0.3;
p = 0.5. Tables 1-3 illustrate the effects of (C), C,), (C,, C,)
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Table 1 Effects of (C), C,) on the expected cost function 7C with C; = $1000 and C, = $100.
(Ch, C,) (5, 100) (5, 110) (5, 120) (10, 100) (15, 100)
C 200.1620 201.1797 202.1974 200.3239 200.4859
Table 2 Effects of (C,, C,) on the expected cost function 7C with C, = $5 and C; = $1000.
(C,, C) (100, 100) (125, 100) (150, 100) (100, 110) (100, 120)
TC 200.1620 202.7062 205.2505 209.1443 218.1265
Table 3 Effects of (C,, Cy) on the expected cost function 7C with C;, = $5 and C, = $100.
(C,y Cy) (100, 1000) (110, 1000) (120, 1000) (100, 1050) (100, 1100)
TC 200.1620 209.1443 218.1265 205.1620 210.1620
900 . ; : : : : and (C,, C,) on the expected cost function, respectively. It can
S Exp be see that the expected cost function shows a linearly increas-
800 1 ing trend with increasing cost parameters.
Similarly, a sensitivity analysis of some of the parameters
o 1 on the system can be conducted. Fixing the base values given
above, one parameter can be varied at a time and the corre-
& 60D g . o .
- sponding objective function value can be computed. The
§ 500 | graphs (from Figs. 1-3) show the effect of some of the sygtem
= parameters (4, p, @) on the total expected cost per unit of time.
= 400 —
8. Numerical examples
300 g
00 ] In this section, we present some numerical examples using
MATLAB in order to illustrate the effect of various parame-
100 i ) i . . i ters in the system performance measures. Without loss of gen-
01 02 03 L 05 08 07 08 erality, we assume that the retrial times, service times, working
Artival rate (A) vacation times and repair times are exponentially, Erlangianly
Figure 1 TC versus A and hy;)ver-expongntlally distributed with the parameters a, u,,
1y and &. The arbitrary values to the parameters are so chosen
such that they satisfy the stability condition. The following
203 2055
205
2025
2045
202 204
E 015 [% 2035
S S o
T o =
= B 2025
2005 202
2015
200
201
19937 02 03 04 05 06 07 08 09 a0 ' :

Feedback probability (p)

Figure 2 7C versus p.

. . . . .
0.1 0.15 02 028 03 035 0.4 0.45 05
Retrial rate (a)

Figure 3  7C versus a.
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Table 4 The effect of feedback probability (p) on Py, L, and .

Service distribution Exponential Erlang-2 stage Hyper-Exponential

p Py L, W Py L, v Py L, v
Feedback probability

0.10 0.8664 0.1440 0.0199 0.7209 0.2764 0.0592 0.8453 0.1307 0.0275
0.20 0.8440 0.1461 0.0341 0.6751 0.2799 0.0896 0.8224 0.1311 0.0457
0.30 0.8154 0.1488 0.0523 0.6166 0.2848 0.1283 0.7930 0.1316 0.0690
0.40 0.7774 0.1525 0.0764 0.5394 0.2923 0.1794 0.7540 0.1325 0.1000
0.50 0.7245 0.1576 0.1099 0.4327 0.3056 0.2500 0.6995 0.1341 0.1432

Table 5 The effect of vacation rate (0) on Py, L, and II,.

Vacation distribution Exponential Erlang-2 stage Hyper-Exponential

0 Py L, 1, Py Ly II, Py L, 1I,
Vacation rate

1.00 0.6883 0.4325 0.1147 0.3601 0.8338 0.1100 0.6257 0.3802 0.1477
1.50 0.6926 0.3310 0.1066 0.3643 0.6081 0.0992 0.6371 0.2638 0.1357
2.00 0.6964 0.2918 0.0995 0.3681 0.4924 0.0901 0.6470 0.2050 0.1254
2.50 0.6997 0.2749 0.0933 0.3714 0.4132 0.0825 0.6555 0.1682 0.1165
3.00 0.7026 0.2674 0.0878 0.3744 0.3483 0.0761 0.6630 0.1419 0.1088
Table 6 The effect of lower speed service rate (u,) on Py, L, and II,.

Vacation distribution Exponential Erlang-2 stage Hyper-Exponential

L P, L, 1, P, L, 1, P, L, 1,
Lower service rate

4.00 0.6646 0.0381 0.1329 0.3857 0.0429 0.1389 0.6621 0.1097 0.0834
5.00 0.6841 0.0340 0.1140 0.4021 0.0415 0.1229 0.6701 0.0898 0.0771
6.00 0.6987 0.0308 0.0998 0.4151 0.0399 0.1101 0.6770 0.0727 0.0716
7.00 0.7101 0.0281 0.0888 0.4257 0.0384 0.0998 0.6830 0.0579 0.0669
8.00 0.7192 0.0259 0.0799 0.4345 0.0370 0.0912 0.6883 0.0448 0.0627
Table 7 The effect of repair rate (¢) on Py, Lg and R.

Repair distribution Exponential Erlang-2 stage Hyper-Exponential

& P, L, R P, L, R P, L, R
Repair rate

1.00 0.6402 0.1554 0.0254 0.2535 0.3016 0.1259 0.6258 0.1327 0.0239
2.00 0.6509 0.1381 0.0127 0.2983 0.2584 0.0640 0.6363 0.1160 0.0114
3.00 0.6545 0.1321 0.0085 0.3135 0.2401 0.0429 0.6395 0.1105 0.0075
4.00 0.6563 0.1290 0.0064 0.3212 0.2304 0.0323 0.6411 0.1078 0.0056
5.00 0.6574 0.1271 0.0051 0.3259 0.2244 0.0258 0.6421 0.1062 0.0044

tables give the computed values of various characteristics of
our model like, probability that the server is idle on working
vacation P, the mean orbit size L,, probability that server is
idle during retrial rime (y), regular busy (II,), lower rate
service (I1,) and under repair (R) respectively. Note that the
exponential distribution is f{x) = ¢e **,x > 0, Erlang

distribution is f(x) = (quﬂl)!x’“le"”, x>0, where n=2

and hyper-exponential distribution is f{x) = cde %" + (1 — ¢)
Pre ¥ x> 0.

Algorithm to compute L,:
Begin

input: 2, a, w, p, b, 0, p,, o, and &.

Compute:  from Eq. (4.1).

Compute: 1, from Eq. (4.2).
Compute: IT, from Eq. (4.3).

Compute: R from Eq. (4.4).

Compute: L, from Eq. (4.5).

Output: L,
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Table 4 shows that when feedback probability (p) increases,
then the probability that server is idle on working vacation
P, decreases the mean orbit size L, increases and the probabil-
ity that server is idle during retrial time i also increases for the
values of 1 =0.5; u, =8 a=5 b=08;, 0=1; n, =4
o = 0.2 and ¢ = 2. Table 5 shows that when vacation rate
(0) increases, the probability that server is idle on working
vacation P, increases, then the mean orbit size L, decreases
and probability that server is on working vacation I1, also
decreases for the values of A =1; u, = 10; a = 5; b = 0.8;
p=03pu =5a0a=02and ¢ = 5.

As expected from Table 5, increasing 6 decreases the value
of the L,, I1, and other performance measures. Based on the
above, it is smaller for large values of u, and turns to zero
when u, = u,. Another important case is p, = 0, i.e., the ser-
ver cannot provide service during a vacation period; the effect
of the vacation rate 6 has a noticeable effect on the system per-
formance and cannot be ignored.

Table 6 shows that when lower speed service rate (u,)
increases, the probability that server is idle on working vaca-
tion P, increases, then the mean orbit size L, decreases and
probability that server is on working vacation II, also
decreases for the values of A =1; u, = 10; a = 3; b = 0.2;
p=030=1;pu =5and o = 0.2. Table 7 shows that when
repair rate () increases, the probability that server is idle on
working vacation P, increases, then the mean orbit size L,
decreases and probability that server is under repair R also
decreases for the values of 2 =1; u, =8, a=15; b =0.3;
p=030=1,u =5and o = 0.3.

For the effect of the parameters A, a, w,, u,, b, p, 0, o, £ on
the system performance measures, two dimensional graphs are
drawn in Figs. 4-8. Figs. 4 and 5 show that the mean orbit size
L, decreases for the increasing the value of the retrial rate (a)
and vacation rate (0). Fig. 6 shows that the probability that the
server is idle on working vacation P, increases for the increas-
ing value of normal service rate (). In Fig. 7, we examine the
behavior of the mean orbit size L, decreases for increasing the
value of lower speed service rate (u,). In Fig. 8, we depict
the behavior of the server’s availability (4,) decreases for
increasing the value of the breakdown rate (o).
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¥

Server Availability (A)

4

1 15 2 2'5 3 3'5 3 15 5 Lower speed service rate 0 o Normal servics rate

BiEaidomn rEtaie) Figure 11 L, versus p, and u,.

Figure 8 A4, versus o. . . . ) )

Three dimensional graphs are illustrated in Figs. 9-12. In
Fig. 9, the surface displays an upward trend as expected for
increasing the value of balking probability (b) and feedback
probability (p) against the mean orbit size L,. In Fig. 10, we
examine the behavior of the mean orbit size L, increases for
increasing the value of arrival rate (1) and the breakdown rate
(x). In Fig. 11, the surface displays the downward trend as
expected for increasing the value of the normal/lower speed
service rates (up, p,) against the mean orbit size L, In
Fig. 12, we examine the behavior of the mean orbit size L,
decreases for increasing the value of vacation rate (6) and
repair rate (&).

From the above numerical examples, we observed that the
influence of parameters on the performance measures in the
system and know that the results are coincident with the prac-
tical situations.

04 04 ) 9. Conclusion

- 0.3
02 0.2

Feedback probability 0 o1 Balking probability

In this investigation, we have studied a single server retrial
Figure 9 L, versus b and p. queue?ing system with. balking and feedback undgr ml}ltiple
working vacation policy, where the busy server is subjected
to breakdown and repair. The necessary and sufficient condi-
tion for the system to be stable is obtained. The analytical
results that are validated with the help of numerical illustra-
tions may be useful in various real-life situations to design
the outputs. The probability generating functions for the num-
bers of customers in the system when it is free, busy, on work-
ing vacation and under repair are found by using the
supplementary variable technique. Some important system
performance measures are obtained. The explicit expressions
for the average queue length of orbit and system have been
obtained. Finally, some numerical examples and cost opti-
mization analysis are presented to study the impact of the sys-
tem parameters and cost elements. The novelty of this
investigation is the introduction of balking, server breakdown
: and repair in the presence of retrial queues with multiple work-
= 3 ing vacation policy. The motivation for this model comes from
wide range applications in many real-time systems, for exam-
ple in computer and communication network where messages

0.4

0.2 15

005 are processed by a single server under working vacations and

Breakdown rate & Arrival rate .. . .
vacation interruption policy. Moreover, our model can be con-
Figure 10 L, versus 2 and o. sidered as a generalized version of many existing queueing
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models [25,20] equipped with many features and associated
with many practical situations.

The present investigation includes features simultaneously
such as

e Retrial queues

e Feedback

e Balking

e Multiple working vacations
e Vacation interruption

e Breakdowns and repairs

Our suggested model has potential practical real-life appli-
cation in Simple Mail Transfer Protocol (SMTP) mail system
uses to deliver the messages between mail servers. Other appli-
cations are in computer processing system and telephone con-
sultation of medical service systems. This work can be further
extended in many directions by incorporating the concepts of
batch arrival, bulk service, working breakdowns, immediate
Bernoulli feedbacks. Hopefully, this investigation will be of
great help for the system managers to make decisions regarding
the size of the system and other factors in a well-to-do manner.
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Appendix A

The embedded Markov chain {Z,;n € N} is ergodic if and
only if p < R*(A) for our system to be stable, where

p=p+ b (1 +agh)

10

T4

Vacation rate

L, versus 0 and .

Proof. To prove the sufficient condition of ergodicity, it is very
convenient to use Foster’s criterion (see Pakes [31]), which
states that the chain {Z,; n € N} is an irreducible and aperiodic
Markov chain is ergodic if there exists a nonnegative function f'
(), j€ N and ¢ > 0, such that mean drift y; = E[f(z,+1) — f
(z4)/zn = j] is finite for all j€ N and ;< —¢ for all j€ N,
except perhaps for a finite number j’s. In our case, we consider
the function f{j) = j. Then we have

g | P +ag)—1, o j=0,
Pl p+ V(14 agM) = RY(D), j=1,2,...

Clearly the inequality p + 26"V (1 + ag") < R*(2) is sufficient
condition for Ergodicity. [

To prove the necessary condition, as noted in Sennott et al.
[32], if the Markov chain {Z,; n > 1} satisfies Kaplan’s condi-
tion, namely, y; < oo for all j > 0 and there exits j, € N such
that ; > 0 for j > j,. Notice that, in our case, Kaplan’s con-
dition is satisfied because there is a k such that m; = 0 for
j<i—kandi> 0, where M = (m;) is the one step transition
matrix of {Z,;neN}. Then p+ 6N (14 agV) = R (1)
implies the non-Ergodicity of the Markov chain.
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