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Abstract 
 

The main objective of this research article is to propose test statistics for testing general linear hypothesis about parameters in stochastics 

linear regression model using studentized residuals, RLS estimates and unrestricted internally studentized residuals. In 1998, M. Celia 

Rodriguez -Campos et.al [1] introduced a new test statistics to test the hypothesis of a generalized linear model in a regression context 

with random design. Li Cai et.al [2] provide a new test statistic for testing linear hypothesis in an OLS regression model that not assume 

homoscedasticity. P. Balasiddamuni et.al [3] proposed some advanced tools for mathematical and stochastical modelling. 
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1. Introduction 

In spite of the availability of highly innovative tools in Mathemat-

ics, the main tool of the Applied Mathematician remains the sto-

chastic regression model in the form of either linear or nonlinear 

model. More importantly, mastery of the stochastic linear regres-

sion model is prerequisite to work with advanced mathematical 

and statistical tools because most advanced tools are generaliza-

tions of the stochastic linear regression model. The various infer-

ential problems of stochastic modelling are considered to be es-

sential to both theoretical and applied mathematicians and statisti-

cians. The selection between alternative models is an important 

problem in stochastic modelling. Specification of the stochastic 

regression model is an important stage in any stochastic linear 

regression analysis. It includes specifying both the expectation 

function and the characteristics of the error. The various Misspeci-

fication tests and testing general linear hypothesis in the stochastic 

linear regression models were studied by many mathematicians 

and statisticians. Most of these people have proposed their tests in 

stochastic linear regression models by using some inferential crite-

ria. A cursory glance at the recent literature on Model Building 

clearly suggests a significant shift in the level of mathematical and 

stochastic rigor brought at research efforts concerning Model 

Building. A more careful inspection shows that this trend has not 

been uniform across in the literature. In particular, while mathe-

matical and stochastic modeling efforts in certain fields of science 

and technology have been appreciable, other research fields of 

science remain under developed. Successful Mathematical and 

Stochastic Model buildings are not a collection of simple mecha-

nistic and routine techniques but more of an art requiring wide-

ranging knowledge and judgement. In the stochastic model build-

ing, the most difficult problem is the specification of the stochastic 

model. Under the problem of misspecification of the stochastic 

regression model, first task is that what set of regressors have to 

be included in the model; and the second task is that in which 

mathematical form of the regressors are to be included in the 

model. 

2. Special Types of Residuals 

Residuals have an important role on inference in stochastic regres-

sion models. They are very useful in analyzing various problems 

of stochastic linear regression models such as Autocorrelation, 

Heteroscedasticity, Misspecification, variable selection, Model 

selection etc. To detect (i) the disagreements between data and an 

assume model, (ii) violations of assumptions of the stochastic 

regression model, (iii) outlines in the data one may frequently use 

different types of residuals. Several types of residuals exist in the 

literature are Ordinary Least Squares (OLS) residuals; Stepwise 

Least Squares residuals; Generalized Least Squares (GLS) residu-

als; Abrahams and Koerts residuals; Best Linear Unbiased Scalar 

(BLUS) residuals; Recursive residuals; Best Augmented Unbiased 

with Scalar Matrix (BAUS) residuals; Independent stepwise resid-

uals; Restricted Seemingly Unrelated Regression Equation 

(RSURE) residuals; Studentized (Internal and External) residuals; 

predicted residuals etc. 

Consider the standard stochastic linear regression model  

n 1 n k k 1 n 1Y X     
                                                            (2.1) 

Such that 
 20, In  
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Where  is vector of unobservable errors which can be estimated 

with residual vector. 

Define the OLS residual vector as
ˆˆe Y Y Y X       

   
1 1ˆY X X X X Y X X X Y
        

   

 
1

I X X X X Y
   

     

              
 e I H Y  

                                                    (2.2)

       

Where 
 

1
H X X X X


 

 is known as Hat matrix. 

One may write,   
      1

ij i jH h X X X X


  
                               (2.3) 

One may obtain 
     

22E 0, Var e I H    
 

   2or Var e I H  
 [  I H  is symmetric Idempotent Matrix] 

.
   2

i iiVar e 1 h  
                                                             (2.4) 

 If the stochastic linear regression model contains constant or in-

tercept term these, 

2

ij ij ij ii
i j j

h h 1 and h h     
 also, each hii falls in between 

1

n  

and 1. 

Studentized residuals are improved set of residuals, that can be 

obtained by scaling the residuals with large iih
 get larger scaled 

residuals and residuals with small iih  set smaller scaled residuals. 

Scaling can done by dividing each of the residuals it‟s correspond-

ing estimate of its standard deviation. These types of residual are 

known as studentized residuals. For a simple two- variable sto-

chastic linear regression model, one may have 

 
2

i

ii 2n

i

i 1

X X1
h

n
X X




 

  
                                                                  (2.5) 

Such that Trace (H) = K = No. of parameters. Here, 
 Rank X K

. 

Now, the studentized residuals can be defined as  

(i) Internally Studentized Residuals  iq  

The ith internally studentized residual is given by  

 
i

i

ii

e
q , i 1,2,...., n

ˆ 1 h
 
 

b                                                 (2.6) 

Where 

2

i2 i
e

e eˆ
n k n k


   

    …                                               (2.7) 

Here 

2

i
1 n k 1q

~ B ,
n k 2 2

   
      . 

Also, 

     
  

ij

i i i j

ii jj

h
E q 0, Var q 1 and cov q ,q i j

1 h 1 h


   

 
 

(ii) Externally studentized Residuals 
 *

iq
 

      The ith externally studentized residual is given by 

 

* i
i

iii

e
q , i 1,2,..., n

ˆ 1 h
 
 

                                                     (2.8) 

             Where 
 

   

2
2 i

ii2

i

eˆn k
1 h

ˆ
n k 1

 
      

    = Residual mean 

square without ith case.  

or  
 

2
2 2 i

i

n k q
ˆ

n k 1

  
    

                                                             (2.9) 

A relationship between iq
 and 

*

iq
is given by 

1
2

*

i i 2

i

n k 1
q q , i 1,2,...., n

n k q

  
  

                                         (2.10) 

The ith predicted residual is defined as  

   i ii i
ˆq Y X , i 1,2,...,n    

                                       (2.11) 

Where  i̂
the OLS estimator of is 


based on a fit to the data with 

the ith case excluded. Further, the ith Predicted Residual Sum of 

Squares (PRESS) is defined as  

 

n
2

i
i 1

PRESS q



                                                                       (2.12) 

PRESS can be considered as a criterion for best stochastic model 

selection. Small value of PRESS reveals the better performance of 

the model. A relationships between  iq
 and 

*

i i ie ,q ,q are given by 

(i) 
 

i

i

ii

e
q

1 h



                                                                        (2.13) 

(ii) 

 

 

i

i 1

2
ii

e
q

ˆ 1 h



                                                                   (2.14) 

and (iii) 

 

   
i*

i

iii

e
q , i 1,2,.., n

ˆ 1 h
 
 

                                  (2.15) 

Here,  ie
,  i̂

 are the OLS estimators which are computed based 

on fit to the data without ith case. 

3. Testing Linear Hypothesis about Parame-

ters of Stochastic Linear Regression Model Us-

ing Studentized Residuals.  

Consider the standard stochastic linear regression model 

n 1 n k n 1k 1

Y X 
  

  
                                                                          (3.1) 

Such that

2

nN 0, I    . Where N refers to multivariate normal 

distribution and 0 is null mean vector. Suppose that 


obey the 

set of m
 k

 linear restrictions in the form of general linear hy-

pothesis as 0 m k k 1 m 1H : R r  
. where R is (mxk) known matrix 

and r is (mx1) known vector further, assume that R is having full 

row rank, which indicates that there are no linear dependencies 

among the hypotheses,   One may replace unknown parametric 

vector  by the OLS estimator ̂  as     (X1X)-1 X1X. 
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One may obtain the sampling distribution of 
ˆR

 as follows: 

(i)  
   ˆ ˆE R RE R   

                                                    (3.2) 

(ii) Var 
     

1
ˆ ˆ ˆ ˆ ˆR E R E R R E R         

     

  

1
1ˆ ˆRE R        

     

   = 
  1ˆR Var R

 

   
1

2 1 1ˆVar R R X X R 
  

     

   
1

2 1ˆVar X X
 

  
 

                                           (3.3) 

Since, ̂  has multivariate normal distribution with mean vector 


and covariance matrix 

 
1

2 1X X



 the sampling distribution of 

ˆR  is given by 

  
1

2 1 1ˆR N RB, R X X R
 

  
 

                                                (3.4) 

    
1

2 1 1ˆR R N 0, R X X R
  

  
  

 

or 
    

1
2 1 1ˆR r N 0, R X X R

 
  

 
                                         (3.5) 

From the distribution of quadratic forms, one may obtain  

      
11 1

2 1 1 2

m
ˆ ˆR r R X X R R r


  

  
   

 

It can be easily seen that 
 

1
1 1R X X R

 
    is positive definite matrix. 

In general, error variance parameter 
2  is unknown and it can be 

estimated by using OLS residual sum of squares (from Gauss-

Marksoff Theorem) as 

n
2

1 i
2 i 1

e
e e

ˆ
n k n k

  
 



                                                                    (3.6) 

Since, the OLS residuals have a distribution that is scale depend-

ent and studentized residuals are scale independent, one may re-

place OLS residuals with studentized residuals. By replacing OLS 

residuals with internally studentized residuals (qi), an estimate of 
2  is given by  

2
1 i

2 i

q
q q

n k n k



 
 


                                                                    (3.7) 

 Also,  
2 2

n k
 

. Now, the test statistic for testing 

general linear hypothesis oH : R r, 
 about the parameters of 

stochastic linear regression model is given by 

     
 

11 1
1 1

1 m, n k

ˆ ˆR r R X X R R r / m
F F

q q / n k




  

        
 

  

 

                 (3.8) 

One may compare the calculated value of F-statistic with its criti-

cal value (Table value) for [m, (n-k)] degrees freedom at chosen 

level of significance and draw the inference accordingly. 

4. Testing General Linear Hypothesis in Sto-

chastic Linear Regression Model Using RLS 

Estimators  

Under General Linear Hypothesis oH : R r   consists of a set of 

 m k
 linear   restrictions, the Restricted Least Squares estima-

tor of  in the standard stochastic linear regression model 
Y X   is given by 

     
1

1 1
* 1 1 1 1

RLS
ˆ ˆX X R R X X R r R


    

  
  

                              (4.1) 

Where ̂ is the unrestricted OLS estimator of  . By defining Re-

stricted Least Squares (RLS) residual vector  

 * * *

RLS RLS
ˆ ˆe Y X Y X X        

 = 
 *

RLS
ˆe X  

 

     (or) 

    
1 1

* * 1 * 1 *

RLS RLS
ˆ ˆe e e e X X    

  
   

                            (4.2) 

Here, the cross product term variables, since X1e=0. 

    
1 1

* * 1 * 1 *

RLS RLS
ˆ ˆe e e e X X      

    
   

  Using (4.1), one may 

express 

 
     

1
11 1

* * 1 1 1ˆ ˆe e e e r r R X X R r R


     
    

 
 

or  
   

1* * 1 * 1 *

RLS RLS
ˆ ˆe e e e X X    

 
   

                            (4.3) 

Using RLS estimator 
*

RLS
and Internal studentized residuals the t-

test statistic for testing general linear hypothesis oH : R r 
 in 

stochastic linear regression model is given by 

   
 

* 1 *

RLS RLS

R m,n k1

ˆ X X / m
F F

q q / n k


  
 
 
 

   

                                   (4.4) 

5. Testing General Linear Hypothesis in Sto-

chastic Linear Regression Model Using Re-

stricted and Unrestricted Internally Studen-

tized Residuals.  

Suppose the e1e be the unrestricted OLS residual sum of squares 

obtained by using OLS estimators and 
1* *e e be the restricted OLS 

residual sum of squares under general linear hypothesis obtained 

by using restricted least squares estimators of parameters of the 

standard stochastic linear regression model. By replacing these 

residual sum of squares with their corresponding Internally Stu-

dentized residual sum of squares, one may obtain the test statistic 

for testing general linear hypothesis 0H : R r 
 as 

   

1 1

R R

IS 1 m, n k

q q q q / m
F F

q q / n k   

  


                                             (5.1) 

Where 
1

R Rq q 
Restricted Internally Studentized Residual sum of 

squares.  

q1q = Unrestricted Internally Studentized Residual sum of squares. 

m = Number of Linear Restrictions about k parameters.  
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6. Conclusion  

In the above research study test statistics for testing general linear 

hypothesis about parameters in stochastic linear regression model 

have been developed by using studentized residuals RLS estima-

tors and unrestricted internally studentized residuals. These ideas 

can be extended to develop advanced tools for analyzing infer-

ecutial aspects of stochastic nonlinear regression models and ran-

dom coefficients regression models by using different types of 

residuals other than studentized residuals. 
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