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Abstract 

Big Data and parallel computing are used extensively for processing large quantities of data, structured, semi structured or totally 
unstructured. MapReduce and Hadoop are used for the parallel data processing of these kinds of data. Various scheduling 
policies are used for MapReduce scheduling which is discussed in detail and a new scheduling technique Two Phase Scheduling 
Policy (TPSP) based resource allocation for MapReduce is implemented and the efficiency is verified. 
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1. Introduction 

  Big Data has become the buzz word after cloud computing and grid computing and this new technology works 
together with distributed data processing systems to create useful insights from gigantic amount of data1. Many 
parallel data processing systems evolved over the past decade, out of which Hadoop is the one with much prospects 
ahead. The word Mapreduce originates from the higher order functions which accept other functions as arguments. 
MapReduce can be defined as the distributed processing across multiple machines and servers. It is an innovative 

 

 
 
 
* Corresponding author. Tel.: +91-9486939119; 

E-mail address: :lddhineshbabu@vit.ac.in 
 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication 
Technologies (ICICT 2014)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.110&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.110&domain=pdf


628   Ebin Deni Raj and L.D. Dhinesh Babu  /  Procedia Computer Science   46  ( 2015 )  627 – 634 

programming model exclusively for data processing2. The greatest advantage of MapReduce is that it reduces the 
execution time of complex tasks considerably. The process consist of two phases namely Map and Reduce. In other 
words it can be said that it consist of two user defined functions – Map function and Reduce function. MapReduce 
helps in reducing the complexities of distributed file systems3. The basic idea of this technique is sectionalisation of 
large data into small data chunks. The MapReduce framework is best suited for applications and systems having 
little or no communication between nodes. This concept is widely known as shared nothing architecture. Apart from 
Google, MapReduce is widely used by Facebook, MySpace and Twitter for data analysis and social computing 
activities.  

1.1 Comparison of MapReduce and RDBMS 

   In the last few years the Data growth has become so exponential that it grew from terabytes to petabytes and even to 
zeta bytes4. The RDBMS approach and MapReduce approach differ from each other. RDBMS operates on structured 
data such as definite rows and columns or on structured XML data5. Unstructured data such as image, voice, and 
video which do not have internal structure cannot be processed by RDBMS. MapReduce has the capacity to process 
different kinds of unstructured data consisting of variety of text, image and many more6. The interpretation of data 
happens during processing of data. Unlike RDBMS which possesses a static schema, MapReduce has a dynamic 
schema in which the schema changes continuously7. Hive is an apache project which was incorporated in hadoop with 
the goal of integrating SQL skills to manage huge volumes of data .The programming model of MapReduce is 
defined in such a way that it is linearly scalable across a large number of machines with low implementation cost. In 
RDBMS the data needs to be normalized and cleaned before processing whereas MapReduce processes the data 
without doing so. MapReduce has lower integrity when compared with RDBMS and the pros of RDBMS can be 
incorporated into MapReduce to make the framework more efficient. 
 
1.2 Comparison of MapReduce with Divide and Conquer 

   The basic idea is similar to divide and conquer but in a distributed and highly scaled proportion. A single machine 
cannot be used to compute and solve very large datasets as the dataset grows uncontrollably. To increase the 
efficiency of the process, multiple machines are employed in which divide and conquer method faces so many 
stumbling blocks such as coordination, reliability and failed process machine. Hadoop framework will help in solving 
these stumbling blocks and help in executing parallel processing with less effort. Hadoop Distributed File Systems 
(HDFS) helps in scaling out the input to multiple machines. HDFS also helps in data locality optimization. 
  MapReduce programs have its base in functional programming paradigm and the main objective of the programmer 
is to define and create map function and reduce function. One of the highlights of functional programming paradigm 
is that it accepts other functions as function arguments. The primitive data types in MapReduce programs are key-
value pairs which allows programmers to concentrate on business needs and keeps him/her free from the distributed 
file systems complexities. The Map task produces a set of key value pairs from the data chunks which is the input 
argument to the reduce task. MapReduce uses a shared nothing model which means that each node in the architecture 
is self sufficient, independent and hence, does not require intra communication. This no-shared model helps to 
achieve scalability without much complexity and we can cite the advantages of MapReduce as high fault tolerance, 
comfortable programming structure, automatic distribution of workload and high elasticity. 
 
1.3 Overview of Hadoop 
 
  Hadoop is an open source project implementation of Google’s MapReduce architecture. The files will be of very 
large sizes in the range of Terabytes or Petabytes and is built on top of low cost hardware.  Data access in HDFS is by 
bucketing or streaming method. HDFS basically follows Google file system and the advantage is greater scalability 
and very high availability. It is both hardware and software tolerant and has moderately good fault tolerance as it does 
automatic re-replication of data on failed nodes. Hadoop addresses the two big challenges put forward by Big Data; 
firstly, how to store large volumes of data and secondly, how to work with copious data.  Hadoop Distributed File 
System comprise of a client server architecture consisting of a name node (also called as master node) and a set of 
data nodes. The name node has a job tracker which keeps monitoring the task assigned to the data node. The data 
node contains a task tracker which constantly supervises the task given by the name node. The Hadoop environment 
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  Fig 1: Hadoop Environment 

setup is neatly depicted in Fig 1. The replica process is handled by name node. HDFS also has a secondary node 
which can be configured in some other system other than the one in which name node resides. But in case of failure 
of a name node the secondary node cannot replace the name node. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  The duty of secondary name node is to perform frequent checks on the name node and to store images of the name 
node. In case of a failure of name node, the most recent image will be uploaded into the name node by the secondary 
node. HDFS is introduced with the motive that it is easier to move the computation rather than moving the data. 
MapReduce has been implemented in various forms such as big table, MongoDB and couchdb. Hadoop is just 
another implementation of MapReduce. Some of the high level languages used in hadoop are Crunch, Pig and Hive. 
The predictive analytics used in Hadoop consists of Rhadoop, Rhive and RMahout.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig 2: Working of MapReduce 
1.4 Hadoop-YARN 

    MapReduce 2.0 or Yarn has many upgrades from the previous versions of Hadoop8. The previous versions of 
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Hadoop had disadvantages such as maximum cluster size and maximum concurrent tasks being 4000 nodes and 
40000 nodes respectively. In YARN architecture each data node has a node manager (NM). The job tracker has two 
daemons which will assist in cluster resource management and scheduling/monitoring. A global resource manager 
resides in the name node. Each Data node contains containers. The containers are supervised by node managers. 
There is an application master which coordinates an application job. The application master will be managing the 
lifecycle of the applications running in the cluster and it has the privilege of talking directly to the resource manager. 
Each application master has a set of containers spread over different data nodes under its supervision. MapReduce 
jobs are managed by the application master. The node managers make sure that an application does not over use the 
resources.  
 
2. MapReduce scheduling 

  Most of the MapReduce scheduling algorithm is based on the assumption that nodes are homogeneous. This 
assumption poses a drawback in scheduling algorithms. The selection of data nodes are done in random and the 
duration of MapReduce tasks vary from few seconds to few days9. The mean duration of map tasks and reduce tasks 
varies from job to job and task to task depending on the number of worker nodes. The allocation strategies in cloud 
includes apportioning of resources and time slices in a variety of modes10,11. 

2.1Task scheduling 

   MapReduce follows a pull scheduling scheme in which the slaves (Task Tracker) gets the job from master node on 
request.  In Map Task scheduling the slaves send periodic heartbeat (to check whether the node is alive) to the 
master node. The slaves are also referred to as slots and if a slot is free, the master responds with a task that is in 
closest locality to the slave node.  While in reduce task scheduling  the master sends the next yet to be run task to the 
slave irrespective of its locality. Thus Map task considers locality of nodes while reduce task does not consider the 
locality. 
 
2.2 Job scheduling 

   In MapReduce framework each application is considered as a job. A job comprises of many map and reduce tasks. 
MapReduce framework have many type of schedulers mainly First In First out (FIFO) scheduler and Fair scheduler. 
FIFO scheduler, as the name suggests, processes jobs in the order of submission while Fair scheduler aims to 
provide a fair share of the cluster capacity over time. The problem with FIFO scheduler is that it reduces data 
locality since it follows strict FIFO job order and this scheduling technique cannot provide fair opportunity for all 
task nodes. The Hadoop scheduler assigns the task with the help of a queue. 
 
2.3 Comparison of Resource allocation policies 

  The MapReduce framework consists of two scheduling techniques namely First Come First Serve (FCFS) 
scheduling policy, Fair scheduler and capacity scheduler.  The thirst for more efficiency has led into developing new 
scheduling techniques for both job scheduling and task scheduling. The initial release of Hadoop included only two 
resource allocation policies namely fair scheduler and FCFS. Later versions included the capacity scheduler in the 
scheduling policy of MapReduce. The drawback of FCFS scheduling policy is low resource utilization. There are 
many varieties of fair scheduling such as naive fair scheduling, and fair scheduling with delay scheduling. Table 1 
shows the different policies proposed in different papers.  
 
  The first come most resource allocation policy gives priority to the task that starts first. The Laggard Tasks most 
scheduling policy makes use of a concept known as resource stealing. The longest time left scheduling policy checks 
each job's and task’s estimated execution time and reallocates the resources accordingly. The resource allocation 
policy speculative task most is designed to avoid slow tasks by allotting multiple nodes to process the same data. 
The load balancing techniques used in cloud computing can be mimicked to a certain extent in MapReduce as 
well12. 
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Table 1: Different MapReduce resource allocation policies 

 
  In this paper, we compare the FCFS and capacity scheduler with the proposed algorithm two pass scheduling 
policy based resource allocation. The FCFS and capacity schedulers are still the default scheduling policies in 
Hadoop systems including the latest version -Hadoop Yarn. 
 
3. Two Pass Scheduling Policy based Resource allocation 

  The algorithms and scheduling policies discussed in the previous section has been thoroughly analysed and a new 
technique named Two pass scheduling policy based scheduling technique is being formulated. The MapReduce 
simulation requires workload and workers. The layout and nature of workload is discussed in detail in the following 
sections. 
 
3.1 MapReduce workload generation 

  The real world MapReduce workload consists of a variety of files including text, log files, scripts and different file 
formats. The procedure for creating a MapReduce workload for simulating MapReduce has already been discussed 
by various researchers. A number of metrics such as wait time, run time, response time, and number of running jobs 
play a vital role in MapReduce workload generation13.  
 

  
 

Fig 3.  Matlab simulation of MapReduce 
In this paper, we are using a simulated work load of textual data which consists of numbers, alphabets and special 
characters. We make use of six matlab workers in the parallel computing toolbox of matlab and a generic cluster 
was created which will mimic the MapReduce framework. Workload for this algorithm ranges from one GB to five 
GB of data. The data consists of only text files. 

3.2 Matlab and MapReduce 

  There are various simulators which mimic the MapReduce framework. Some of the simulators which are used 
extensively in MapReduce research are MRPerf, MRSim and Mumak. The parallel computing toolbox and 
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Capacity Scheduling  A combination of fair share scheduling and FCFS scheduling 
Shortest time left most The task that will complete in the most nearest time will be given the resource 
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distributing computing server can be utilized in creating a MapReduce environment which consists of worker nodes 
which acts as mappers and reducers. Figure 3 clearly illustrates the simulated environment in matlab. This 
environment is created on top of a generic cluster having twelve worker nodes. 
 
3.3 Algorithm 

  The proposed algorithm two pass scheduling policy based resource allocation is as shown below along with Table 
2 which describes the acronyms used in the algorithm. 

Table 2: Explanation of Acronyms used 
Variable Name Explanation 
UN set of unscheduled tasks 
FMS set of free idle map slots 
TS A matrix of temporary list which copies the unscheduled tasks 
C |UN| X |FMS| matrix   
LDi The maximum capacity of the container 
UNM Minimum execution time of unscheduled tasks 
ERt Expected Running time 
Rt Running time 

 
Pass -1 

1) The scheduling queue is stored as a list and a copy of it is saved as TS 
2) The minimum execution time is calculated from the size of file for each task(sent along with 

heartbeat)(UNM). 
3) The possible execution time and FMS list are concatenated (which is named as matrix C). 
4) UNM and FMS are sorted in descending order.  
5) The first task from the list is taken and compared and assigned to FMSi. 
6) Delete the task UNMi from the list.  
7) Repeat the steps 5 and 6 until the UNMi list is empty. 

Pass-2 
1) The schedule list TS is taken. 
2) The worker node with maximum load is selected  

a. Check the ready time with UNMi.  
b. If ERt < Rt  and UNMi not equal to first node in UNM list 

i. Reassign the task remaining in the node to i-1th worker node. 
Else 

ii. Assign the job to the same node and keep it unchanged. 
iii. Delete the node from TS list. 
iv. Move to the next node. 

3) Repeat step 2 until TS list is empty.  

  The algorithm consists of two phases namely pass-1 and pass-2. The initial phase develops a scheduling queue list 
and another copy of the same is stored as a temporary queue list. The minimum execution time of the task is 
calculated from the file size of the workload. The parameters for file size checking are set manually according to the 
type of file that is being handled. In this implementation, we work only with text files and the file size is calculated 
by a matlab user defined function.  
  The number of free matlab workers is found and is added on to a list called Free Map Slot list (FMS). The 
minimum execution time list and free map slot list are concatenated on to a single matrix. The first task (which will 
be the biggest in size) will be compared to the FMS list. If free slots are available, the task will be sent to that 
worker for execution. Once the task is sent to the worker the UNM list is updated by deleting that task from the list. 
This process is continued till the UNM list is empty. The empty UNM list will trigger the next phase pass-2 of the 
algorithm. 
   In pass-2 of the algorithm, the Temporary list which was created in the phase1 stage of the algorithm is taken into 
consideration. From the temporary list, the worker with maximum workload is taken and heartbeat is checked for 
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getting information. The expected running time which was calculated in phase1 is compared with the current 
running time and the task, if required, is reassigned to the (i-1)th  worker node. If the reassigning is not required then 
the job is kept in the same worker node and the node is deleted from the temporary list. 
The algorithm is tested with various workloads and different number of workers and is compared with two 
algorithms namely FCFS and capacity scheduling.  
 
4. Results and Discussion 
 
  The TPSP algorithm was implemented using matlab with six workers acting as mapper and reducer. The algorithm 
is compared to existing algorithms FCFS and capacity scheduling. The workload and number of workers are varied 
in different combinations to test the efficiency of the TPSP algorithm  

 
Fig 4: Throughput of the TPSP algorithm compared with FCFS and capacitive 

 
Figure 4 depicts the throughput of the algorithm compared with the default algorithms namely Capacity scheduling 
and FCFS. Throughput can be defined as the number of jobs processed and completed per minute by the scheduler.  
The throughput was tested with a fixed workload and varying number of  workers. The execution time of six  

 
 
                                 Fig 5: Comparison of execution time of six workers with varying workload 
 
workers with varying workloads ranging from one GB to five GB is tested using TPSP and capacity scheduling 
algorithm and plotted as in Figure 5. The graph shows that TPSP is way ahead in execution speed when compared 
with capacity scheduling. The algorithm is executed with varying number of workers under a constant workload to 
obtain Figure 6. It shows the execution time compared with FCFS and capacity scheduler. The number of workers 
was changed from one to six. The algorithm is executed with varying number of workers under a constant workload 
to obtain Figure 6. It shows the execution time compared with FCFS and capacity scheduler. 
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       Fig 6:       Comparison of Execution time with varying number of workers and a fixed workload 

 
  The number of workers was changed from one to six. The results depict the efficiency of TSTP algorithm which 
was tested for job throughput, execution time and varying workloads.  
 
5. Conclusion 
 
  Focusing on MapReduce scheduling, this paper, through a survey of different MapReduce scheduling policies 
proposes a new technique which is more efficient than the default schedulers in hadoop. Big Data is definitely the 
future of parallel data processing and MapReduce framework will be an added advantage for processing gigantic 
amount of data within a short period of time. The efficiency of parallel data processing relies heavily on the type of 
scheduler that the parallel system is using. The efficiency of the algorithm has been proved by comparing it with 
different workloads, varying number of workers and with other algorithms. The algorithm which has been 
implemented and tested in a simulated environment, can be implemented in real hadoop systems as a future project.  
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