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Abstract

With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of

estimating plant biomass of individual plants from their two dimensional images is becoming increasingly

important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function

of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely

a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for

the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the

accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight

and the value of the shoot dry weight estimated with a predictive model). For the proposed method in this study,

we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing

our model and comparing the results with the linear model were collected from a completely randomized block

design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics

system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and

100 mM) for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and

then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed

that with our proposed method, most of the observed variance can be explained, and moreover only a small

difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that

our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is

and what salt treatment has been applied. We validated this model on an independent set of barley data. The

technique presented in this paper may extend to other plants and types of stresses.

Introduction
Plant biomass is an important factor in the study of

functional plant biology and growth analysis, and it is

the basis for the calculation of net primary production

and growth rate [1-4]. Depending on the available bud-

get, accuracy required, structure and composition of the

vegetation, and also different disciplines of plant biology,

there are several techniques to measure plant biomass

[5]. In the study of biomass of an individual plant, shoot

dry weight is one of the acceptable measures. This

method is typically used to estimate a plant’s yield, but

it is also an accurate measure of plant biomass.

The conventional means of determining shoot dry

weight (SDW) is the measurement of oven-dried sam-

ples. In this method, tissue is harvested and dried, and

then shoot dry weight is measured at the end of the

experiment. To investigate the biomass of a large num-

ber of plants, this method is very time consuming and

labor intensive. Also, since this method is destructive, it

is impossible to take several measurements on the same

plant at different time points. Therefore, an imaging

method has been proposed to infer plant biomass accu-

rately as a non-destructive and fast alternative. The

Plant Accelerator [6] and the High Resolution Plant

Phenotyping Centre [7] in Australia, the Leibniz Insti-

tute of Plant Genetics and Crop Plant Research (IPK) in

Germany [8], the Institute of Biological, Environmental

and Rural Sciences (IBERS) in the UK [9], and PHE-

NOPSIS system being built by the National Institute for

* Correspondence: dslun@camden.rutgers.edu
1Phenomics and Bioinformatics Research Centre, Australian Centre for Plant

Functional Genomics, School of Mathematics and Statistics, University of

South Australia, Mawson Lakes, SA, 5095, Australia

Full list of author information is available at the end of the article

Golzarian et al. Plant Methods 2011, 7:2

http://www.plantmethods.com/content/7/1/2
PLANT METHODS

© 2011 Golzarian et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:dslun@camden.rutgers.edu
http://creativecommons.org/licenses/by/2.0


Agricultural Research (INRA) in Montpellier, France

[10], have established or are planning to establish

advanced plant phenotyping facilities that each provide

the capability of hundreds to thousands of plants to be

automatically imaged from standard positions and then

analyzed via image analysis programs every day.

Digital image analysis has been an important tool in

biological research and also has been applied to satellite

images, aerial photographs and macroscopic and micro-

scopic images [11]. A relevant application of image ana-

lysis which has been used for decades is in the area of

remote sensing forestry and precision agriculture in

which the area of plant species cover and the biomass of

the above-ground canopy are estimated from satellite

and airborne images [12-20]. These techniques have

found a recent application in estimating the biomass of

individual plants in a controlled environment and also

in the field. There have been only a few projects on the

application of image analysis techniques to estimate

above-ground biomass of an individual plant. In these,

the projected shoot area of the plants captured on two

dimensional images was used as a parameter to predict

the plant biomass [1,15,21-25]. Except for predicting

cereal plant biomass as a linear function of plant area,

however, none of the methods described in the literature

was developed explicitly for high throughput phenotyp-

ing facilities. A robust and accurate method is required

for high throughput phenotyping.

An additional factor to consider is the level of salinity

to which the plant has been exposed. Arid and semi-

arid agricultural lands such as those in Australia inevita-

bly pose some levels of soil salinity, which is one of the

major environmental stresses that significantly affects

crop productivity. The crop plants are stressed when the

high concentrations of salts in the soil make it harder

for their roots to extract water [26,27]. Salinity seems to

have some effect on wheat growth in terms of their

morphology, physiology and anatomical changes

[26,28-30]. The applied salt treatment on the plants in

the simulates the effect of soil salinity on crop plants in

an agricultural field. The linear model, the predominant

method used to estimate plant biomass, shows biased

estimation of plant biomass particularly for salt stressed

plants.

The objective of the present study is to develop a gen-

eralized method to estimate the biomass of cereals from

their projected shoot area on two dimensional images.

We have developed a method that significantly reduces

the bias in biomass estimation of stressed cereal plants,

which is the main source of the estimation error. We

have demonstrated that a model that uses mixed vari-

ables of plant area and plant age achieves this reduction

and therefore the method we proposed can be used to

compute accurately the biomass of cereal plants

regardless of whether or not they are salt stressed. In

order to generalize our method to cereal plants we

tested our method on both wheat and barley datasets

and achieved promising results.

Methods
Image acquisition

Plant images were captured using a LemnaTec 3D

Scanalyzer (LemnaTec, GmbH, Wuerselen, Germany) at

Australian Centre for Plant Functional Genomics

(University of Adelaide, Waite Campus, Adelaide). Com-

parable imaging systems are also used in other pheno-

typing facilities. Three 1280 × 960 resolution RGB

images were taken of every plant: one top view image

and two side view images at a 90° horizontal rotation.

The images were stored in PNG format. In order to

increase the accuracy of separating the background from

the region of interest (plant region), a roughly uniform

blue background was used and the plant pot was also

wrapped in a blue paper tube at the time of imaging. To

develop the model and ensure sufficient variation, a

total of 320 wheat plants were used for this study.

The plants were of two Australian bread wheat varieties,

Krichauff and Berkut, grown under two salt treatments,

0 and 100 mM NaCl. The bread wheat (Triticum aesti-

vum L.) cultivars Berkut and Krichauff are quite distinct,

and have different pedigrees. Berkut comes from

CIMMYT, Mexico and Krichauff is a southern Australian

commercial cultivar. They have been selected as diverse

parents of a mapping population, which have been identi-

fied to have significant variation in salinity tolerance

traits, one of which has even been mapped in a large

genetic study, published recently [31].

In terms of salinity, 100 mM salinity is a moderate level

of salinity which reduces growth by approximately 10 to

30%. This level of salinity has been estimated to cover as

much as 69% of the Australian wheat belt [32] and is a

global problem at this and much higher levels [26].

Seeds were placed on the moist paper towels in petri

dishes, closed and double wrapped with polythene bags,

and kept under room temperature for 5 to 7 days. Seeds

were moisturized every second day. To attain uniform

growth, fast growing cotyledons were kept in a cold

room for 2 days. Once all the plumules and radicles had

reached the length of 3 mm and 4 mm respectively the

plants were transplanted into the tubes of a supported

hydroponics system in a glasshouse. The experiment

was conducted in autumn 2008 in both control (0 mM)

and saline (100 mM NaCl) conditions. For the salt

stressed plants, the salt was added to the hydroponics at

the time of fourth leaf emergence (approximately

12 days after germination) in 25 mM increments and

the final concentration of 100 mM was reached as four

increments in two days [33]. Five harvests were carried
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out at 15, 26, 34, 40 and 43 days after planting in the

petri dishes. At each harvest time 64 randomly selected

plants were imaged and then harvested to measure the

shoot fresh weight and shoot dry weight [34,35]. This

procedure was used in order to provide variations for

plant age of plants. The shoot dry weight measurements

vary in the range of 0.025-1.67 g with details given in

Table 1.

The methods described in this study were also tested

on barley dataset. Seven barley cultivars (Clipper,

Sahara, Vlamingh, Buloke, CPI 71284, Barque, Golden

Promise) were grown in a greenhouse (June/July 2008)

in a supported hydroponics system as described by [36].

At the time of third leave emergence, NaCl was added

to the growth solutions of the stress treated plants in

50 mM steps over two days (early morning and late

afternoon) to reach a final concentration of 200 mM

NaCl. After 20 and 25 days in hydroponics (8 and

13 days after start of salt stress treatment), two side

view and one top view images were recorded before

shoots were harvested for measuring fresh weight and

dry weight. The barley shoot dry weight measurements

vary in the range of 0.016-2.25 g with details given in

Table 2.

Image processing algorithm

We used the LemnaTec 3D Image Analyser (LemnaTec

GmbH, Wuerselen, Germany) to run image processing

algorithms to extract information from the plant RGB

images. The plant color images were first converted into

the “Hue Saturation Intensity (HSI)” color model in

order to increase the contrast between plant region and

background region. A threshold was applied on the hue

image in order to separate plant area from the back-

ground. The segmentation process was accomplished by

selecting the pixels with values over the threshold

belonging to plant region and rejecting all the other pix-

els to the background region. The resulting image is a

binary or two-level image, using white and black to dis-

tinguish the plant and background regions, respectively.

The number of pixels inside the plant region was

counted in each of the three orthogonal views, con-

verted to mm2 using the appropriate calibration factor,

and then summed to give the projected shoot area. This

is not the actual shoot surface area but the sum of the

areas of the image projected in three planes. There are

many cases when a mature plant’s leaves are overlap-

ping, appearing behind one another in side view images.

In these cases, a top view image provides a means of

correction of plant area for those overlapping leaves in

side view images. The three orthogonal views (two side

views from 90 rotational difference) and a top view cor-

rect for hidden areas in the other views and give a

robust representation of plant area overall.

In addition, the top view camera was located at a dis-

tance of 2 m above the plant, while plant heights were

generally much less than 80 cm. Thus, the camera dis-

tance is sufficient for the pixel resolution of leaves near

the bottom of the plant to be not too different from

that for leaves near the top. Also, the analysis using the

two side images alone yields slightly worse results,

which demonstrates that the top view is indeed useful.

A schematic diagram of the image processing procedure

is shown in Figure 1.

Cross validation technique

To measure the generalization or estimation error of a

predictive model, the technique of cross validation was

used. Cross validation, or rotation estimation, is a tech-

nique for assessing the prediction error. This technique

estimates the generalization error, L(Y,Ŷ), where L is the

distance function and Ŷ is the model applied to the

independent test sample from the distribution of X and Y.

Cross validation is a robust method and preferred over

the R2 statistic. The main reason is that R2 inevitably

increases with additional predictors, and more predictors

automatically yield improved prediction within one data-

set. However, the cross validation error decreases only as

long as the additional predictor improves the predictive

capability of the model in an independent dataset [37]. In

Table 1 Details of Shoot Dry Weight measurements (wheat dataset)

Plant age
(days after planting)

Control plants (no salt) Salt stressed plants Two salt treatments combined

SDW
(ave)

SDW
(stdev)

SDW
(ave)

SDW
(stdev)

SDW
(ave)

SDW
(stdev)

15 0.03 0.01 0.02 0.01 0.03 0.01

26 0.17 0.04 0.14 0.05 0.15 0.05

34 0.47 0.10 0.28 0.06 0.37 0.13

40 0.98 0.16 0.51 0.08 0.74 0.27

43 1.17 0.22 0.66 0.16 0.91 0.32

Grand Total 0.58 0.47 0.33 0.25 0.451 0.39

The SDW values are given in grams.

SDW = shoot dry weight; ave = average; stdev = standard deviation.
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the cross validation technique, the observations are ran-

domly assigned indices, integers 1 to K. In this way, the

dataset is partitioned into K approximately equal-sized

parts. Then, the model is fitted to K-1 parts of the dataset

(with one part, say the kth part, removed), and the predic-

tion error of the fitted model is calculated from the kth

part. This procedure is repeated for k = 1, 2, .., K rounds,

and estimation errors, such as the root mean square

errors (RMSE values), are averaged over the rounds

[37-39]. Typical choices of K are 5 or 10, and in this

study fivefold (i.e, K = 5) cross validation was used. The

estimation errors obtained from applying this technique

were used to compare the performance of different pre-

dictive models. The cross validation analysis was per-

formed in Matlab (Mathworks Inc., Natick, MA).

Results and Discussion
Model development

For our data, the linear method for estimating biomass as

a linear function of plant area [14,40] performed better

than non-linear models, such as quadratic, cubic and

power methods as mentioned in [1,21]. When quadratic

and cubic models were fitted, we found that the higher

order coefficients were not significant (Table 3). The coef-

ficients are computed from regression modeling using

SPSS software package (version 17, IBM, Chicago, Illinois,

USA). The models mentioned in this table were developed

using the dataset from 320 plants collected in the experi-

ment explained earlier. In these models the plant biomass,

or shoot dry weight, was the dependent variable and the

projected shoot area was defined to be independent variable.

For instance, the linear model is a function with the equa-

tion of SDW = a0 + a1A, where A is the projected shoot

area and SDW is the dependent variable shoot dry weight.

The equations associated with the quadratic, cubic and

power models are SDW = a0 + a1A + a2A
2, SDW = a0 +

a1A+ a2A
2 + a3A

3 and SDW = a0 A
a1, respectively.

As can be seen from the Table 3, among polynomial

models, only the linear model is significant. The linear

model may be compared with the non-linear power

model by inspecting their estimation errors achieved

using five fold cross validation analysis applied on the

wheat dataset.

Table 4 summarizes the root mean square errors

(RMSE) from these two models. The RSME is given by:

1 2

1
n k

k

n

SDW SDWpredicted actual 



where n is the total number of images. The estimation

error of the linear method is significantly smaller (P-

value < 0.00005) than that from the power method

(Table 4).

The linear model seems to be the best of those con-

sidered so far, justifying its common use in the

literature.

When the data were disaggregated into the two bread

wheat cultivars, i.e. Krichauff and Berkut, the linear

model was still highly significant and could explain

greater than 95% of the variance of the values observed.

Figure 2 shows the scatter plot of actual SDW values

and estimated values obtained by using this method

under two variety groups.

However, this method achieves a large estimation bias

for salt-stressed and non-salt-stressed plants. Using this

method where the biomass is estimated as a linear func-

tion of plant area, the large estimation bias means that

plants under salt stress that have the same area (pre-

dicted SDW) as the control plants, would in fact weigh

more than control plants (greater actual SDW). In other

words, this method systematically under-estimated the

SDW of salt stressed plants while systematically over-

estimating that of plants not under salt stress. An exam-

ple is illustrated in Figure 3 where example points from

two plants under different treatments are highlighted.

Analysis of the scatter plot of actual SDW values com-

pared with the values estimated by the linear method for

five plant ages, however, indicated that plants under salt

stress which have the same area (predicted SDW) but

greater mass than the control plants are in fact older

than those salt free plants (Figure 4). This suggests that

the bias observed between the salt-stressed and salt free

plants is related to plant age. In this analysis, the plant

age is measured from the date of planting.

Table 2 Details of Shoot Dry Weight measurements (barley dataset)

Plant age
(days after transplant)

Control plants Salt stressed plants Two salt treatments combined

SDW
(ave)

SDW
(stdev)

SDW
(ave)

SDW
(stdev)

SDW
(ave)

SDW
(stdev)

20 0.124 0.040 0.096 0.045 0.110 0.044

25 0.258 0.103 0.158 0.058 0.210 0.097

49 0.763 0.599 0.763 0.599

Grand Total 0.193 0.103 0.449 0.533 0.363 0.454

The SDW values are given in grams.
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To reduce the bias, we propose a predictive model

based on the concept of plant specific weight. The plant

specific weight (PSW) is defined as the plant weight per

total projected shoot area. The observations across the

images showed that PSW can be estimated as a linear

function of plant age (Figure 5). Therefore, PSW could

be written as a linear form of plant age, i.e. PSW = b0 +

b1× plant age.

Our basic model, SDW = Area × PSW, can be

extended to:

SDW a a Area density1   0

where SDW means Shoot Dry Weight (g), Area means

projected shoot area on the image plane (mm2), and the

density can be estimated as a linear function of plant

age as for PSW above, and a0 and a1 are the equation

coefficients. It is not necessary that the coefficient a0 be

zero.

Our proposed predictive model can be rewritten as

shown in Equation 2.

SDW c c Area c Area HD1 2     0 (2)

where HD is plant age in days after planting.

The coefficients c0 to c2 were estimated using regres-

sion analysis (Table 5). As can be seen from this table,

all of these coefficients contribute significantly to the

predicted value of shoot dry weight. In our proposed

model, the SDW is a function of two inputs of ‘Area’

and ‘Area ×HD’ and the coefficients of this model can

be computed from a linear regression model, where the

values of ‘Area’ and ‘Area × HD’ are the independent

variables and the values of ‘SDW’ are entered as the

dependant variables.

Figure 1 Process flow of image processing steps used in the

extraction of plant’s projected shoot area from the images.

Table 3 Significance of regression coefficient of different

methods used to estimate plant biomass from the plant

area

Model Coefficient Coefficient
value

Std.
Error

t Sig.

Linear a0[g] -.043 .008 -5.517 .000

a1[g/mm2] .003 .000 80.412 .000

Quadratic a0[g] -.046 .011 -3.989 .000

a1[g/mm2] .003 .000 22.237 .000

a2[g/mm4] -1.002E-7 .000 -.347 .729

Cubic a0[g] -.065 .015 -4.231 .000

a1[g/mm2] .004 .000 11.123 .000

a2[g/mm4] -3.153E-6 .000 -1.911 .057

a3[g/mm6] 4.458E-9 .000 1.879 .061

Power a0[log(g)] 4.072E-4 .087 -89.243 .000

a1[log(g)/log
(mm2)]

1.348 .018 74.655 .000

Table 4 Estimation error for linear and power models

used to estimate plant biomass

Plant biomass predictive model RMSE (g)

SDW = a0 + a1A 0.088

SDW = a0 A
a1 0.126

A = Area.
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Figure 2 Scatter plot of the linear method for two wheat varieties. The blue and green lines are the lines of best fit for two cultivar

categories.

Figure 3 A scatter plot of actual SDW compared with the estimated values obtained using the linear model for two salt treatment

categories. The blue and green lines are the lines of best fit for two salt treatment categories.
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Figure 4 A scatter plot of actual SDW compared with the estimated values obtained using the linear model for five plant age

categories.

Figure 5 Scatter plot of Plant Specific Weight in terms of time after planting (plant age). A straight line, the line of best fit, seems to

describe a plant’s PSW in terms of its age.
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Data analysis and performance comparison of the models

As the linear model proved to be better than the non-

linear models we considered, we compared our pro-

posed model with the linear model described in Table 4.

To make it easier to follow, hereafter we refer to the

linear model as Model A, and to our proposed model as

Model B. The resulting root mean square errors after

applying cross validation technique from Model A and

Model B are given in Table 6. Model B produces signifi-

cantly smaller (P-value < 0.00005) RMSE.

Model B can explain nearly 97% of the dataset observed

in two wheat cultivars (Figure 6). Also, it can be seen that

by modeling biomass as a function of plant area and

plant age, a small estimation bias or difference between

actual and predicted shoot dry weight for salt-stressed

and non-salt-stressed plants is obtained (Figure 7).

By contrast, the conventional approach of modeling

biomass solely as a function of plant area (Model A)

resulted in larger estimation bias for salt-stressed and

non-salt-stressed plants. The two cases highlighted in

Figure 3 are highlighted here in this figure as well.

The estimation errors in terms of RMSE and MTE for

either of two treatment categories are given in Table 7.

The mean total error (MTE), which is referred to as

estimation bias, is the average over all images of

SDWpredicted - SDWactual. The sign and the magnitude of

the MTE indicate whether and how greatly the predict-

ing model under-estimates or over-estimates the SDW

value.

Considering two groups of salt treatments, the root

mean square estimation error from Model A is about

one and one-half times greater than that for Model B

for the control plants and salt-stressed plants. Also, the

MTE error for Model A is very high - three times

higher than that for Model B for the two groups of salt

treatments. According to Table 7, on average the linear

model over-estimates the weight of a control plant by

35 mg and under-estimates the weight of a stressed

plant by 34 mg. Considering Table 1, this estimation

error is about 10% of the mean of all shoot dry weight

measurements. Meanwhile, the observations indicate

that there is very small bias obtained from Model B to

estimate plant biomass. When using the proposed

model (Model B), this bias is only 11 mg greater and

less than the actual weight of the plant for control and

salt stressed plant, respectively.

Validating the model using barley dataset
Similar observations were achieved by comparing the

estimation errors obtained from the linear model

(Model A) and the proposed model (Model B) on a ser-

ies of barley dataset obtained from some selected culti-

vars. The coefficients of the models were obtained using

regression analysis applied on the barley dataset. The

models with their regression coefficients and the com-

parison results in terms of root square of estimation

error are given in Table 8.

As can be seen, the estimation error for Model B is

less than that for Model A. Since the salt application

was the main source of estimation bias, RMSE errors

obtained from two models for two categories of salt-

stressed and non-stressed plants were also compared.

The results of this comparison are given in Table 9. We

see that Model B achieves a significantly lower RMSE

than that for Model A for control plants and RMSE

values were approximately the same for the two models

for salt-stressed plants. However, the values of MTE

errors indicated that on average Model A over-estimated

the shoot dry weight of a non-salt-stressed barley plant

93 mg (i.e. 30% of the average shoot dry weight of all

plants), which is 10 times greater than the error for

Model B. Model B also estimated the shoot dry weight

of salt-stressed plants only 5 mg less than the actual

shoot dry weight. This bias error was about 10 times

less than that for the linear model (Model A).

Overall, these results confirmed the idea that the plant

age, which was used as an additional input for Model B,

plays a key role in reducing the error for estimating the

plant biomass. This can be seen graphically in the scat-

ter plots of Figure 8 where two regression lines of two

salt treatment categories are much closer together and

to the line of the best fit for the total values when our

proposed method, i.e. Model B, is applied. In contrast,

these regression lines are far apart when the Model A is

used to estimate plant shoot dry weight.

Conclusions
In this study we have presented a method for accurate

estimation of plant shoot dry weight from two dimen-

sional images. Our proposed model employs information

obtained from the images of plants and their age. This

approach provides an accurate and practical model for

the estimation of wheat and barley shoot dry weight as

Table 5 Significance of regression coefficient of our

proposed method

Coefficient Coefficient value Std. Error t Sig.

c0 [g] .054 .008 7.229 .000

c1[g/mm2] -.001 .000 -5.951 .000

c2[g/(day.mm2)] 9.866E-5 .000 18.455 .000

Table 6 Prediction errors obtained from cross validation

method for the linear model and the proposed model

Predictive model RMSE (g)

Model A: SDW = a0 + a1A 0.088

Model B: SDW = c0 + c1A+ c2AH 0.058

A = Area, H = Plant age.
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Figure 6 Scatter plots of actual SDW compared with the estimated values obtained using the model proposed in this study for two

wheat varieties.

Figure 7 Scatter plots of actual SDW compared with the estimated values obtained using the model proposed in this study for two

salt treatment categories.

Golzarian et al. Plant Methods 2011, 7:2

http://www.plantmethods.com/content/7/1/2

Page 9 of 11



a substitute for conventional destructive methods of bio-

mass measurement. We also demonstrated that, for salt

stressed plants, the estimation bias between the actual

and predicted shoot dry weight values can be overcome

to a large extent by using plant biomass estimators with

plant age as an additional input. Without this method,

we cannot accurately infer the plant biomass for salt

stressed plants. We tested our proposed model on

wheat and barley from different contrasted varieties and

under salt stress and found out that with our method

the error in biomass estimation was reduced signifi-

cantly. Thus, our method enables high throughput non-

destructive estimation of biomass for cereal plants

under salt stress and may possibly do so for other types

of plants and stresses.
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