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Abstract Reverse osmosis (RO) concentrate generated from

tannery was treated by advanced electrochemical oxidation

using graphite electrodes. Catechol was selected as model

organic pollutant in the RO concentrate. The influence of

applied current density, catechol concentration, pH, temper-

ature and inner electrode space of electrodes was investigated

in electrochemical oxidation system. The optimized condi-

tions were found to be current density (j), 100 mA/cm2;

electrolysis time (teco), 60 min; pH, 7.0; and temperature,

25 �C at an inner electrode space, 2 cm. The average mass

transport coefficient for the removal of catechol as COD was

found to be 3.0 9 10-5 m/s at optimum conditions. Faradic

efficiency and specific energy consumption were also calcu-

lated for the applied current density. Further, the treatment of

catechol was confirmed through Fourier transform infrared

spectroscopy. Theoretical evaluation of current density sug-

gested that the removal of catechol was controlled when

supplied at above limiting applied current densities and mass

transport controlled at lower of limiting current densities.

Keywords RO concentrate � Cu–graphite � Refractory
organics � Electrolysis � Saline solution � Tannery

Introduction

Among the membrane separation processes, reverse

osmosis (RO) is being widely applied for sea water

desalination, production of potable water and in industrial

tertiary wastewater treatment. Among the membrane pro-

cesses, RO is being preferred for its modular construction

and small footprint, which enables to combine with other

treatment process sequences (Chelme-Ayala et al. 2009;

Ahmet kaya et al. 2016). However, the concentrate stream

generated from RO processes demands suitable treatment

before being discharged into the environment (Mauguin

and Corsin 2005).

Roberts et al. (2010) have reported an issue of eco-

logical impacts on disposal of concentrate generated from

sea water desalination. There are many laboratory-based

experiments, toxicological investigations and manipulative

field experiments reports on the potential impact on direct

discharge of brines and their constituents to aquatic sys-

tem. However, the RO processes simply compresses the

solute constituents from feed stream to concentrate stream,

which are normally found to be double or higher than the

feed steam concentration (Chelme-Ayala et al. 2009).

Conventionally, the brines are being discharged after

diluted with power plant cooling waters, natural seawater

or municipal wastewaters to reduce salinity (Einav and

Lokiec 2003; Meneses et al. 2010). The disposal of diluted

concentrates could severely affect the sensitive species of

environment due to the refractory nature of organic pol-

lutants present in concentrate (Meneses et al. 2010). There
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are other alternative methods of disposal of RO concen-

trate are being studied and reported, such as ozonation

(Pophali et al. 2011), heterogeneous photocatalysis (UV/

TiO2) (Westerhoff et al. 2009; Mehmet et al. 2014a, b;

Muhammad et al. 2015), sonolysis (Zhou et al. 2011a, b;

Muneer et al. 2015). Recently, electrochemical advanced

oxidation processes (EAOPs) have attracted considerable

interests for the refractory organic removal from

wastewater due to their simplicity and high efficiency by

hydroxyl radical production (Hege et al. 2004; Dialynas

et al. 2008; Perez et al. 2010; Chaplin et al. 2010; Zhou

et al. 2011a, b; Boopathy and Sekaran 2014; Necip et al.

2015). The formation of hydroxyl radicals (�OH) and

secondary oxidizing agents (chlorine gas, hypochlorous

acid) can effectively remove various refractory organic

pollutants in the concentrate. There are reports on the

electrochemical treatment of various wastewater using

different anode materials, among which BDD and Ti/IrO2–

RuO2 electrodes were found to be effective and dimen-

sionally stable (Boopathy et al. 2012). The performance of

electrochemical oxidation process is decided by the nature

of anode material (active and non-active), and the mech-

anism of organic oxidation (direct and indirect) takes place

during the electrochemical oxidation. Modern wastewater

treatment process incorporates an integrated unit operation

such as adsorption-cum-oxidation or adsorption-cum-dis-

infection for the minimization of time and land space. In

this study, copper-coated graphite electrode was used for

the treatment of prepared catechol containing RO con-

centrate with packed bed adsorption column for the

removal of trihalomethanes. The application of tannin

chemicals in leather processing generates a various by-

products among which catechol was be primary end

products. Hence, in this study catechol was selected as

model organic compound in the tannery RO concentrate.

Materials and methods

Preparation of catechol containing RO concentrate

Catechol containing RO concentrate was prepared by dis-

solving catechol (2.25, 4.5 and 9 mmol/L) at required

experimental concentration in RO concentrate collected

from a commercial CETP in Ranipet, Tamil Nadu, India

(Murugananthan et al. 2005). All the above chemicals are

procured from Merck India Ltd.

Reactor set-up and experimental procedure

A jacketed rectangular electrochemical cell (Fig. 1)

(height 12 cm, width 10 cm and thickness 4.5 cm) was

fabricated using 6-mm-thick acrylic plastic sheet for a

working volume of 0.5 L. In this reactor, two graphite

rods (diameter 2.5 cm and length 15 cm) were positioned

horizontally with required experimental space (1, 2, 3, 4.5

and 6.5 cm) in a separate electrochemical cell. One end of

the electrodes was initially coated with copper for a length

of 3 cm (as shown in Fig. 1) for external lead to make

electrical connection with DC power supplier. The used

electrodes (exposed area) are allowed to soak in 1 % (v/v)

(hydrochloric acid to remove any polarized salt particles

and washed with distilled water twice. The washed gra-

phite electrodes are dried in open atmosphere for next

cycle of operation or wrapped using polythene plastic until

any use (storage). The DC power supply (0–60 V and

0–5 A) was used to set a required current density and

voltage for the electrochemical oxidation of catechol

containing RO concentrate. The electrochemical cell was

maintained at 25 �C by recirculation of externally tem-

perature-controlled water pumping through jacketed

medium during the experiments.

DC converter 

       +    - 
Copper 
coating 

Catechol in RO 
concentrate 

solution 

Graphite 
electrodes 

Fig. 1 Schematic diagram of

electrochemical cell for the

treatment of catechol containing

RO concentrate
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The performance of electrochemical oxidation of RO

concentrate was evaluated for the applied current density

(j) (100, 200 and 300 mA/cm2), catechol concentration

(2.25, 4.5 and 9 mmol/L) and inner electrode spacing (1, 2,

3, 4.5 and 6.5 cm). Aliquot samples were drawn to estimate

the residual solution COD value, and the corresponding

decrease in sample volume during the sampling was cor-

rected by adopting the methodology described by Choo

et al.(2006).

Analyses

The catechol containing synthetic RO concentrate was

characterized for various parameters according to stan-

dard methods (APHA 1999). The solution is found to be

high content of chloride, which is known to affect the

COD determination. Hence, the COD analysis was per-

formed by adopting methodology (specific to high salt-

containing liquid waste) described by Vyrides and

Stuckey (2009). In this analysis, the digestion mixture

was prepared by adding K2Cr2O7, 3 g (which was pre-

viously dried at 103 �C for 2 h), to concentrated H2SO4,

167 mL and HgSO4, 33 g and made up to 500 mL with

deionized water. The mixture was then left to cool at

room temperature before being diluted to 1000 mL. The

sulphuric acid reagent (2.5 %, w/v) was prepared by

dissolving Ag2SO4 in H2SO4, and the sampling and

digestion were carried out in accordance with method-

ology described under the analysis of water and

wastewater. Table 1 shows physico-chemical character-

istics of reverse osmosis concentrate generated from

leather industry

Theoretical approach

The mechanism of electrochemical oxidation of organic

pollutants is a complex phenomenon involving the cou-

pling of electron transfer reaction with a dissociate

chemisorption step. Basically, two types of oxidative

mechanism are observed with respect to the oxidant gen-

eration: Oxidation occurring at the electrode surface is

called as direct electrolysis and oxidation occurring via the

oxidant generated continuously on the anodic surface is

called indirect electrolysis. In direct electrolysis, the rate of

oxidation is depending on electrode activity, pollutants

diffusion rate and applied current density. In direct elec-

trolysis, first, H2O is discharged at the anode to produce

adsorbed hydroxyl radicals according to Eq. (1) given,

Electrode surfaceð Þ þ H2O ! electrode surfaceð Þ �OHð Þ
þ Hþ þ e� ð1Þ

At the anode surface, active oxygen can be present in

two states, either as physisorbed hydroxyl radicals (�OH)

and/or as chemisorbed (oxygen in the porous surface of the

graphite electrode). In the absence of oxidizable organics,

the active oxygen produces dioxygen according to Eq. (2):

Electrode surfaceð Þ �OHð Þ ! electrode surfaceð Þ þ 1=2O2

þ Hþ þ e� ð2Þ

In indirect oxidation, the addition of NaCl as supporting

electrolyte favours the generation of OCl- radicals

according to Eq. (3) as given below,

Electrode surfaceð Þ �OHð Þ þ Cl� ! electrode surfaceð Þ
�OClð Þ þ Hþ þ 2e� ð3Þ

Further, the OCl radicals combine with chloride ions

generating the chlorine gas and thus responsible for the

oxidation of organic pollutants in the bulk solution.

Electrode surfaceð Þ �OClð Þ þ Cl� ! electrode surfaceð Þ
þ Cl2 þ e� ð4Þ

Electrode surfaceð Þ �OClð Þ þ Cl� ! electrode surfaceð Þ
þ 1=2O2 þ Cl2 þ e�

ð5Þ

These sequential reactions will continue until the

formation of carbon dioxide and water in the bulk

solution during the electrochemical oxidation process

(Bindu et al. 2000; Malpass and Motheo 2001). In direct

oxidation, the rate of diffusion of organic compounds onto

anode area controls the electrochemical oxidation reaction

(Buso et al. 2000; Raghu and Basha 2007). On the other

hand, temperature, pH and diffusion rate of generated

oxidants determine the rate of oxidation in indirect

Table 1 Physico-chemical characteristics of reverse osmosis con-

centrate generated from leather industry

Sl. No. Parameters Mean value

1 pHa 6.42

2 Conductivity (mS/cm) 34.86

3 Total dissolved solids 15,240

4 Chemical oxygen demand 250

5 Total organic carbon 220

6 Total Kjeldahl nitrogen 46

7 Ammonia nitrogen 25

8 Calcium 1124

9 Magnesium 13.8

10 Chloride 9996

11 Sulphate 3020

a All the parameters are expressed in mg/L, except pH and

conductivity
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electrolysis (Comninellis and Pulgarin 1999; Miwa et al.

2006; Malpass et al. 2007).

Results and discussion

Effect of current density on electrochemical

oxidation of catechol

The influence of current density on the degradation of

catechol containing RO concentrate was determined by

varying the current density of 100, 200 and 300 mA/cm2.

The other conditions such as initial concentration of COD

680 mg/L (for the addition of 2.25 mmol/L of catechol),

native pH and temperature 25 �C were kept constant for the

batch experimentation. At regular interval of time, the

samples were collected to analyse COD values for the

organic removal load. Figure 2a shows that the increase in

current density decreased the COD concentration in RO

concentrate significantly. Figure 2b shows the variation in

instantaneous current efficiency with time at different

current density in the treatment of catechol containing RO

concentrate solution.

At initial stage of oxidation, graphite rod electrodes

have exhibited the ICE values greater than 1.0. The high

value of ICE at the beginning of electrochemical oxidation

may be due to the fact that total applied current was

completely utilized for the degradation of organic com-

pound (catechol) present in RO concentrate solution. And

thereafter, ICE starts to decrease beyond 30 min of elec-

trochemical oxidation time (teco). The response suggested

that beyond 30 min, the mechanism of organic oxidation is

controlled by mass transfer diffusion. A similar kind of

mechanism was observed on oxidation of organics present

in textile effluent (Bhaskar Raju et al. 2009). Further, the

increase in applied current density (j) for the organic

removal decreased the current efficiency of the process.

This could be due to electrode polarization effect with

increase in current density and thus reduces the active

surface area of the electrode significantly. The current

efficiency for the current densities (j) 100, 200 and

300 mA/cm2 was found to be 0.67, 0.37 and 0.32 %,

respectively. The maximum reduction in COD reduction

was observed at current density of 300 mA/cm2 and at

electrochemical oxidation time (teco) of 120 min.

Effect of pH on electrochemical oxidation

of catechol

The effect of initial pH of catechol containing RO con-

centrate solution was varied from 2.0 to 10.0 for the

electrochemical treatment, and other experimental condi-

tions such as j, 100 mA/cm2; temperature, 25 �C; initial
COD, 680 mg/L; and teco, 60 min were fixed as constant.

Figure 3 shows that the magnitude of percentage removal

of COD increased significantly with the increase in

solution pH of catechol containing RO concentrate solu-

tion from acidic to alkaline condition. There was an

increase in removal of COD with the increase in pH from

2.0 to 8.0, and thereafter, for increase in pH up to 10.0,

the removal rate remains constant (Nematollahi et al.

2009; Hadi et al. 2013; Roya and Davood 2011). The

electrochemical oxidation was found to be highly signif-

icant at neutral pH range. Hence, the treatment of cate-

chol containing RO concentrate can be taken between the

pH range of 7.0–8.0.

Fig. 2 Electrochemical

treatment of catechol containing

RO concentrate solution.

a Influence of applied current

density (j) on COD removal.

b Instantaneous current

efficiency (conditions: pH 7.0;

initial COD 680 mg/L and

temperature 25 �C)
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Effect of catechol concentration in RO concentrate

solution

The RO concentrate with different catechol concentration

of 2.25, 4.5 and 9.0 mmol/L was prepared, and their

respective initial COD values were found to be 680, 1000

and 1720 mg/L, respectively. The batch experiments were

carried out at optimum j, 100 mA/cm2; teco, 60 min; pH,

7.0; and temperature, 25 �C. Figure 4 shows the COD

removal pattern of synthetic RO concentrate solution by

electrochemical oxidation.

Effect of temperature on electrochemical oxidation

of catechol

The influence of solution temperature on the removal of

COD from catechol containing RO concentrate solution

was determined by varying the solution temperature from

10 to 70 �C. Jacketed electrochemical cell was used to

maintain the required set temperature by circulating

water from thermostatically controlled water bath. All

the other electrochemical parameters such as j, 100 mA/

cm2; teco, 60 min; concentration of catechol, 2.25 mmol/

L; pH, 7.0; and COD, 680 mg/L were maintained con-

stant. Figure 5 shows that the COD removal increased

with the increase in temperature up to 30 �C and

thereafter, the increase in temperature decreased the

COD removal significantly. This may be due to

increased molecular movement in bulk solution by the

increased thermal radiation transport of organic mole-

cules in the electrochemical cell which extends up to

30 �C. Further increase in temperature might reversed

the reaction by rigorous molecular collision and also

favoured the generation of undesirable products which

could be the reason for the increase in COD over the

initial concentration with increase in temperature. Hence,

the optimum temperature in further experiments was kept

at 25 �C.

Materials of selection for the electrochemical

treatment of catechol containing RO concentrate

solution

Anodes and cathodes of various materials of construction

were changed to find the COD removal efficiency in

electrochemical oxidation of catechol containing RO con-

centrate solution under batch experiment. The operating

conditions were at j, 100 mA/cm2; teco, 60 min; applied

potential, 4.5 V; COD, 680 mg/L; and temperature, 25 �C.
Figure 6a, b shows that high percentage removal of COD

was observed with graphite/graphite electrode system than

other electrode systems.
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Fig. 3 Effect of initial pH on COD removal by electrochemical

oxidation of catechol containing RO concentrate solution (conditions:

teco, 60 min; temperature, 25 �C and j, 100 mA/cm2)
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Fig. 4 Effect of catechol concentration on treatment of catechol

containing RO concentrate solution (conditions: teco, 60 min; tem-

perature, 25 �C and j, 100 mA/cm2)

Fig. 5 Effect of solution temperature on treatment of catechol

containing RO concentrate solution (conditions: teco, 60 min; j,

100 mA/cm2 and initial COD, 680 mg/L)

Int. J. Environ. Sci. Technol.

123



Kinetic studies on electrochemical oxidation

of catechol containing RO concentrate solution

Kinetic study on the removal of catechol in terms of COD

in catechol containing RO concentrate solution was anal-

ysed based on the limiting current density (jlim) during the

electrolysis for the graphite/graphite electrode system. The

jlim could be related to [COD]0 by the mathematical

expression

jlim ¼ nFkm½COD�0 ð6Þ

where jlim is the limiting current density (mA/cm2) at the

instant ‘t’, n is the number of electrons transferred, F is the

Faraday constant (96,487 C/mol), and km(COD) is the

average mass transport coefficient (m/s) based on COD

removal. Then, the COD removal rate (r) can be expressed

as (Roberts et al. 2010),

r ¼ jlim

nF
¼ km½COD� ð7Þ

From the mass balance of the whole system operating

under batch mode, we get,

d½COD�
dt

¼ �A

v
r ð8Þ

where A is the electrode area (m2) and v is the total volume

of the solution (m3) being processed on integration and

simplification, and we get,

ln
½COD�t
½COD�0

� �
¼ �Akm

v
t ð9Þ

The plot of ln (CODt/COD0) versus time shows that the

degradation of catechol in RO concentrate solution

followed the pseudo-first-order rate equation as given in

Eq. (9).

From the slope of the plot of ln (CODt/COD0) versus

time (Fig. 7), the values of mass transfer coefficient

were calculated for the electrochemical oxidation of

catechol containing RO concentrate solution. Table 2

shows that increase in current density increased the

mass transfer coefficient significantly. The rate con-

trolling mechanism for electrochemical oxidation was

confirmed by evaluating the limiting current density

using Eq. (7). The value of mass transfer coefficient

Fig. 6 Selection of materials of

construction of electrodes

(anode–cathode) for

electrochemical oxidation of

catechol containing RO

concentrate solution based on

a ICE, b percentage of COD

removal (conditions: teco,

60 min; temperature, 25 �C; j,
100 mA/cm2 and applied

potential, 4.5 V)
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Fig. 7 Mass transfer coefficient for electrochemical oxidation of

catechol containing RO concentrate solution (conditions: temperature,

25 �C; j and applied potential, 4.5 V)

Table 2 Evaluation of mass transfer coefficient, km, and limiting

current density, jlim, values at different current densities for the

electrochemical oxidation of catechol containing RO concentrate

solution (conditions: COD0, 680 mg/L; temperature, 25 �C and pH,

7.0)

Current density,

j (mA/cm2)

Mass transfer

coefficient,

km (m/s)

Limiting current

density, jlim
(mA/cm2)

100 3.01 9 10-5 246.5

200 4.06 9 10-5 333.5

300 6.19 9 10-5 507.6
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(km) was calculated from the slope of straight line. The

value of km was found to be 3.00 9 10-5 m/s at opti-

mum conditions j, 100 mA/cm2; teco, 30 min; and

temperature, 25 �C.

Effect of electrode spacing

The inner space between the anode and cathode electrode

was varied from 1 to 6 cm for the evaluation of effective

space for the electrochemical oxidation of catechol in RO

concentrate solution. Figure 8 shows that the increase in

electrode space from 1 to 2 cm increased the rate of COD

removal (0.77–0.87 mg of COD/min) significantly and

thereafter, increase in electrode space beyond 2–6.5 cm

decreased the rate of COD removal from 0.87 to 0.52 mg

of COD/min. The results revealed that the effective elec-

trode spacing between the anode and cathode is 2 cm.

Thus, the 2-cm electrode spacing is sufficient enough to

diffuse generated oxidants in bulk solution for maximum

destruction of catechol. Also, the increase in space between

the electrodes increased working potential for applied

current density and thus increased the ohmic resistance of

the electrochemical oxidation process. The working

potential for electrode space 2 and 6.5 cm was found to be

2.2 and 5.4 V for the applied current density of 300 mA/

cm2. The removal of COD during the 1 cm spacing was

less, and this may be due to the generation of halogenated

by-products. This halogenated by-products are more

refractory in nature; hence, the overall removal of COD

was observed to be less at 1 cm electrode space. The

effective electrode space significantly reduces the cost of

electricity by the low-voltage operation for the electro-

chemical oxidation than the conventionally following

vertical electrode system. Also, the skill and maintenance

required for the horizontally positioned electrodes are less

than for the available electrochemical method.

Apparent faradic efficiency and specific energy

consumption

The apparent faradic efficiency of COD removal was cal-

culated using the following formula

gF ¼ ðDCOD � V � FÞ
8� I � Dt

ð10Þ

where DCOD is the net COD removed (mg/L) after a

treatment time t, V is the volume of treated solution (L),

F is Faradays constant (96,487 C/equiv), 8 is the equiva-

lent weight of oxygen, I is the applied current, and Dt is the
treatment duration (s). The gF for COD removal was found

to be (Table 3) 57.4, 43.0 and 30.8 % at 0.1, 0.2 and 0.3 A,

respectively.

Specific energy consumption (Esp), the electric energy in

kilowatt hours required to degrade a kilogram of a pollutant

in water, was calculated using the formula for batch

operation (Necip et al. 2015).

ESP ¼ P� t � 106

VðC0 � CtÞ
ð11Þ

where P is the rated power (kW) of the reactor, V is the

volume (L) of water treated in the time t (h), C0 and Ct are

the initial and final pollutant concentration in COD (mg/L),

and the factor 106 converts mg to kg. The ESP for the

removal of COD during 2 h at 100, 200 and 300 mA/cm2

was evaluated as 0.11, 0.24 and 0.55 kW/g of COD.

Instrumental analyses

Fourier transform infrared spectroscopy (FTIR) analysis

The catechol containing RO concentrate solution before

and after electrochemical oxidation was characterized

using FTIR spectroscopy. Figure 9a shows FTIR spectra of

Fig. 8 Effect of inner electrode space for the treatment of catechol

containing RO concentrate (conditions: current density, 300 mA/cm2

and concentration, 2.25 mmol/L)

Table 3 Apparent faradic efficiency and specific energy consumption

for the treatment of catechol containing RO concentrate (conditions:

catechol concentration, 2.25 mmol/L and inner electrode space, 2 cm)

Current

density

(mA/cm2)

Apparent faradic

efficiency (gF, %)

Specific energy

consumption

(ESP, kW/g of COD)

100 57.4 0.11

200 43.0 0.24

300 30.8 0.55
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catechol containing RO concentrate with broad stretching

vibration peak observed at 1400–1600 cm-1, indicating the

presence of aromatic C=C functional groups, and medium

stretching band at 3052 cm-1 confirms the presence of C–

H functional group of catechol in initial RO concentrate

solution; further, the strong stretching band at

1670–1820 cm-1 illustrates the presence of C=O func-

tional group.

The solutions after electrochemical oxidations of cate-

chol containing RO concentrate (Fig. 9b) showed that there

was a significant reduction in multiple peaks observed in

the initial solution at 1400–1600 cm-1. This clearly con-

firmed the oxidation of catechol compound from RO con-

centrate solution.

Conclusion

Electrochemical treatment of catechol containing RO

concentrate was performed using graphite electrode. The

optimized conditions were found to be current density (j),

100 mA/cm2; electrochemical oxidation time (teco),

60 min; pH, 7.0; and temperature, 25 �C at an inner elec-

trode space, 2 cm. The average mass transport coefficient

for the removal of catechol in terms of COD was found to

be 3.0 9 10-5 m/s at optimum conditions. Fourier trans-

form infrared spectroscopy analysis confirmed the removal

of catechol by electrochemical oxidation using graphite as

electrodes. The results suggested that the removal of

organic pollutants in electrochemical treatment was

favoured by applied current density when the applied

current is less than limiting current density and mass

transport was controlling step when the applied current

density is higher than the limiting current density.
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Abbreviations

RO Reverse osmosis

COD Chemical oxygen demand

AOP Advanced oxidation process

EAOP Electrochemical oxidation process

BDD Boron-doped diamond

ETP Effluent treatment plant

iL Limiting current density (mA/cm2)

F Faraday constant, 96,487 C/mol

km Average mass transport coefficient (m/s)

A Electrode area (cm2)

V Volume of the solution (L)

kapp Apparent oxidation rate constant (mg/m2 s)

gF Apparent current efficiency

Esp Energy consumption (kW/g of COD)
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