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Abstract
In the current scenario, there is a drastic increase in air trafÞc. The air to ground com-
munication plays a crucial role in the air trafÞc control system. There is a limited spec-
trum available for aircraft to establish a connection with the Air TrafÞc Controller (ATC).
With air trafÞc growth, the available spectrum is getting more congested. This paper pro-
posed an Advanced Squirrel Algorithm (ASA)-trained neural network (NN) for efÞcient
spectrum sensing for cognitive radio-based air trafÞc control applications. ASA is a novel
metaheuristic-based training algorithm for an NN. With the proposed algorithm, it is possi-
ble to dynamically allocate the unused spectrum for air to ground communication between
aircraft and ATC. The quantitative analysis of the proposed ASA-NN-based spectrum
sensing is done by comparing it with the existing metaheuristic-based NN training algo-
rithms, namely, particle swarm optimization Gravitational Search Algorithm (PSOGSA),
particle swarm optimization (PSO), gravitational search algorithm (GSA), and artiÞcial bee
colony (ABC). Simulation-based evaluation shows that the proposed ASA-NN is capa-
ble of efÞciently detecting the spectrum holes with high convergence rate as compared to
PSOGSA-, PSO-, GSA-, and ABC-based algorithms.

1 INTRODUCTION

The development in the aviation sector has resulted in the
tremendous growth of the wireless communication technolo-
gies governing the air trafÞc control. Wide range of wireless
technologies are employed to assist the on-ground surveillance
and navigation of airplanes while taking off, landing, and
en-route. The employed wireless devices operate at different
radio channels. The radio channels in Very High Frequency
(VHF) and High Frequency (HF) bands are mainly used for
enabling the link between air trafÞc control stations and aircraft.
The VHF spectrum for wireless communication between the
Air TrafÞc Controller (ATC) and aircraft has a bandwidth
of 19 MHz ranging from 118 to 127 MHz [1]. The spectral
spacing of each band is 25 kHz, resulting in a total of 760
radio channels. As the ßight trafÞc is tremendously increasing
year on year, so the number of aircraft tuning to a particular
station is also increasing immensely. The problem arises when
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the pilots of different aircraft tune the controller frequency
at the same time, thus leading to frequency congestion and
also the pilot may accidentally override others. This situation
can lead to incorrect information delivered to the aircraft. In
addition to that, different applications correspond to aircraft
communication, which further leads to the congestion of radio
channels, speciÞcally in the regions of highly crowded airports.
Therefore, it is important to utilize the radio spectrum available
for aircraft communication.

Concerning the above discussion, the recent studies suggest
that the industrial, scientiÞc and medical bands are highly con-
gested [2, 3] . In contrast, a signiÞcant portion of the licensed
radio spectrum is vacant and is used inefÞciently [2]. In the radio
spectrum allocated for aircraft communication, only around
12.5% is effectively utilized [4]. In the current scenario, there
exist the problem of spectrum scarcity, and at the same time,
there is also the situation of inefÞcient spectrum utilization [5].
With the continuous increase in the air trafÞc over the last
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decade, the air trafÞc management system has predicted that
the air trafÞc will reach its peak by 2020 [6]. The high trafÞc
would result in more congested bandwidth for data transmis-
sion between aircraft and ATC.

Moreover, the audio data transmission from aircraft to ATC
is highly delay-sensitive, with the unavailability of proper band-
width that can cause continuous intrusion to the transmission,
which will further enhance the delay issue. Such a problem calls
for the research work with emphasis made on the need for wire-
less communication technology capable of performing dynamic
spectrum access and meeting the future requirements of avi-
ation technology with high efÞciency and precision [7]. The
possible solution to the problem of spectrum scarcity and pro-
viding dynamic ßexibility to the wireless communication tech-
nology employed for air trafÞc control is the cognitive radio
network (CRN) [6]. A CRN can sense its surrounding radio
environment and adjust accordingly [5]. The Federal Commu-
nications CommissionÕs report in [8] has stated the use of the
underutilized licensed spectrum to increase the effective utiliza-
tion of the frequency spectrum. The CRN, with its ability to
sense and adapt, can opportunistically access these underuti-
lized licensed spectra without causing interference to the Pri-
mary Users (PU)/Licensed Users (the users having the license
to utilize the licensed spectrum). The CRN makes this underuti-
lized licensed spectrum also known as spectrum hole to the sec-
ondary users (SUs) for opportunistic access. The Þrst and one
of the most important working phases of a CRN is the spectrum
sensing [9]. Through different spectrum sensing techniques, the
USs Þnd the spectrum holes and proceed further with the pro-
cess of a CRN as the process of spectrum sensing is extremely
vital. So, a novel Advanced Squirrel Algorithm (ASA)-trained
neural network (NN) is employed for efÞcient spectrum sens-
ing to improve the effectiveness of the CRN. An effective CRN
would result in improved spectral and bandwidth efÞciency.

2 RELATED WORKS

The detection of the spectrum holes by cognitive radio (CR)
devices and utilizing it opportunistically enhances the spectral
efÞciency and the channel bandwidth [6]. The spectrum sensing
plays the pivotal role in the detection of vacant and thus it is the
essential component of CR network. Conventional spectrum
sensing includes intensive techniques like the Matched Filter
(MF) [10], cyclostationary detector [5], and eigenvalue-based
detector [11], as well as the simple method like Energy Detec-
tor [12]. The simplest spectrum sensing approach has weak
performance under low signal-to-noise ratio (SNR) and are
not efÞciently able to detect the spectrum holes [5, 9, 13].
The cyclostationary detector and MF are highly efÞcient in
detecting the spectrum holes, but the cyclostationary detector
requires long sensing time to have high detection probability
[6]. For a Þxed frame period, a longer sensing time decreases the
transmission time and thus reduces the overall opportunistic
throughput. The MF technique requires priori knowledge of
the signal for efÞcient detection. In the absence of accurate
information of PU, the performance of the MF degrades [5].

Another important drawback associated with the MF is that it
requires dedicated receiver for each PU signal type [14].

The drawbacks associated with conventional spectrum
sensing technique calls for the necessity of efÞcient spectrum
prediction by CR network. With intelligent prediction-based
spectrum sensing it is possible for CR network to reduce
the sensing time and improve energy efÞciency by efÞcient
prediction of channel state, thus skipping spectrum sensing
for some time [15Ð19]. The NN forms the base for the intel-
ligent prediction scheme. To maintain a trade-off between
spectrum sensing efÞciency and its complexity, an NN-based
spectrum sensing is successfully employed in [16, 20, 21]. The
Conventional-NN which is based on gradient descent-based
back propagation (BP) method are prone to converge to local
optima [22, 23] and has slow convergence rate [24]. Studies have
conÞrmed that metaheuristic-based optimization technique can
improve the efÞciency of NN [25Ð28]. Because of the no free
lunch theorem [29], different metaheuristic optimization is
suited for the different objective functions. Selecting the proper
optimization technique for improving the performance of the
artiÞcial neural network (ANN) is very crucial as the entire
CRN working is dependent on it . The popular swarm-based
optimization scheme like particle swarm optimization (PSO),
artiÞcial bee colony (ABC) Algorithm, genetic algorithm (GA),
grey wolf optimization (GWO) and ant colony algorithm (ACA)
lack proper trade-off between their exploration (Global Search)
and exploitation (Local Search) abilities [29,68]. The PSO lacks
proper convergence ability, whereas ACA and ABC lack in
exploitation [30,67]. The GA tends to get stuck to the local best
solution instead of Þnding the global best [31]. Such problems
call for an efÞcient optimization scheme that has a proper
trade-off between its exploration and exploitation abilities,
which has a good convergence rate and can overcome local
optima and converge towards global best. Therefore, advanced
ßying squirrel search-based algorithm is implemented and
employed.

The prevailing spectrum sensing studies were more focused
on binary hypothesis, i.e. temporal spectrum sensing [32Ð34].
The works in [9, 35] have showed that temporal cooperative
spectrum sensing has better performance than the temporal
non-cooperative spectrum sensing. The 3D-spatial spectrum
sensing is an emerging Þeld [34,36-39] that gives better insight
about real-time implementation of CR network. The work in
[34] considered 3D spatial and temporal spectrum sensing using
conventional energy detector and it has its limitation in low
SNR values.

The 3D-spatial and temporal spectrum sensing is carried
out for non-cooperative and cooperative scenario using ASA-
trained ANN-based efÞcient spectrum prediction. The pro-
posed technique is compared with the existing metaheuristic-
based optimization technique for ANN in spectrum sensing.

The major contributions of this paper are stated as under:

� Novel ASA-based technique for the weight optimization in
NN to enhance its prediction and efÞciency.

� ASA-NN for efÞcient spectrum sensing by performing effec-
tual spectrum status prediction.
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� 3D non-cooperative spectrum sensing (3D NCSS) scheme
and temporal cooperative spectrum sensing scheme for air
trafÞc control.

� National Instrument (NI) Universal Software Radio Periph-
eral (USRP)-based real-time implementation of the pro-
posed technique for temporal cooperative spectrum sensing
scheme.

3 SYSTEM MODELLING

With the affordable airlines coming into the market, the air traf-
Þc is increasing with each passing year. Such increase in air
trafÞc calls not only for infrastructural development but also
requires high technical advancement in the Þeld of wireless
communication governing the air trafÞc system. As the ßight
trafÞc is enormously increasing, so, the number of aircraft tun-
ing into a station is also increasing immensely. The problem
arises when the pilots of different aircraft tune the controller
frequency at the same time, thus leading to frequency conges-
tion and pilot may also accidentally override others. This situa-
tion can lead to incorrect information delivered to the aircraft.
To overcome such spectrum congestion problem, an efÞcient
spectrum sensing-based CRN is proposed for air trafÞc con-
trol. The spectrum sensing efÞciency is improved by incorpo-
rating novel metaheuristic algorithm ASA-trained NN. The Air
to Ground (A/G) communication frameworks are basic for the
aircraftÕs secure routing. In this way, the progress to the CR-
based systems ought to be Þnished with most extreme consid-
eration. While designing the CRN for the A/G communication
it should make sure that its effect should be minimal on the
existing A/G communication infrastructure. It is to be noticed
that the existing A/G communication frameworks still depend
on analogue transmission frameworks. In this work, an efÞcient
spectrum sensing technique has been proposed for the effective
CR-based Air TrafÞc control.

This paper proposes Phase I and II for the air trafÞc control.
For Phase I, aircrafts perform the spectrum sensing with the
help of ASA optimization algorithm. As ASA behaviour which
employs gliding technique to Þnd the optimal solution depicts
the landing the process of the aircraft. Moreover, the seasonal
constraints in the ASA is utilized and mapped for efÞcient spec-
trum sensing by the aircraft during different weather conditions.
So, ASA is efÞcient in assisting aircraft to detect the vacant spec-
trum holes during the landing process.

In Phase II, the cognitive radio sensors/spectrum sensing
sensors (CRs/SSs) are deployed in the ground level per-
forms spectrum sensing aided with ASA-trained NN. The
Conventional-NN technique uses gradient descent-based BP
algorithm for training and has loopholes like getting stuck to
local minima and large convergence time. Whereas, ASA is a
squirrel-based optimization technique in which the population
of squirrels moves around the search space constituted by the
optimization problem in search of an optimal solution. Squirrel
position varies during the process of search based on the best
solution position so obtained. The ASA has excellent balance
between its exploration and exploitation abilities, moreover
it has fast convergence rate. So, ASA is used as the possible

alternative for optimizing the weights of NN. The ASA is
employed to optimize the weights of NN and thus to minimize
the error in the prediction of spectrum holes. The information
obtained by CRs are transferred to the ground CR base station,
which then makes the Þnal decision on the vacant spectrum
availability. The ASA-NN-based ATC has training and working
phase, during the training phase network is trained using ASA
and in the working phase-trained network is employed for the
spectrum hole detection. The illustrative Þgures depicting Phase
I and II is shown in Figures1 and2, respectively. The blocks in
Figure1 comprise of CR base station, which is responsible for
making the Þnal decision on the presence and the absence of
the PUs for ground to air communication. Blocks ATC and Air-
crafts resemble incoming aircraft communicating with the ATC.
The working in Figure1 is explained as: in the case of allocated
frequency band congestion for data transmission between Air-
craft and ATC, the CR technique is employed. For the proposed
model, aircraft perform spectrum sensing and establish link to
ATC via the spectrum holes, simultaneously CRs deployed in
grounds perform spectrum sensing so as to Þnd the spectrum
holes for ground to air data transmission. If the allocated
frequency bands are not congested then the routine data
transmission is carried out in the allotted frequency spectrum.

4 MATHEMATICAL MODELLING

The aircraft and CRs perform periodic spectrum sensing as
aircraft approaches ATC. The schematic representation of the
frame structure for spectrum sensing and data transmission is
as shown in Figure3. For the data transmission, orthogonal fre-
quency division multiplexing (OFDM) scheme is employed with
fast fourier transform (FFT) of length 64 . Each subcarrier has
the bandwidth of 10 kHz and total bandwidth of 0.5 MHz with
50 subcarriers. Each 25 subcarriers are used for air to ground
and ground to air transmission.

The conventional spectrum sensing considers the binary
hypothesis for the detection as in Equation (1) [6]:

H0 � yi (n) = N i (n)
{Hypothesis 0 (PU Absent)}
H1 � yi (n) = xi (n) + N i (n)
{Hypothesis 1 (PU Present)},

(1)

wherexi is the PU signal which can be modelled as the zero
mean complex Gaussian with the power� 2

x , N i is the zero mean
complex AWGN (additive white Gaussian noise) with the power
as� 2

N [34], n = 1, 2, ƒ m, mis the total sample number.
i = 1, 2, ƒ K (K is the total number of aircraft arriving at the

airport at the same time).j = 1, 2, ƒ L (L is the total number
of SSs/SUs or cognitive radio users (CRu) operating in a coop-
erative manner).

According to the binary hypothesis, a spectrum sensing
can accept or reject samples and infer the presence and the
absence of the PU based on the detection threshold as [40]

E i =
1

K

� K
i=1 �yi (n)�2

H1
>
<
H0

� , here� is the detection threshold.
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FIGURE 1 Flow diagram of the proposed CR-based ATC (Phase I)

Energy sample value greater than the threshold would be con-
sidered as the PU present and vice versa for the energy sam-
ple value lower than the threshold. Thexi (n) is thenth sample
sensed by theith aircraft. Similar hypothesis can be employed
for the jth SS.

The two phases of spectrum sensing is consideredand
and is operated simultaneously for this research. The binary
hypothesis holds good for the ground-based CRu performing
cooperative spectrum sensing. For the aircraft to perform
spectrum sensing, it is necessary that it performs spectrum
sensing when it is near to ground (looking for ground clearance
to land), so that it can be within the coverage area of some
PU transmitter. It is because, if aircraft performs spectrum
sensing outside the range of PU then there will be high false
alarm. Thus, the aircraft can cause interference to the PUÕs
transmission while performing down link data transmission to
the ATC.

From Figure4, it can be seen that (D0 � D1) is the region in
which aircraft is outside the coverage area of PU and D1 repre-
sents the radius of PU transmission range. The hypotheses H0
and H1 for the aircraft approaching an ATC can be validated
only when it is inside the radius D1. The formulation of the

spatial hypothesis can be written as in Equation (2):

�
�
�
�
�

B0 D1 � H0
B1 D1 � H1
B2 D0 � H0
B3 D0 � H1

(2)

where B0 = D1 � H0 represents that the aircraft is within the
range of PU TransmitterÐReceiver (TxÐRx) coverage and the
Hypothesis H0 holds true (i.e. PU is inactive). Thus, aircraft have
the spectrum access opportunity. The B1 = D1 � H1 indicates
that PU is active and aircraft is within the PU TxÐRx coverage.

From Equations (1) and (2), the modiÞed hypothesis can be
postulated as:

B0 � yi (n) = N i (n) 0 � di � D1
B1 � yi (n) = xi (n) + N i (n) 0 � di � D1
B2 � yi (n) = N i (n) D1 � di � D0
B3 � yi (n) = N i (n) D1 � di � D0

(3)

The condition B2 and B3 cannot be employed as the spectrum
opportunity for the aircraft. Only B0 is the available spectrum
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FIGURE 2 Proposed CR-based ATC (Phase II)

FIGURE 3 Proposed CR-based ATC (Phase II) FIGURE 4 Schematic representation of PU coverage for aircraft spectrum
sensing
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FIGURE 5 Schematic representation of spectrum sensing for the case 3D
NCSS

opportunity (i.e. the Aircraft is within the PU coverage and PU
is inactive).

4.1 3D NCSS by aircraft

The two phases of spectrum sensing is considered simul-
taneously. The Phase I spectrum sensing performed by
the aircraft is termed as the 3D NCSS because each air-
craft performs spectrum sensing without any cooperation
with the other aircraft and also the spectrum sensing is
performed during descent, so three-dimensional space has
been considered. Figure5 shows the schematic representa-
tion of spectrum sensing performed during the 3D NCSS
scenario/Phase I.

In Phase II, the SSs are deployed in the ground near ATC per-
forms spectrum sensing in cooperative manner (i.e. spectrum
sensing data of each SUs are beamed towards the fusion centre
(FC), which makes the Þnal decision on spectrum occupancy).
Therefore, Phase II is termed as the cooperative spectrum sens-
ing scheme.

For Phase I, to evaluate the performance of spectrum sens-
ing the probability of detection and the probability of false
alarm is employed. Based on Equation (3), the probabil-
ity of detection and the false alarm can be calculated as in
Equation (4):

PNc
f ,i (k) = P(B1�B0)

PNc
d,i (k) = P(B1�B1),

(4)

where,PNc
f ,i (k) is the probability of the false alarm of theith air-

craft under non-cooperative spectrum sensing scheme for the

kth sensing period. ThePNc
d,i (k) is the probability of the detec-

tion of theith aircraft under non-cooperative spectrum sens-
ing scheme for thekth sensing period. For each aircraft as well
as for the SSs, energy detector is employed for obtaining the
energy samples while performing the spectrum sensing. In case
of cooperative spectrum sensing scheme performed by the SUs,
the samples are used for training the ASA-based NN at CR base
station/ (FC).

The test statistics for energy detection-based spectrum sens-
ing is written as in Equation (5):

ei (k) =
1
m

m�

n=1

		xi (n)		
2
. (5)

For large number of samples, the termei (k) as per the Central
Limit Theorem (CLT) can be approximated as a Gaussian ran-
dom variable for the Hypotheses H0 and H1 of Equation (1)[12,
41].

ei (k) �

�
�
�
�
�
�
�

N



� 2
N ,

� 4
N

m

�
� H0

N



(1+ SNRTVr ,i )�
2
N , (1+ SNRTVr ,i )

2 � 4
N

m

�
� H1,

(6)
whereSNRTVr ,i is the received SNR of the PU (TV received
power) at theith aircraft.

Based on the approximation in Equation (6), thePNc
f ,i (k) and

PNc
d,i (k) can be estimated as in Equations (7) and (8), respectively:

PNc
f ,i (k) = Q

�






�

� � � 2
N

� 4
N

m

�
�
�
�
�

, (7)

PNc
d,i (k) = Q

�






�

� � (1+ SNRTVr ,i )�
2
N

(1+ SNRTVr ,i )
2 	

� 4
N

m

�
�
�
�
�

, (8)

where � is the detection threshold to mark the difference
between the PUÕs presence and absence.

4.2 Cooperative spectrum sensing by
SSs/SUs/CRu

The energy detection samples from SUs are transferred to
the FC. The FC with the help of ASA-NN makes the cor-
rect prediction about the vacant spectrum. The detailed work-
ing of ASA-NN-assisted spectrum hole prediction by FC is
explained in Section6. The cooperative spectrum sensing
scheme employed by the SSs is explained as below: At FC, the
linearly weighted energy values from all SUs are obtained as in
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Equation (9):

ecss=
L�

j=1

Wjej , (9)

whereej is the energy detected by thejth SU,Wj is the weight
coefÞcient of thejth SU and it is calculated as shown in
Equation (10):

Wj =
SNRTVr , j

� � L
l =1 SNRTVr ,l

, (10)

whereSNRTVr , j is the received SNR at thejth SU. In Equa-
tion (10), l � j andl corresponds to other SUs. The weighted
energy valueecsscan be approximated as Gaussian random vari-
able as in Equation (11) for the Hypotheses H0 and H1 in Equa-
tion (1):

ecss�

�
N (
 0, � 0)

N (
 1, � 1),
(11)

where


 0 =
� L

j=1Wj � 2
n

� 0 =
� L

j=1Wj
� 4

n

m


 1 =
� L

j=1Wj (1+ SNRTVr , j )�
2
n

� 1 =
� L

j=1Wj (1+ SNRTVr , j )
2 � 4

n

m
.

(12)

Using Equations (11) and (12), the probability of false alarm and
the probability of detection can be calculated as Equations (13)
and (14):

Pcs
f , j (k) = Q



� � 
 0

� 0

�
, (13)

Pcs
d, j (k) = Q



� � 
 1

� 1

�
. (14)

In general, the opportunistic throughput of the SU performing
data transmission in the absence of PU can be calculated as in
Equation (15)

T opt = PH0



Ft � St

Ft

�
(1� Pf )log2(1+ SNR), (15)

whereT opt denotes the opportunistic throughput,Ft and St
are the frame time and the sensing time, respectively. The
PH0 denotes the probability that PU is inactive, generic false
alarm probability, and the SNR of SU (while performing oppor-

FIGURE 6 Simulation-based representation of the proposed model

tunistic data transmission) is represented asPf and SNR,
respectively.

In Figure6, the hemispherical dome represents the PU cov-
erage and within this coverage CRs are deployed as represented
by blue circles and the approaching aircraft towards ATC is rep-
resented by black dots with coordinates.

5 CONVENTIONAL FLYING
SQUIRREL SEARCH ALGORITHM

Flying Squirrel Search Algorithm (FSSA) is introduced by Jain
et al. [42] and it is based on the effectual foraging behaviour of
ßying squirrels. The search for the food sources depends on
weather, type of trees, and the presence and the absence of the
predators. The ßying squirrels are more active in warm weather
than cold and are capable of obtaining better and abundant
food source during that period. The ßying squirrels consumes
two types of food sources, i.e. Hickory nuts (Hickory tree) and
Acorn nuts (Acorn tree). The Acorn nuts which are abundantly
available during warm weather is immediately consumed by
the squirrels whereas the Hickory nuts are stored for winter.
During winter ßying squirrels are inactive, so it is difÞcult for
them to obtain new foods. Therefore, storing Hickory nuts
is one of the prime motives so as to withstand the extreme
weather condition.

5.1 FSSA initialization

The algorithm starts with the initialization of parameters: Max-
imum Iteration= itmax, Size of squirrel population= M, Deci-
sion variable count/Number of dimensions= D, Probability
of predatorÕs presence= Pr p, Scaling factor= sf (value ranges
between 16 and 37), Gliding distance constant= Gc, and Deci-
sion variable bounds.
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5.1.1 Random initialization of ßying
squirrels (Fs)

For the population count� M � and with the upper and lower
bounds asF u

s andF l
s , respectively, then each ßying squirrels

can be randomly initialized using Equation (16):

FsI ,z
= F l

sz + rand() × (F u
sz � F l

sz ), (16)

whereFsI ,z
representsI th ßying squirrel in thezth dimen-

sion, rand() generates random number between 0 and 1,
I = 1, 2, 3ƒ M, andz = 1, 2, 3ƒ D.

The Þtness of a squirrel in a particular dimension represents
its location and the quality of the solution. In the FSSA, optimal
solution location is mapped as optimal food source (Hickory
nuts) which is termed as the location of squirrel at Hickory
tree. The next best solutions are termed as the location of
squirrel at Acorn tree. The normal solutions (Acorn nuts)
are termed as location of squirrel at normal food source, i.e.
Normal tree. After random initialization of the ßying squirrels,
the squirrels with maximum Þtness value are noted as to be on
the Hickory nut tree. The next few best solutions are termed
as squirrelsÕ locations on the Acorn nut trees. The rest of the
squirrels are considered to be on Normal tree. While foraging it
is important to consider the probability of predatorÕs presence
(Pr p).

5.1.2 Movement of ßying squirrels towards new
solutions

Squirrels on Acorn tree tends to move towards Hickory nut tree,
i.e. the best solution found so far using Equation (17):

F t+1
sa =

�
F t

sa + dg× Gg× (F t
sh � F t

sa) r1 � Prp

Random Location otherwise,
(17)

wheret is the iteration number ranging from 1, 2, 3ƒ itmax, r1
is the random number between [0,1]. The termdg is the ran-
dom gliding distance and its value ranges in between 9 and
20 m [42], however a large value ofdg can cause deviation
in squirrel movements and can result in underperformed opti-
mization algorithm. So,dg is divided by a scaling factor which
is a non-zero term and its value can range from 16 to 37
[42]. The gliding constantGc helps in maintaining the trade-
off between exploration and exploitation abilities of the FSSA
and its value is considered as 1.9 [42]. The value ofPr p is taken
as 0.1.

Some squirrels which are on normal food source tree will
move towards better food location, i.e. (Hickory nut tree and
Acorn nut tree) as per Equations (18) and (19):

Normal tree to Hickory tree:-

F t+1
sn =

�
F t

sn + dg× Gg× (F t
sh � F t

sn) r2 � Prp

Random Location otherwise
(18)

Normal tree to Acorn tree:-

F t+1
sn =

�
F t

sn + dg× Gg× (F t
sa � F t

sn) r3 � Prp

Random Location otherwise,
(19)

herer1 andr2 are random numbers between 0 and 1.
The movement of squirrel is governed by gliding aerodynam-

ics principle [42]. The foraging behaviour of the conventional
FSSA also governed by seasonal monitoring condition which
maintains a proper balance between its exploration and exploita-
tion abilities.

Imitating the behaviour of squirrel during winter season
which makes the algorithm more realistic, season monitoring
condition is employed in conventional FSSA. For this purpose,
season constant in Equation (20) is compared with season mon-
itoring condition in Equation (21).

Season Constant:

SCt =

����
�

D�

z=1

�
F t

sa,z � Fsh,z

� 2
(20)

Season Monitoring Condition:

SMmin =
10E � 6

(365)t � (itmax� 2.5)
. (21)

If SCt � SMmin then the ßying squirrels are relocated using
Equation (22):

Fs = F l
s + Levy(n) × (F u

s � F l
s ). (22)

6 ADVANCED SQUIRREL ALGORITHM

6.1 Motivation

As per the ÔNo Free Lunch TheoremÕ [43], the evolutionary-
based optimization algorithmÕs performance varies based on
the optimization problems. A distinct optimization algorithm
is suited for distinct problems. For an optimization algorithm
to have a good performance, it should start with the good
exploration abilities. Towards the later stage, the search should
be around the elite individual with better exploitation as com-
pared to exploration so as to achieve a good convergence.
Moreover, the algorithm should make sure that it does not get
stuck to local optima. Hence, in an optimization algorithm,
there should be proper trade-off between its exploration and
exploitation abilities.

6.2 ModiÞcation

The main objective with the modiÞcation in an optimiza-
tion algorithm is that it should perform search around elite
individual and should prevent local optima. In order to improve
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the FSSA, the modiÞcations are made to enable ASA to prevent
local optima and have better trade-off between its exploration
and exploitation abilities.

6.2.1 Crossover and mutation

In conventional FSSA due to the lack of evolution, the diversity
level is low and as the result the algorithm can get trapped to the
local optima solution. But for a population-based algorithm in
order to solve highly complex problem it is very much required
to have high dimensional diversity, so as to ensure the search
process searches for the global best solution [29].

The technique of crossover and mutation is incorporated to
the conventional FSSA in order to obtain the optimum weight
values for training the NN. The entire population is divided
in two equal sub-populationF1sI ,z

such that (I = 1, ƒ M� 2
and z = 1, ƒ D) and F2si,z such that (I = M� 2, ƒ M and
z = 1, ƒ D).

The random initialization of the search agent/squirrels of
each sub-population is performed using Equation (16). Each
sub-population has its own population diversity and the algo-
rithm proceed with Þnding of new solutions using Equations
(17)Ð(19) for each sub-population separately. The best solution
and its position from each sub-population, i.e. (Squirrel position
at Hickory nut tree) is retrieved and stored in memory. The lin-
ear crossover is then employed to it as shown in Equation (23)
and the solutions are stored in the memory.

F c,t
sh = 
 F t

s1h + (1� 
 )F t
s2h, (23)

here
 is random number between 0 and 1,F t
s1h, F t

s2h are the
best solution from population set 1 and 2, respectively, andF c,t

sh
is the solution generated after the crossover between two best
solutions from each sub-population att th iteration. TheF c,t

sh is
also stored in the memory.

Post crossover all the best solutions stored in the memory
are mutated. The Gaussian Mutation is employed as shown in
Equation (24).

F m,t
sh = F c,t

sh + (F u
s � F l

s ) × ga(0, � )

F m,t
s1h = F t

s1h + (F u
s � F l

s ) × ga(0, � )

F m,t
s2h = F t

s2h + (F u
s � F l

s ) × ga(0, � ),

(24)

hereF m,t
sh , F m,t

s1h , F m,t
s2h are the mutated solutions of crossover

solution and the best solutions from each sub-population,
respectively. Thega(0, � ) is the Gaussian mutation factor with
0 mean and� as the variance. In order to have emphasis on
exploration and exploitation during different stages of itera-
tion, i.e. to ensure high exploration during the start of iteration
and high exploitation during later stage, the� is decreased as
� (t + 1) = � (t ) × e� t .

The mutated solutions stored in a repository are compared
with the solutions in memory and the best solution is selected.

In this way, at the end of each iteration the best solution is
retained and stored in the separate repository.

6.2.2 Chaotic winter selection

The important factor to be considered for incorporating a
modiÞcation into an optimization algorithm is its application.
The ASA is employed for training the NN, i.e. weight optimiza-
tion of the NN to minimize the error in the correct prediction
of the spectrum holes. The conventional squirrel algorithm
employsLevydistribution for reallocating the squirrels that
could not reach to an optimal food source at the end of winter
season as shown in Equation (21) [42]. This process of updating
the squirrel position is meant for enhancing the exploration
ability of the algorithm. TheLevydistribution approach cannot
guarantee the optimized random blind search for the sparse
targets [44]. Moreover, the presence of bias can overshoot the
target [44] and which is not suitable for training an NN. Hence,
the sinusoidal chaotic approach is employed for relocating the
squirrels at the end of winter season.

Sinusoidal chaotic approach is as shown in Equation (25)
used generate random sequence asCH .

CHn+1 = Ch� CH 2
n � sin(� CHn), (25)

hereCh= 2.3 and the initial value ofCH0 is taken as 0.7, after
modiÞcation Equation (22) can be rewritten as in Equation (26)

Fs = F l
s + CHn × (F u

s � F l
s ). (26)

7 THEORETICAL ANALYSIS OF ASA
COMPARED WITH THE EXISTING
ALGORITHM EMPLOYED FOR
TRAINING NN

Because of the drawbacks associated with the Conventional-NN
[22, 24], the efforts were made in improving the performance of
NN using metaheuristic algorithms [23, 27]. The ASA is com-
pared with the hybrid Particle Swarm Optimization Gravita-
tional Search Algorithm (PSOGSA), PSO, Gravitational Search
Algorithm (GSA), ABC Algorithm employed in training the
NN. All the mentioned algorithms are used in weight and bias
optimization of NN so as to have minimized error between the
target and the predicted information about the presence and the
absence of PU.

The PSO is based on the ßocking behaviour of the swarms
[45], the governing equations of PSO are :

X t+1
i = X t

i + V t+1
i , (27)

V t+1
i = WV t

i + C1Ri1(Personalbesti � X t
i )

+ C2Ri2(Globalbesti � X t
i ), (28)
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Algori thm 1 Pseudocode of Advanced Squirrel Algorithm

1: Initialize variables and the search space (Weights and biases of the NN)

2: Divide the population of the Search Agents into two sections

3: Randomly initialize the position of the each search agents in each sub -population

4: For each iteration:

5: For each Decision Variables:

6: Evaluate the Positions of the Search Agents

7: (Each Search Agents’ position represents the values of the variables, i.e. weights
and biases)

8: Evaluate the Fitness Function

9: Compute Ftsa, F t
sn andF t

sh

10: Perform linear Crossover of the best solution’s position from each
sub-population

11: Perform Gaussian Mutation of Crossover position and the best solution
position of each sub-population

12: Obtain the optimal solution for the current iteration

13: Check for the maximum iteration

14: End

15: Go to Step:6 if iteration< Max iteration

16: End (iteration> Max iteration)

17: Return the optimal solution

here, Equation (27) governs the position and Equation (28) gov-
erns the velocity update of the ith particle at (t + 1)th iteration,
W is the weight coefÞcient,C1,C2 are the cognitive and social
coefÞcients, respectively [45].

The GSA algorithm is based on the gravitational law of
the physical bodies [46]. In GSA, the velocity and the posi-
tion of the search agents are updated as in Equations (29) and
(30).

V t+1
i = V t

i × rand+ at
i , (29)

X t+1
i = X t

i + V t+1
i , (30)

where ÔaÕ is the acceleration of the search agents. The GSA algo-
rithm is capable of Þnding the global optimum but has a proven
drawback of slow search speed as iteration reaches its maximum
[27] and GSA also lacks good exploration ability. The PSO, on
the other hand, has high exploration ability but suffers from pre-
mature convergence [30].

In PSOGSA, PSO is hybridized with GSA so as to have
proper trade-off between exploration and exploitation ability
[27]. The hybridization of PSO and GSA is carried out is the
low level co evolutionary heterogenous-based hybridization [47]
as shown in Equation (31):

V t+1
i = WV t

i + C1Ri1at
i + C2Ri2(Globalbesti � X t

i ), (31)

here acceleration of GSA is incorporated in the velocity
update of the PSO [27].

The ABC algorithm is based on foraging behaviour of the
bee [48], the position of the bee and the entire bee population
is divided as employed bee, onlooker bee. Both FSSA and ABC
are based on the population division but in FSSA the popula-
tion is divided after the initialization and based on the Þtness
level [42].

The PSOGSA is a powerful optimization algorithm and has
superior performance in training NN as compared to PSO,
GSA, and ABC [23, 27]. With hybrid PSOGSA, the perfor-
mances of NN enhances but with the cost of increase in the
complexity. Due to the hybridization, the computational com-
plexity of PSOGSA increases. The order of computation of
GSA isO(m2) [49], heremindicates the variable number. The
PSOÕs order of computation isO(m× n) [50] with m and n
considered as variables and population size, respectively. The
PSOGSA and ABC have high computational complexity as
(O(m× n) + O(m2)) andO(n5), respectively [48]. The ABC has
higher complexity than PSOGSA, PSO, and GSA.

This research work also focussed on enhancing the perfor-
mance of NN using ASA without much increase in the compu-
tational complexity. In squirrel-based algorithm, the complexity
depends on the population size. Therefore, in ASA mutation,
crossover and chaotic approach is employed without increasing
the population size. So the complexity remains asO(M × D)
which is lower than PSOGSA, ABC, GSA, and comparable to
conventional PSO. The ASA has better performance in terms of
prediction accuracy and efÞciency evident in Section8 as com-
pared to PSOGSA, PSO, and ABC.

8 ASA-TRAINED NN

The proposed ASA is employed for optimizing the weights and
the biases of the NN used in the prediction of presence and
the absence of the PU. The optimization is used because the
conventional-NN employs the BP algorithm for training NN
and the BP algorithm is based on gradient descent method
which has the tendency of getting stuck to the local optima
and has a slow convergence rate [22, 24]. If the weights and the
biases of an NN are not properly optimized then it will result
in a high deviation in the prediction error, which can further
cause incorrect prediction of the PUÕs presence and can result
in the interference to the PU transmission. Therefore, it is very
important to obtain the optimized value of the weights and the
biases so as to minimize the error in the prediction of an NN
output.

The ASA-NN starts with random initialization of the weights
and biases to the NN. For the weight and bias optimization,
the NN structure considered is Þxed and it comprises of one
input layer, one hidden layer, and an output layer. The num-
ber of input nodes is denoted by ÔN,Õ hidden nodes as ÔH,Õ
and the output nodes as ÔM.Õ For each learning epoch, the
output of thecth hidden nodeO(hc) can be calculated as in
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Equation (32):

O(hc) =
1

1+ e� hc
, (32)

wherec= 1, 2, ƒ H andhc =
� N

g=1wgcXg � bc, wgcis the weight
value betweength input node andcth hidden node. The bias
connected to thecth hidden node is represented bybc andXg is
the input fromgth input node.

The hidden nodes are connected via weigths and biases to
the output node and the output from the output node can be
represented by Equation (33):

Oo =
H�

c=1

wocO(hc) � bo, (33)

hereo= 1, 2ƒ M, wocis the weight connection from thecth hid-
den node to theoth output node,bo is the bias connected to the
oth output node.

The errored (Þtness function) and its average value is calcu-
lated as in Equations (34) and (35):

ed =
N�

g=1

�
Ad

g � T d
g

�
, (34)

e=
D�

d=1



ed

D

�
, (35)

hereT d
g = Target output corresponding to thegth input node

for thedth training sample.
Ad

g = Actual output for thegth input node corresponding to
thedth training sample.

The objective function for the ASA for the weight and bias
optimization in NN is as Equation (36)

min
w,b

e (36)

Figure7 shows the NN model and Figure8 shows a pictorial
representation of ASA employed for weight optimization of an
NN. During the training phase for a given training input sam-
ples, the weights are randomly initialized. The random weights
are then fed to the ASA optimization as shown in Figure8. The
ASA starts with the sub-population formation and random ini-
tialization of search agents based on Equations (17)Ð(19) in the
search space of the weight optimization to minimize the error
as in Equation (35). This process of crossover, mutation, and
chaotic winter selection is then employed based on Equations
(23), (24), and (26), respectively, so as to obtain the optimized
weight values to minimize the error. In this way, initial weight
values are then optimized using ASA and fed back to the NN
for the correct detection of the spectrum holes. Figure8 com-
prises of CRs whose spectrum sensing samples are fed to the
ASA-NN at CR base station/FC for the channel prediction.

FIGURE 7 Pictorial representation of NN model employed for spectrum
prediction

8.1 ASA-NN for channel prediction

The ASA-trained NN is employed for efÞcient channel pre-
diction in CR-based ATC. The PU mainly considered is the
TV Broadcast system of a particular geographical location
(i.e. United Kingdom). For training NN, it is required to
have optimized weights, biases, and proper training input sam-
ples such that NN should be efÞciently able to differentiate
between PUÕs presence and absence from the channel state
information.

In a TV band, the presence of TV signals can be identi-
Þed by its centre frequency, bandwidth, and the signal power
level. Moreover, TV signals employs modulations, therefore
they exhibit statistical properties as a periodic function of time,
i.e. the cyclostationary property [5]. For the correct prediction
from the channel state, the input samples employed for training
are SNR, Bandwidth of the PU, the centre frequency of the PU,
and the cyclic frequency associated with each centre frequency
of PU. The ASA optimizes the weights and biases of NN in the
MATLAB environment using pre-deÞned samples with the goal
of minimizing the error to 1× 10� 30.

The proposed ASA-NN employed for channel prediction
comprises of a training period and a working period. The train-
ing period will be the same for SU of the 3D non-cooperative
spectrum sensing scheme and the CRs of the cooperative spec-
trum sensing scheme. In the working period of the 3D non-
cooperative spectrum sensing scheme, SUs (Aircraft) makes the
Þnal decision on the channel state based on the knowledge
base and the ASA-NN of the training period. In the case of
cooperative spectrum sensing, CRs perform the spectrum sens-
ing and the data is sent to the FC, where trained ASA-NN
is employed to make Þnal decision based on received samples
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FIGURE 8 Pictorial representation of ASA-based weight optimization of NN

from CRs. In the proposed work, the real-time input samples
are obtained using USRP N210 and B210, these input sam-
ples are then fed to the ASA-NN in the MATLAB environ-
ment. The ASA-NN makes the binary channel state prediction
(1: PU is present, 0: PU is absent) based on the input sam-
ples. With the help of input samples and the optimized weights
and bias values, the proposed ASA-NN is able to efÞciently
detect the spectrum holes and can enhance the opportunis-
tic throughput of the SU. The input sample description is as
follows:

1. SNR: It is considered that the TV transmitter is equipped
with omnidirectional antenna and it is transmitting sig-
nal with a transmission power ranging from 10 to 50 kW
[51]. As the TV transmission is assumed to have coverage
up to 2.5 km, so an SU within this coverage can oppor-
tunistically utilize the spectrum to enhance its bandwidth.
The TV power received within its coverage area depends
on the distance between its transmitter and receiver. The
relation between TV transmitted power and the received
power as the function of distance can be denoted as in

Equation (37) [52].

TV(rvp) = TV(tr p)

�
d

�

0

d�

� n
�

, (37)

hereTV(rvp) is the power received at TV receiver,TV(tr p) is
the power received by TV receiver for a reference distance
of d

�

0, asd
�

0 is considered 10 m, so for such a small value
of reference distance theTV(tr p) is considered equal to the

TV transmitter power.n
�
= 3,d

�
is the distance between TV

transmitter and TV receiver.
With noise power spectral density as N0 and speciÞc band-
width B, the SNR of the TV transmission received can be
written as in Equation (38).

SNRTVr
=

TV(rvp)

BN0
. (38)

As the distance increasesSNRTVr
decreases. The Federal

Communications Commission (FCC) has deÞned certain



1338 EAPPENET AL.

TABLE 1 PMSE bandwidth and power

PMSE devices PPMSE
(dBm� B)

B

Wireless microphone � 78 200 kHz

In-ear monitors � 78 200 kHz

Talkback � 78 200 kHz

Data links � 78 200 kHz

Program audio links � 78 200 kHz

Program video links � 65 8 MHz

minimum threshold level forSNRTVr
[51, 53, 54] . So

the SNRTVr
samples between its max and min bound are

employed as one of the input for training ASA-based NN.
The TV frequency band in U.K. 470Ð790 MHz (channel
21Ð60) in any particular location not used by digital terres-
trial television (DTT) could be used by low power devices.
The Programme Making and Special Events (PMSE) equip-
ment like wireless microphone and audio devices have been
using these white spaces on opportunistic manner with the
assistance of white space database (WSDB). The CR devices
(CRd)/ white space devices (WSD) operating in these fre-
quency range should not only consider the presence of DTT
but also the PMSE before transmission. The PMSE power
can be calculated as in Equation (39) [55].

PPMSE
(dBm� B)

= PSU� PMSE
dB + r(� f )(dB) + mG1

(dB) + � (dB) + 19.03,
(39)

wherePPMSE
(dBm� B)

is the PMSE signal power over its channel

bandwidthB, PSU� PMSE
dB is the power spectral density limit

of the CRd signal to avoid interference with the PMSE sig-
nals,mG1

(dB) is the coupling gain between CRd and PMSE sig-
nals. The coupling gain margin is denoted by� (dB), r(� f )(dB)
is the ratio of PMSE signal power over CRd signal power
at PMSE receiver. The� f is the channel separation (DTT-
8 MHz) between CRd and PMSE signal. The value 19.03
is equivalent to 10log10(80) and it converts PSD of CRd
signal from 8 MHz to 100 kHz. Therefore, PU SNR val-
ues considered comprises ofSNRTV signal to Noise Ratio
for the TV signal and theSNRPMSE signal to Noise Ratio
for the PMSE signal. The Table1 shows the PMSE band-
width and the associated power.

2. Bandwidth of the channel: The TV broadcast system in a
speciÞc geographical location operates at a particular band-
width. In the United Kingdom, TV broadcast channel has
8 MHz as bandwidth and this information is employed for
training the ASA-NN as a second input. In addition to that,
the bandwidth of the probable PMSE devices operating in
the TV white space is also considered.

3. Centre Frequency of the channels: The employed centre fre-
quency for training NN is as TV white space frequencies as
shown in Figure9.

4. Cyclic Frequency (cyclostationary features of the signal): The
periodicity in a signal or in its mean and autocorrelation
results in the cyclostationary properties. The noise signal can
be differentiated from the PU signal by employing the cyclo-

stationary property. The wide sense stationary noise signals
exhibit no correlation where as modulated PU signal exhibits
correlation due to periodic nature of the signals [13].
The cyclic spectral density of the received PU signal dur-
ing spectrum sensing in Equation (1) can be calculated as
in Equation (40) [57]:

S( f , � ) =
��

r=��
R�

y (� )e� j2� f � , (40)

whereR�
y (� ) can be calculated as in Equation (41):

R� a
y (� ) = E [y(n+ � )y	 (n� � )]ej2�� an, (41)

here� a is the cyclic frequency. When cyclic frequency is
equal to fundamental frequency of the signal then cyclic
spectral density shows peak [5]. In addition to that, noise
signals which are wide sense stationary does not have any
periodicity associated with it, so their autocorrelation func-
tion is [58].

Ry(� ) = R0
y(� ). (42)

As the cyclostationary signals comprises periodicity, there-
fore, their autocorrelation function can be written as

Ry(� ) =
��

r=��
R�

y (� )ej2�� a� , (43)

where� a is equivalent with periodT :

� a =
a
T

, a = 0, ±1, ±2, ƒ . (44)

The cyclic frequency is used as one of the input feature for
detecting the PU signal.

9 SIMULATION PARAMETERS
AND RESULTS

The simulation results depict the performance of ASA in train-
ing the NN for efÞcient spectrum sensing in terms of the prob-
ability of detection, probability of false alarm, opportunistic
throughput, and the bit error rate (BER). The BER for different
training algorithm is estimated based on the efÞciency of each
algorithm in predicting the accurate spectrum holes and trans-
mitting the data efÞciently to CR receiver.

The simulation parameters of each metaheuristic algorithm
employed for training NN are as follows:

The number of CRs deployed in the vicinity of the airport is
considered as 10, 5 aircraft is considered to be approaching ATC
at a time, the number of spectrum sensing samples= 500. The
TV tower transmission power is assumed to be vary from 10
to 50 kW depending on the geographical location of the place.
The noise power spectral density is 10� 9, the PU bandwidth is
8 MHz. The CRs and CR base station are assumed to be within



EAPPENET AL. 1339

FIGURE 9 TV carrier frequency allocation in the United Kingdom [56]

TABLE 2 Simulation parameters of metaheuristic algorithms employed for training NN

PSO/PSOGSA GSA ABC ASA

1. Personal CoefÞcient and Social
CoefÞcient= C_1= C_2= 2

1. Gravitational Constant= 1 1. Population Size= 100 1. Population Size= 100

2. Inertia weightw= Linearly
decreases from 0.9 to 0.4

2. Initial search agent velocity= [0,1] 2. Maximum Iteration= 500 2. Maximum Iteration= 500

3. Population Size= 100 3. Descending CoefÞcient= 20 3. Total NN Layer= 3 3. Gliding Constant= 1.9

4. Maximum Iteration= 500,
Descending CoefÞcient= 20

4. Initial value of acceleration, mass
of the search agents set to 0

4. Hidden Layer Size= 10 4. Random Gliding Distance= 9Ð20 m

5.R1, R2 = [0,1] 5. Population Size= 100 5. Scaling Factor= 16Ð37

6. Total NN Layers= 3 6. Maximum Iteration= 500 6.� (0)= 1

7. Hidden Layer Size= 10 7. Total NN Layers= 3 7. Total NN Layers= 3

8. Gravitational Constant= 1 8. Hidden Layer Size= 10 8. Hidden Layer Size= 10

the distance of 1 km from the TV transmission tower. The TV
tower transmission range is assumed to be 2.5 km, the proba-
bility of PU being active is considered to be 0.1. The Table2
shows the simulation parameters of metaheuristic algorithms
employed for training the NN.

9.1 Real-time training of NN with the help
of USRP, LabVIEW, and MATLAB

The NN is Þrst trained for the known samples of the received
PU and PMSE SNR, the PU and PMSE centre frequency, PU
cyclic frequency, PU and PMSE signal bandwidth. For the real-

time training, USRP N210 (Number of N210= 2, USRP 1
and USRP 2) and B210 (Number of B210= 1, USRP 3) are
employed. In the training phase, USRP 1 and USRP 3 transmit
at different SNR levels, bandwidth and carrier frequency so as
to replicate the TV and PMSE transmission. The USRP 2 has
the priori knowledge about the presence and the absence of PU
signal, trains the NN using the sensed samples and trains the
ASA-NN in the MATLAB environment.

During working phase, the USRP 2 act as the FC. The USRP
2 receives the sensed samples from USRP 1 and USRP 3, and
is fed to ASA-trained NN in the MATLAB environment and
makes the Þnal decision. Figures10and11shows the test bench
setup employed in this work. The training of NN starts with
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FIGURE 10 USRP 1 and USRP 2 (N210s) placed at a distance of 4 m (Testbench for the proposed algorithm)

FIGURE 11 USRP 3 (B210) with horn antenna

random initialization of the weight and the bias values. Dur-
ing epoch 1, for the corresponding values of the weight and
bias, the output is generated and compared with the target value
(prior information about PU). The error value and the associ-
ated weight and the bias values are then called via applied opti-
mization algorithms. After Þrst iteration, the optimized weight
and bias values for the minimized error value is fed back to the
NN, which then generates the output and compared with the
target. The error signal along with the weight and bias values
are then again called by the optimization algorithm. The pro-
cess continues until the target error minimization value has been
reached or the iteration reaches the maximum level.

9.2 Evaluation of the detection performance
of the proposed and the existing algorithm

The detection performance of the proposed ASA-trained NN-
based spectrum sensing is compared with the PSOGSA-NN,
PSO-NN, ABC-NN, GSA-NN, and Conventional-NN. The
efÞciency of the optimization algorithm in training NN is
deduced by its effectiveness in optimizing the weight and bias

values of NN to minimize the error in correct detection of the
spectrum holes. An efÞcient algorithm can successfully detect
the presence and the absence of PU. The detection perfor-
mance of the NN training algorithm is evaluated in terms of
probability of detection. The better probability of detection
signiÞes the efÞciency of the algorithm in training the NN
for the correct prediction about the presence and the absence
of PU.

The probability of detection of each algorithm is evaluated
with respect to probability of false alarm, sensing time, and the
received SNR of the PU.

1. Impact of Probability of False Alarm on Probability of
Detection for each Algorithm:
Figure12shows the receiver operating characteristics (ROC)
for spectrum sensing with respect to probability of detection
and probability of false alarm.
Once the NN is trained using proposed algorithm, then the
probability of detection and probability of false alarm is plot-
ted by employing the real-time spectrum sensing samples
using USRP 2. The USRP 2 performs wide band spectrum
sensing in the TV white space band (470Ð790 MHz). From
the sensed samples, the received PU SNR, its bandwidth,
cyclic frequency, and centre frequency is obtained. These
samples are fed to the trained NN which predicts the pres-
ence and the absence of PU. For the particular SNR value
and based on the NN prediction, the probability of detec-
tion is estimated via employing Equation (14). With the given
SNR (SNRTV andSNRPMSE) and for the predicted probabil-
ity of detection, the optimal detection threshold is estimated
using Equation (45)

� = QPcs
d, j (k)� 1 + 
 1. (45)

Employing the above equations (14 and45), the probabil-
ity of false alarm is estimated using Equation (13). From
Figure12, it can be seen that for the probability of false
alarm= 0.1 and sensing time= 5 ms, the probability of
detection for the ASA-trained NN is better as compared
to the other algorithms. The probability of detection of
ASA-NN is� 1, whereas for PSOGSA-NN it is� 0.9. The
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FIGURE 12 Probability of detection versus
probability of false alarm for sensing time= 5 ms

FIGURE 13 Probability of detection versus
sensing time

PSO-NN has the comparable performance with the ABC-
NN of about� 0.75. The detection probability for the GSA-
NN and Conventional-NN are� 0.6 and� 0.55, respectively.

2. Impact of Probability of Sensing Time on Probability of
Detection for each Algorithm: From Figure13, it can be
inferred that as the window of sensing time increases the
probability of detection also increases. The increased sens-
ing time increases the accuracy of the sensed data, eventually
the prediction error reduces. But if the sensing time is kept
increasing then the transmission time reduces which even-
tually reduces the opportunistic throughput and increases
the energy consumption. Optimizing sensing time is another
problem which we have dealt in our previous work. For a
frame period of 50 ms the maximum sensing time consid-
ered is 5 ms. The detection performance of the proposed
ASA-NN is better for varying sensing time as compared to
the existing PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN,
and Conventional NN.

3. Impact of Probability of Received PU SNR on Probability of
Detection for each Algorithm:

The PU SNR here comprises ofSNRTV and SNRPMSE.
Figure14 shows the probability of detection for varying
Received SNR values of PU signals. High SNR values guar-
antees better detection performance of the NN. The pro-
posed ASA-NN is able to reach high detection probability of
� 0.98 even at low SNR value of 0 dB. The proposed ASA-
NN is very efÞcient in detecting the presence and absence of
PU for both high as well as for low SNR, as compared to the
existing algorithms.

4. Real-Time Detection of the Spectrum Holes using pro-
posed ASA-NN.

Once NN is trained using ASA then the ASA-NN-based
spectrum sensing is carried out using USRP 2, which act as
FC. The FC receives sensed data from the USRP 1 and USRP
3. Based on the sensed samples and trained NN, the USRP
2 makes the Þnal decision on the presence and the absence
of the PU. Once the PU is detected then the threshold is
varied based on Equations (13) and (14). The detected PU is
then displayed via LabVIEW front panel GUI, as shown in
Figures15and16.



1342 EAPPENET AL.

FIGURE 14 Probability of detection versus
SNR (received SNR of PU)

FIGURE 15 NI USRP-LabVIEW based detection of PU

9.3 Evaluation of the transmission
performance of the proposed and
the existing algorithm

Based on how efÞciently an algorithm-trained NN is able to
detect the spectrum holes and effectively utilize it for the
transmission of data, the performance is evaluated in terms
of the BER and opportunistic throughput. The USRP 2 per-
forms the spectrum sensing and detect the spectrum holes
using optimization algorithm-trained NN and transmits the data
to the USRP 3. The distance between USRP 2 and USRP 3
is varied so as to have different values for the received SU
SNR.

1. ASA-NN based transmission of signals from USRP 2 to
USRP 3 using different modulation scheme:
From Figures17Ð19, it can be inferred that with the pro-
posed ASA-NN it is possible to efÞciently detect the spec-

trum holes and transmit data. The ASA has efÞciently
trained NN and has optimized the error in detection of the
spectrum holes via its novel mutation, crossover, and chaotic
winter selection scheme. The Þgures corresponding to the
receiver USRP is accompanied by channel noise, but when
there is interference with the noise the received signal is as
shown in Figure17and it is very difÞcult to trace the origi-
nal transmitted signal.

2. BER analysis of different optimization algorithm employed
in training NN:
The efÞciency of the optimization algorithm in training
NN to effectively detect the spectrum holes is analysed
with respect to BER as shown in Figures20Ð22. From the
BER analysis, it can be inferred that the proposed ASA-
NN because of its crossover and mutation scheme is able
to obtain optimum weight values for correctly detecting the
spectrum holes and has efÞciently transmitted data from
USRP 2 to USRP 3.

3. Opportunistic throughput analysis of different optimization
algorithm employed in training NN:
The opportunistic throughput of a CRN is the through-
put obtained at SU receiver. This throughput is calcu-
lated as per Equation (15) for transmission of data via
detected spectrum holes. Better detection of the spec-
trum holes results in enhanced throughput. Therefore,
efÞciency of the optimization algorithm in training NN
for efÞcient prediction of the spectrum holes is analysed
with respect to opportunistic throughput as shown in
Figures23Ð25.

9.4 Comparative analysis of each algorithm

The comparative analysis of ASA-NN with the PSOGSA-NN,
PSO-NN, ABC-NN, GSA-NN, and Conventional-NN is as
shown in Tables3Ð6. Table3 shows performance evaluation
of each NN training algorithm for probability of detection at
probability of false alarm= 0.1. As discussed in the point
1 of Subsection 9.2, the ASA has effectively improved NN
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FIGURE 16 Detected PU in the TV band

FIGURE 17 Signal (PU interference)

as compared to other optimization algorithm for efÞciently
detecting the presence and absence of PU. The ASA algo-
rithm has the tremendous trade-off between its exploration and
exploitation abilities. The chaotic behaviour introduced in ASA
(Equation26) has further enhanced its exploration ability with
which it tends to Þnd global optimum solution.

Table4 depicts the performance evaluation of each train-
ing algorithm with respect to probability of detection and sens-
ing time.

Table5shows the opportunistic throughput for each training
algorithm for varying SNR at SU Rx. As the result of efÞcient
spectrum prediction and data transmission, the opportunistic
throughput of ASA-NN is better as compared to the PSOGSA-
NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.

In Tables3, 4, 5, and6, the performance of the proposed
ASA-NN is compared with the existing (PSOGSA-NN, PSO-
NN, GSA-NN, and Conventional-NN) for parameters (Vary-
ing Pf , sensing time, and SNR). Table7 shows by how much
percentage there is improvement in the Probability of Detec-
tion and opportunistic throughput using ASA-NN as com-
pared to the existing (PSOGSA-NN, PSO-NN, GSA-NN, and
Conventional-NN). From the best of authorsÕ knowledge, so far

FIGURE 18 Transmission at 16 QAM

FIGURE 19 Reception at 16 QAM
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FIGURE 20 BER for 16 QAM

FIGURE 21 BER for 16 PSK

FIGURE 22 BER for 64 QAM



EAPPENET AL. 1345

FIGURE 23 Opportunistic throughput versus
SNR for 16 QAM

FIGURE 24 Opportunistic throughput versus
SNR for 16 PSK

FIGURE 25 Opportunistic throughput versus
SNR for 64 QAM
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TABLE 3 Performance evaluation with respect to probability of detection
and probability of false alarm

Probability of detection atPf = 0.1

ASA-
NN

PSOGSA-
NN

PSO-
NN

ABC-
NN

GSA-
NN

Conventional-
NN

� 1 � 0.9 0.75 0.738 0.6 0.54

TABLE 4 Performance evaluation with respect to probability of detection
and sensing time

Probability of detection at sensing time= 1 ms

ASA-
NN

PSOGSA-
NN

PSO-
NN

ABC-
NN

GSA-
NN

Conventional-
NN

� 1 0.93 0.9 0.76 0.71 0.53

in the spectrum sensing based on NNs were carried for either
Pd versus SNR [59], or Pd versusPf [60, 61] or, Pd versus sens-
ing time. All the three parameters are considered simultaneously
(Tables3Ð6) to prove the efÞcacy of the proposed algorithm.

9.5 Convergence curve analysis

The convergence curve signiÞes the convergence of the opti-
mization algorithm towards the best values of the variables

TABLE 5 Performance evaluation with respect to probability of detection
and SNR

Probability of detection at received PU SNR= 0 dB

ASA-
NN

PSOGSA-
NN

PSO-
NN

ABC-
NN

GSA-
NN

Conventional-
NN

0.98 0.8067 0.6556 0.48 0.39 0.26

FIGURE 26 Convergence curve of ASA-NN for population size 50, 100,
150

FIGURE 27 Convergence curve of PSOGSA-NN for population size 50,
100, 150

FIGURE 28 Convergence curve of PSO-NN for population size 50, 100,
150

resulting in the minimization/maximization of the objective
function. The aim of each optimization algorithm is to train
the NN by optimizing the weights of NN so as to obtain the
minimized error deviation between the observed and the target
sample values. The training is carried out in the training period,
the trained NN is then implied for predicting the PUÕs presence
and absence.

The convergence curve is an important paradigm showing
the efÞciency of the optimization algorithm during the train-
ing phase of an NN. The optimization algorithm having mini-
mized error deviation at the end of the training phase iterations
implies that the algorithm has obtained optimum weight val-
ues for which the deviation between the observed and the tar-
get value is minimum and has trained the NN in best way. The
optimal trained NN can efÞciently detect the presence and the
absence of PU during the working phase.
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TABLE 6 Opportunistic throughput for varying SNR at SU Rx

Opportunistic throughput (b/s/Hz)

S.No. Modulation scheme ASA-NN PSOGSA-NN PSO-NN ABC-NN GSA-NN Conventional-NN

1 16 QAM 2.66 2.32 1.96 1.49 1 0.35

2 16 PSK 2.51 2.199 1.82 1.22 0.72 0.48

3 64 QAM 5.3 3.78 2.226 1.355 0.807 0.652

TABLE 7 Percentage improvement of the proposed ASA-NN as compared to the existing algorithms for different parameters

Existing
Algorithms

Probability of
detection atPf = 0.1

Probability of
detection at sensing
time = 1 ms

Probability of
detection at received PU
SNR = 0 dB

Opportunistic
throughput at 16 QAM

PSOGSA-NN 11.11% 7.52% 21.48% 14.60%

PSO-NN 33.33% 11% 50.76% 35.02%

ABC-NN 35.50% 31.50% 104.10% 78.50%

GSA-NN 67% 40.80% 151.20% 166%

Conventional-NN 85.18% 88.60% 276.90% 650%

Figure26shows the convergence curve of the ASA-NN for
the population size 50, 100, 150. It can be seen that as the
population size of an optimization algorithm increases, it con-
verges towards better solution, i.e. minimum error deviation.
But increasing population size to a very large value can increase
the computational time during the training phase.

Similarly Figures27Ð31 shows the convergence curve
for the PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN, and
Conventional-NN, respectively. From these Þgures, it can be
inferred that the population size enhances performance of an
optimization algorithm.

The combined comparative analysis of the convergence
curve of each algorithm for the population size= 150 is shown
in Figure32. Each algorithm is then analytically viewed via
Table8.

FIGURE 29 Convergence curve of ABC-NN for population size 50, 100,
150

From Figure32 and Table8 it can be seen that the ASA-
NN has shown signiÞcant improvement as compared to the
existing PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN and
Conventional-NN. ASA-NN has shown 96.8% improvement as
compared to PSOGSA-NN for the population size 50.

10 DISCUSSION

In this work, NN is used for spectrum prediction, and from
the best of our knowledge ASA has been employed for the Þrst
time for training the NN. The question arises on the use of
the NN for spectrum prediction. In Section2, the drawbacks
associated with the conventional spectrum sensing have been
discussed, which pointed towards enhancing the performance

FIGURE 30 Convergence curve of GSA-NN for population size 50, 100,
150
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FIGURE 31 Convergence curve of the
Conventional-NN for population size 50, 100, 150

TABLE 8 Converged error deviation for different population size of each
training algorithm

S.No. Training algorithm Population size Error deviation

1 ASA-NN 50 3.13× 10� 6

100 1.02× 10� 20

150 3.92× 10� 27

2 PSOGSA-NN 50 9.78× 10� 5

100 1.04× 10� 16

150 2.05× 10� 24

3 PSO-NN 50 1.30× 10� 3

100 1.24× 10� 10

150 2.55× 10� 23

4 ABC-NN 50 1.40 × 10� 3

100 6.78× 10� 7

150 2.32× 10� 18

5 GSA-NN 50 1.20× 10� 2

100 4.02× 10� 5

150 2.62× 10� 13

6 Conventional-NN 50 2.10× 10� 2

100 3.07× 10� 3

150 9.34× 10� 6

of the conventional spectrum sensing. Therefore, the NN is
employed to enhance the performance of conventional energy
detector. The conventional energy detector has very poor per-
formance in low SNR. The other spectrum sensing techniques
like the MF and cyclostationary detector are highly complex,
so it is not preferred to employ NN on those techniques [17].
The NN once trained using ASA in the training period, can
efÞciently be employed for spectrum prediction during the

working period. This can reduce processing delays and improve
the efÞciency of spectrum utilization.

Another important question arises, why NN-based spectrum
prediction should be preferred over conventional spectrum
sensing with optimized parameters? The different optimiza-
tion algorithms have been employed for improving the con-
ventional spectrum sensing techniques [40, 62, 63]. In addition
to that, the joint optimization scheme has also been employed
for improving the energy detection-based spectrum sensing [64,
65]. These optimization schemes can only optimize the param-
eters of spectrum sensing technique but cannot completely mit-
igate the drawbacks associated with it, and NN has better con-
vergence towards the desired solution as compared to optimiza-
tion algorithms [66].

The Conventional-NN using gradient descent-based BP
scheme has the tendency of stucking to the local optima solu-
tion [22Ð24]. Therefore, the ASA-NN, because of its excel-
lent exploitation and exploration abilities has been employed
for the efÞcient spectrum prediction. The spectrum prediction
performed by ASA-NN has outperformed the PSOGSA-NN,
PSO-NN, ABC-NN, GSA-NN and Conventional-NN in terms
of improved ROC (Figure12), high detection probability with
respect to sensing time (Figure13), improved detection proba-
bility with respect to SNR (Figure14), better BER (Figures20Ð
22), and better opportunistic throughput (Figures23Ð25).

11 CONCLUSION

The issue of spectrum congestion during air trafÞc control
has been investigated, and 3D NCSS and cooperative spec-
trum sensing have been proposed in this article. To overcome
the drawbacks associated with conventional spectrum sensing,
the novel Advanced Squirrel Search Algorithm-trained NN has
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FIGURE 32 Combined convergence curve of
different algorithm for population size 150

been proposed for efÞcient spectrum prediction in CRN-based
air trafÞc control. The efÞciency of ASA-NN during train-
ing phase is evaluated in terms the ROC and probability of
detection with respect to sensing time and SNR(PU+PMSE).
The proposed ASA-NN has shown high detection probability
and spectrum hole prediction as compared to the PSOGSA-
NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.
The efÞcacy of the proposed scheme for the real-time sce-
nario is checked via implementing ASA-NN-based spectrum
sensing via USRP N210 B210, LabVIEW 2018, and MATLAB
2019. The proposed ASA-NN has effectively detected the pres-
ence and the absence of the PU in real-time scenario. The pro-
posed scheme has shown high opportunistic throughput and
better BER (evaluated post-detection of the spectrum holes and
transferring data) as compared to the PSOGSA-NN, PSO-NN,
ABC-NN, GSA-NN, and Conventional-NN. The proposed
spectrum sensing scheme with ASA-NN can be employed for
efÞciently detecting the spectrum holes for Air TrafÞc Control
and thus overcoming the problem of spectrum congestion.
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