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munication plays a crucial role in the air trafbc control system. There is a limited spec-
trum available for aircraft to establish a connection with the Air Trafbbc Controller (ATC).
With air trafbc growth, the available spectrum is getting more congested. This paper pro-
Correspondence posed an Advanced Squirrel Algorithm (ASA)-trained neural network (NN) for efpcient
T. Shankar, School of Electronics Engineering, spectrum sensing for cognitive radio-based air trafbc control applications. ASA is a novel
Ez%:z;‘;‘e"cf%?;g%ﬁgfg 'izgq‘:ile;”uglxsl'f ¢ metaheuristic-based training algorithm for an NN. With the proposed algorithm, it is possi-
Emailtshankar@vitacin " | bletodynamically allocate the unused spectrum for air to ground communication between
aircraft and ATC. The quantitative analysis of the proposed ASA-NN-based spectrum
sensing is done by comparing it with the existing metaheuristic-based NN training algo-
rithms, namely, particle swarm optimization Gravitational Search Algorithm (PSOGSA),
particle swarm optimization (PSO), gravitational search algorithm (GSA), and artibcial bee
colony (ABC). Simulation-based evaluation shows that the proposed ASA-NN is capa-
ble of efbciently detecting the spectrum holes with high convergence rate as compared to
PSOGSA-, PSO-, GSA-, and ABC-based algorithms.

2 Department of Electronics and Computer
Engineering, Brunel University, Uxbridge, Londor

1 | INTRODUCTION the pilots of different aircraft tune the controller frequency
at the same time, thus leading to frequency congestion and
The development in the aviation sector has resulted in théso the pilot may accidentally override others. This situation
tremendous growth of the wireless communication technoloan lead to incorrect information delivered to the aircraft. In
gies governing the air trafbc control. Wide range of wirelemddition to that, different applications correspond to aircraft
technologies are employed to assist the on-ground surveillaomemunication, which further leads to the congestion of radio
and navigation of airplanes while taking off, landing, arahannels, specibcally in the regions of highly crowded airports.
en-route. The employed wireless devices operate at differ€herefore, it is important to utilize the radio spectrum available
radio channels. The radio channels in Very High Frequerioy aircraft communication.
(VHF) and High Frequency (HF) bands are mainly used for Concerning the above discussion, the recent studies suggest
enabling the link between air trafbc control stations and aircralfftat the industrial, scientibc and medical bands are highly con-
The VHF spectrum for wireless communication between thgestedd, J . In contrast, a signibcant portion of the licensed
Air Trafbc Controller (ATC) and aircraft has a bandwidtiadio spectrum is vacant and is used inefbcignttythe radio
of 19 MHz ranging from 118 to 127 MH#.[The spectral spectrum allocated for aircraft communication, only around
spacing of each band is 25 kHz, resulting in a total of 782.84is effectively utilized]. In the current scenario, there
radio channels. As the Right trafpc is tremendously increasingst the problem of spectrum scarcity, and at the same time,
year on year, so the number of aircraft tuning to a particuldnere is also the situation of inefbcient spectrum utiliz&}ion [
station is also increasing immensely. The problem arises wiéth the continuous increase in the air trafbc over the last
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decade, the air trafbc management system has predicted Amatther important drawback associated with the MF is that it
the air trafbc will reach its peak by 2@20The high trafbc  requires dedicated receiver for each PU signalt§pe [
would result in more congested bandwidth for data transmis-The drawbacks associated with conventional spectrum
sion between aircraft and ATC. sensing technique calls for the necessity of efpcient spectrum
Moreover, the audio data transmission from aircraft to AT@rediction by CR network. With intelligent prediction-based
is highly delay-sensitive, with the unavailability of proper bargpectrum sensing it is possible for CR network to reduce
width that can cause continuous intrusion to the transmissidhg sensing time and improve energy efpciency by efbcient
which will further enhance the delay issue. Such a problem cpisdiction of channel state, thus skipping spectrum sensing
for the research work with emphasis made on the need for wifer some time5D1P The NN forms the base for the intel-
less communication technology capable of performing dynarigent prediction scheme. To maintain a trade-off between
spectrum access and meeting the future requirements of apiectrum sensing efpciency and its complexity, an NN-based
ation technology with high efbciency and preciSiorTfie  spectrum sensing is successfully employéd,i2(, 2JL The
possible solution to the problem of spectrum scarcity and pr@onventional-NN which is based on gradient descent-based
viding dynamic Rexibility to the wireless communication techack propagation (BP) method are prone to converge to local
nology employed for air trafbc control is the cognitive radioptima P2, 23and has slow convergence ratg Btudies have
network (CRN){]. A CRN can sense its surrounding radioconbrmed that metaheuristic-based optimization technique can
environment and adjust accordingly The Federal Commu- improve the efbciency of NRFD2B Because of the no free
nications CommissionOs reporgfimés stated the use of the lunch theorem 79, different metaheuristic optimization is
underutilized licensed spectrum to increase the effective utiligaited for the different objective functions. Selecting the proper
tion of the frequency spectrum. The CRN, with its ability t@ptimization technique for improving the performance of the
sense and adapt, can opportunistically access these undeattil>cial neural network (ANN) is very crucial as the entire
lized licensed spectra without causing interference to the RERN working is dependent on it . The popular swarm-based
mary Users (PU)/Licensed Users (the users having the licenptimization scheme like particle swarm optimization (PSO),
to utilize the licensed spectrum). The CRN makes this underaitipcial bee colony (ABC) Algorithm, genetic algorithm (GA),
lized licensed spectrum also known as spectrum hole to the ggey wolf optimization (GWO) and ant colony algorithm (ACA)
ondary users (SUs) for opportunistic access. The brst and taek proper trade-off between their exploration (Global Search)
of the most important working phases of a CRN is the spectruamd exploitation (Local Search) abiliiesg}. The PSO lacks
sensingd]. Through different spectrum sensing techniques, th@oper convergence ability, whereas ACA and ABC lack in
USs bnd the spectrum holes and proceed further with the prexploitation30,6T. The GA tends to get stuck to the local best
cess of a CRN as the process of spectrum sensing is extrerselytion instead of bnding the global bg$t Buch problems
vital. So, a novel Advanced Squirrel Algorithm (ASA)-trainedll for an efpcient optimization scheme that has a proper
neural network (NN) is employed for efbcient spectrum sensade-off between its exploration and exploitation abilities,
ing to improve the effectiveness of the CRN. An effective CRWhich has a good convergence rate and can overcome local
would result in improved spectral and bandwidth efbciency. optima and converge towards global best. Therefore, advanced
Rying squirrel search-based algorithm is implemented and
employed.
2 | RELATED WORKS The prevailing spectrum sensing studies were more focused
on binary hypothesis, i.e. temporal spectrum seR&B§lf
The detection of the spectrum holes by cognitive radio (CRhe works in§, 33 have showed that temporal cooperative
devices and utilizing it opportunistically enhances the specsipéctrum sensing has better performance than the temporal
efbciency and the channel bandwigltilhe spectrum sensing non-cooperative spectrum sensing. The 3D-spatial spectrum
plays the pivotal role in the detection of vacant and thus it is teensing is an emerging P&l# 36-3pthat gives better insight
essential component of CR network. Conventional spectrumbout real-time implementation of CR network. The work in
sensing includes intensive techniques like the Matched Fi[&f considered 3D spatial and temporal spectrum sensing using
(MF) [Ld, cyclostationary detectdd,[and eigenvalue-based conventional energy detector and it has its limitation in low
detector 11], as well as the simple method like Energy DeteGNR values.
tor [17. The simplest spectrum sensing approach has weaklhe 3D-spatial and temporal spectrum sensing is carried
performance under low signal-to-noise ratio (SNR) and awat for non-cooperative and cooperative scenario using ASA-
not efbciently able to detect the spectrum h&le®,[ 1R trained ANN-based efbcient spectrum prediction. The pro-
The cyclostationary detector and MF are highly efbcient posed technique is compared with the existing metaheuristic-
detecting the spectrum holes, but the cyclostationary detedtased optimization technique for ANN in spectrum sensing.
requires long sensing time to have high detection probabilityThe major contributions of this paper are stated as under
[6]. For a bxed frame period, a longer sensing time decreases the
transmission time and thus reduces the overall opportunistidNovel ASA-based technique for the weight optimization in
throughput. The MF technique requires priori knowledge of NN to enhance its prediction and efbciency.
the signal for efpcient detection. In the absence of accuratéASA-NN for efbcient spectrum sensing by performing effec-
information of PU, the performance of the MF degrafles [  tual spectrum status prediction.
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3D non-cooperative spectrum sensing (3D NCSS) schemiéernative for optimizing the weights of NN. The ASA is
and temporal cooperative spectrum sensing scheme for exinployed to optimize the weights of NN and thus to minimize
trafbc control. the error in the prediction of spectrum holes. The information
National Instrument (NI) Universal Software Radio Periphabtained by CRs are transferred to the ground CR base station,
eral (USRP)-based real-time implementation of the prahich then makes the Pnal decision on the vacant spectrum
posed technique for temporal cooperative spectrum sensagilability. The ASA-NN-based ATC has training and working
scheme. phase, during the training phase network is trained using ASA
and in the working phase-trained network is employed for the
spectrum hole detection. The illustrative bPgures depicting Phase
3 | SYSTEM MODELLING I and Il is shown in Figurelsand2, respectively. The blocks in
Figurel comprise of CR base station, which is responsible for
With the affordable airlines coming into the market, the air trafaaking the Pnal decision on the presence and the absence of
bc is increasing with each passing year. Such increase ithaiPUs for ground to air communication. Blocks ATC and Air-
trafbc calls not only for infrastructural development but alswafts resemble incoming aircraft communicating with the ATC.
requires high technical advancement in the beld of wireld8®e working in Figurgéis explained as: in the case of allocated
communication governing the air trafbPc system. As the Rightquency band congestion for data transmission between Air-
trafbc is enormously increasing, so, the number of aircraft tuoraft and ATC, the CR technique is employed. For the proposed
ing into a station is also increasing immensely. The problenodel, aircraft perform spectrum sensing and establish link to
arises when the pilots of different aircraft tune the controll&TC via the spectrum holes, simultaneously CRs deployed in
frequency at the same time, thus leading to frequency conggeunds perform spectrum sensing so as to bnd the spectrum
tion and pilot may also accidentally override others. This sitlmles for ground to air data transmission. If the allocated
tion can lead to incorrect information delivered to the aircrafirequency bands are not congested then the routine data
To overcome such spectrum congestion problem, an efbcigmrainsmission is carried out in the allotted frequency spectrum.
spectrum sensing-based CRN is proposed for air trafbc con-
trol. The spectrum sensing efbciency is improved by incorpo-
rating novel metaheuristic algorithm ASA-trained NN. The af | MATHEMATICAL MODELLING
to Ground (A/G) communication frameworks are basic for the . o ]
aircraftOs secure routing. In this way, the progress to the GRe aircraft and CRs perform periodic spectrum sensing as
based systems ought to be bnished with most extreme condigcraft approaches ATC. The schematic representation of the
eration. While designing the CRN for the A/G communicatiorframe structure for spectrum sensing and data transmission is
it should make sure that its effect should be minimal on tf$ Shown in Figute For the data transmission, orthogonal fre-
existing A/G communication infrastructure. It is to be noticedluency division multiplexing (OFDM) scheme is employed with
that the existing A/G communication frameworks still depenéfSt fourier transform (FFT) of length 64 . Each subcarrier has
on analogue transmission frameworks. In this work, an efpciéi bandwidth of 10 kHz and total bandwidth of 0.5 MHz with
spectrum sensing technique has been proposed for the effeciidesubcarriers. Each 25 subcarriers are used for air to ground
CR-based Air Trafbc control. and ground to air transmission.
This paper proposes Phase | and Il for the air trafbc control. The conventional spectrum sensing considers the binary
For Phase |, aircrafts perform the spectrum sensing with tR¥Pothesis for the detection as in Equatigf(:
help of ASA optimization algorithm. As ASA behaviour which

employs gliding technique to bPnd the optimal solution depicts Ho %(n) = N;(n)

the landing the process of the aircraft. Moreover, the seasonal {Hypothesis 0 (PU Abseht)

constraints in the ASA is utilized and mapped for efpcient spec- Hi  yi(n) = x(n)+ N;(n) (1)
trum sensing by the aircraft during different weather conditions. {Hypothesis 1 (PU Presént)

So, ASAis efbcient in assisting aircraft to detect the vacant spec-

trum holes during the landing process. _wherex; is the PU signal which can be modelled as the zero
In Phase II, the cognitive radio sensors/spectrum sensifg.an complex Gaussian with the povjeN is the zero mean

sensors (CRs/SSs) are deployed in the ground level pgfinsiex AWGN (additive white Gaussian noise) with the power
forms spectrum sensing aided with ASA-trained NN. Thgg ﬁ [34,n= 1,2, f m mis the total sample number.

Conventional-NN technique uses gradient descent-based BP= 1 5 f k (K is the total number of aircraft arriving at the
algorithm for training and has loopholes like getting stuck ',Qrport at the same timg)= 1,2, f L (L is the total number

local minima and large convergence time. Whereas, ASA | 455/Sus or cognitive radio users (CRu) operating in a coop-
squirrel-based optimization technique in which the populatif,s,e manner).

of squirrels moves around the search space constituted by thﬁccording to the binary hypothesis, a spectrum sensing

optimization problem in search of an optimal solution. Squirrgl, | accept or reject samples and infer the presence and the
position varies during the process of search based on the ence of the PU based on the detection threshold]as |
solution position so obtained. The ASA has excellent balance Hy

between its exploration and exploitation abilities, moreover = 1 iK=1 ¥ (n) 22 , here is the detection threshold.
it has fast convergence rate. So, ASA is used as the possible Ho
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FIGURE 1 Flow diagram of the proposed CR-based ATC (Phase I)

Energy sample value greater than the threshold would be cepatial hypothesis can be written as in Equéijon (
sidered as the PU present and vice versa for the energy sam-

ple value lower than the threshold. Xh@) is thenth sample Bo D1 Ho
sensed by thigh aircraft. Similar hypothesis can be employed B1 D; Hy )
for the jth SS. B Do Ho

The two phases of spectrum sensing is consideredand Bs Do Hi

and is operated simultaneously for this research. The binary

hypothesis holds good for the ground-based CRu performimnere B= D; Hg represents that the aircraft is within the
cooperative spectrum sensing. For the aircraft to perforrange of PU TransmitterDReceiver (TxDRx) coverage and the
spectrum sensing, it is necessary that it performs spectrbtypothesis lgholds true (i.e. PU is inactive). Thus, aircraft have
sensing when it is near to ground (looking for ground cleararite® spectrum access opportunity. Thee®; H; indicates

to land), so that it can be within the coverage area of sortf@t PU is active and aircraft is within the PU TxDRx coverage.
PU transmitter. It is because, if aircraft performs spectrum From Equationslj and @), the modibed hypothesis can be
sensing outside the range of PU then there will be high faestulated as:

alarm. Thus, the aircraft can cause interference to the PUOs

transmission while performing down link data transmission to Bo ¥(n)= Ni(n) 0 d D;

the ATC. B ¥(M=x(M+Ni(n) 0 d D 3
From Figure4, it can be seen that §D D;) is the region in 2 ()= NN 1 6 Do

which aircraft is outside the coverage area of PU arepie- Bz ¥(n) = Ni(n) D; d Do

sents the radius of PU transmission range. The hypothgses H -
and H, for the aircraft approaching an ATC can be validate§ihe condition Band B cannot be employed as the spectrum
only when it is inside the radius.OThe formulation of the opportunity for the aircraft. OnlyyBs the available spectrum
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SU Transmitter kth sensing period. Tl'@‘ic(k) is the probability of the detec-
{20 NER tion of theith aircraft under non-cooperative spectrum sens-

S £ - ing scheme for thieth sensing period. For each aircraft as well
? as for the SSs, energy detector is employed for obtaining the

Spectrum Sensing

of cooperative spectrum sensing scheme performed by the SUs,
the samples are used for training the ASA-based NN at CR base
station/ (FC).

The test statistics for energy detection-based spectrum sens-
ing is written as in Equatiof){

m

x () °. (5)

o)==

=1
j i For large number of samples, the texi) as per the Central
— Limit Theorem (CLT) can be approximated as a Gaussian ran-

su Re;;;\gf (3D dom variable for the Hypothesegahd H, of Equation {)[12,
41).

FIGURE 5 Schematic representation of spectrum sensing for the case 3D
NCSS

g(k)
opportunity (i.e. the Aircraft is within the PU coverage and PU N (1+ SNRy ;) ﬁ,(1+ SNRy i)2_§ Hy,
is inactive). " reom
(6)
. whereSNRy, ; is the received SNR of the PU (TV received
4.1 | 3D NCSS by aircraft power) at theth aircraft.
Based on the approximation in Equat'(ﬁ’)mmePfNic(k) and
The two phases of spectrum sensing |s_con5|dered sm]yrk_c(k) can be estimated as in Equatiahaid 8), respectively:
taneously. The Phase | spectrum sensing performed by
the aircraft is termed as the 3D NCSS because each air-

craft performs spectrum sensing without any cooperation 2
with the other aircraft and also the spectrum sensing is PfNiC(k)z Q n N @)
performed during descent, so three-dimensional space has N

m

been considered. Figuseshows the schematic representa-
tion of spectrum sensing performed during the 3D NCSS
scenario/Phase I.

In Phase Il, the SSs are deployed in the ground near ATC per- PN°k) = Q (1+ SNRy, i)
forms spectrum sensing in cooperative manner (i.e. spectrum d. (1+ SNRy )2
sensing data of each SUs are beamed towards the fusion centre !
(FC), which makes the bnal decision on spectrum occupancy).
Therefore, Phase Il is termed as the cooperative spectrum sgigere is the detection threshold to mark the difference
ing scheme. between the PUOs presence and absence.

For Phase |, to evaluate the performance of spectrum sens-
ing the probability of detection and the probability of false ) )
alarm is employed. Based on Equatiey the probabil- 4.2 | Cooperative spectrum sensing by
ity of detection and the false alarm can be calculated asS®S/SUS/CRu

(8)

3 |24> >N

Equation {):
The energy detection samples from SUs are transferred to
PfNiC(k) = P(B, By) the FC. Th_e FC with the help of ASA-NN makes t.he cor-
Ne (4)  rect prediction about the vacant spectrum. The detailed work-
Py (k) = P(By By), ing of ASA-NN-assisted spectrum hole prediction by FC is

explained in Sectiofi. The cooperative spectrum sensing
WhereP]l\‘iC(k) is the probability of the false alarm ofitheair- ~ scheme employed by the SSs is explained as below: At FC, the
craft under non-cooperative spectrum sensing scheme for tifgarly weighted energy values from all SUs are obtained as in

energy samples while performing the spectrum sensing. In case
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Equation 9): 75

L X2198| Y9919

e W, ©) b il 5.
=1 : Z 2167
. A . . 304 X 34,1 s
whereg is the energy detected by ffie SUW; is the weight - v 2,084 :
coefbcient of thejth SU and it is calculated as shown in 25+ 21539 X 4.023
Equation (0): 20 s Y 34.51
@ @ Py Z15.13
SNRy, | 15 4 . ‘ P /
W= —— (10) 10+ & P
=1 SNR’V,J 10 \\\)\ . . . /{/,,/“ 0
0 \\\)"\ =

whereSNRy, ; is the received SNR at thitn SU. In Equa- 10 “‘"x\h\ //‘" 2 L
tion (10,1 j andl corresponds to other SUs. The weighted 20 S A/./“ 30
energy valugscan be approximated as Gaussian random vat 30 > 40
able as in Equatiof 1) for the Hypothesesd-and H, in Equa-
tion (1): FIGURE 6 Simulation-based representation of the proposed model

N(O 9 tunistic data transmission) is represente®; aand SNR

Gss N(L 1 (11) respectively.
(59 In Figure6, the hemispherical dome represents the PU cov-
h erage and within this coverage CRs are deployed as represented
where by blue circles and the approaching aircraft towards ATC is rep-
0 L 2 resented by black dots with coordinates.
= =W A
4
0= jL:1WJ - 5 | CONVENTIONAL FLYING

(12)

L
1 Wj(1+ SNRy, ) 3

1 L 2 1
= = Wi+ SNRy, )

m .

SQUIRREL SEARCH ALGORITHM

Flying Squirrel Search Algorithm (FSSA) is introduced by Jain
et al. 7 and it is based on the effectual foraging behaviour of
Bying squirrels. The search for the food sources depends on

Using Equationsi() and (9, the probability of false alarm and Weather, type of trees, aqd the presence an_d the absence of the
the probabmty of detection can be calculated as Equaﬁmns (prEdatorS. The Bylng SqUIrrels are more active in warm weather

and (L4):

PE(K)=Q —5— . (13)

Pk =Q —— (14)

than cold and are capable of obtaining better and abundant
food source during that period. The Rying squirrels consumes
two types of food sources, i.e. Hickory nuts (Hickory tree) and
Acorn nuts (Acorn tree). The Acorn nuts which are abundantly
available during warm weather is immediately consumed by
the squirrels whereas the Hickory nuts are stored for winter.
During winter Bying squirrels are inactive, so it is difbcult for
them to obtain new foods. Therefore, storing Hickory nuts
is one of the prime motives so as to withstand the extreme

In general, the opportunistic throughput of the SU performingreather condition.
data transmission in the absence of PU can be calculated as in

Equation {5

Topt: PHO

FtFtSt (1 P)log(1l+ SNR,  (15)

whereT °P denotes the opportunistic throughplt,and St

5.1 | FSSAnitialization

The algorithm starts with the initialization of parameters: Max-
imum Iteratiorr it Size of squirrel populatienM, Deci-

sion variable count/Number of dimensionsD, Probability

are the frame time and the sensing time, respectively. TfeoredatorOs preserce, Scaling factor s’ (value ranges
PHo denotes the probability that PU is inactive, generic fal§gtween 16 and 37), Gliding distance const&@fi and Deci-
alarm probability, and the SNR of SU (while performing oppo8ion variable bounds.
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5.1.1 | Random initialization of 3ying Normal tree to Acorn tree:-
squirrels
! ES) t+1 Fﬁtw + dIx GIx (FS; FS,E) '3 Rp
For the population countM and with the upper and lower Fo = Random Location otherwis(elg)
bounds as~' and ., respectively, then each Rying squirrels
can be randomly initialized using Equatiaj ( herer; andr, are random numbers between 0 and 1.
I | The movement of squirrel is governed by gliding aerodynam-
Fy, =R +rand)x (' F), (16)  ics principle4d. The foraging behaviour of the conventional

FSSA also governed by seasonal monitoring condition which
whereFg , representdth Rying squirrel in theth dimen-  maintains a proper balance between its exploration and exploita-
sion, rand) generates random number between 0 and fion abilities.

I =1,2,3f M,andz= 1,2,3f D. Imitating the behaviour of squirrel during winter season
The btness of a squirrel in a particular dimension represewsich makes the algorithm more realistic, season monitoring

its location and the quality of the solution. In the FSSA, optimabndition is employed in conventional FSSA. For this purpose,

solution location is mapped as optimal food source (Hickogeason constant in Equati@f)(is compared with season mon-

nuts) which is termed as the location of squirrel at Hickofiyoring condition in Equatior2().

tree. The next best solutions are termed as the location ofSeason Constant

squirrel at Acorn tree. The normal solutions (Acorn nuts)

are termed as location of squirrel at normal food source, i.e. D

Normal tree. After random initialization of the Bying squirrels, SG = . E

the squirrels with maximum Ptness value are noted as to be on 721 Bz e

the Hickory nut tree. The next few best solutions are termed

as squirrelsO locations on the Acorn nut trees. The rest Of§é%son Monitoring Condition

squirrels are considered to be on Normal tree. While foraging it

is important to consider the probability of predatorOs presence

(Prp) SMhin

(20)

_ 1 ©
" (365) (™ 25)° (21)

SG  SMin then the Rying squirrels are relocated using

5.1.2 | Movement of Bying squirrels towards ne\/\gquaﬁon 02

solutions
—rl [

Squirrels on Acorn tree tends to move towards Hickory nut tree, Fo=F + Levinx (R’ Fs). (22)

i.e. the best solution found so far using Equatidn (

" Fl+ d9x GIx (B EYr Ry . 6 | ADVANCED SQUIRREL ALGORITHM

®  Random Location otherwise 6.1 | Motivation

wheret is the iteration number ranging frop2Bf it™r;  As per the ONo Free Lunch Theoretf(tiie evolutionary-
is the random number between [0,1]. The @fis the ran- based optimization algorithmOs performance varies based on
dom gliding distance and its value ranges in between 9 dhé optimization problems. A distinct optimization algorithm
20 m B2, however a large value dff can cause deviation is suited for distinct problems. For an optimization algorithm
in squirrel movements and can result in underperformed opt® have a good performance, it should start with the good
mization algorithm. Sd? is divided by a scaling factor which exploration abilities. Towards the later stage, the search should
is a non-zero term and its value can range from 16 to ®e around the elite individual with better exploitation as com-
[42. The gliding constar@®® helps in maintaining the trade- pared to exploration so as to achieve a good convergence.
off between exploration and exploitation abilities of the FSSWoreover, the algorithm should make sure that it does not get
and its value is considered as42P The value oR ,is taken ~ stuck to local optima. Hence, in an optimization algorithm,
as0.1. there should be proper trade-off between its exploration and
Some squirrels which are on normal food source tree wgiploitation abilities.
move towards better food location, i.e. (Hickory nut tree and
Acorn nut tree) as per Equatioa§)(and (9:
Normal tree to Hickory tree:- 6.2 | Modibcation

st]"' d9x GIx (|:st1 FS;) r, Pp The main objective with the modibcation in an optimiza-
F{’l = ) (18)  tion algorithm is that it should perform search around elite
Random Location otherwise individual and should prevent local optima. In order to improve
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the FSSA, the modibcations are made to enable ASA to previenthis way, at the end of each iteration the best solution is
local optima and have better trade-off between its exploratiogtained and stored in the separate repository.
and exploitation abilities.

6.2.2 | Chaotic winter selection
6.2.1 | Crossover and mutation

The important factor to be considered for incorporating a

In conventional FSSA due to the lack of evolution, the diversiﬂzdipcation into an optimization algorithm is its application.

level is low and as the result the algorithm can get trapped to g ASA is employed for training the NN, i.e. weight optimiza-

local optima solution. But for a population-based algorithm ﬁl]or;hof the NtN to mh|n||m|z$_r:he error n:_the Icorre_ct plre(ldlctlt_)trr:
order to solve highly complex problem it is very much requirdll th€ spectrum holes. The conventional squirrel algorithm

to have high dimensional diversity, so as to ensure the Seae;g;%oystevyd;}s:nbut|ont_for lrfeal(ljocatlng thtethsquw(;eli thatt
process searches for the global best sol@éhn [ could not reach to an optimar food source at the end ot winter

The technique of crossover and mutation is incorporated grasonas showp n Equatlﬁﬂ) (2. This process of updatlng.
the conventional FSSA in order to obtain the optimum Weigﬁ g_squwrel posm_on s meant _for_enhancmg the exploration
values for training the NN. The entire population is divided lity of the algont_hr_n. THsev;dlstnbL_mon approach cannot
in two equal sub-populatic , such that I(= 1, f M 2 guarantee the optimized random blind search for the sparse

dz=1fD dF hz that (= M 2 ’M d targets44]. Moreover, the presence of bias can overshoot the
in_ 1Zf_D’)f ) and B, suc at (= [ M an target {4 and which is not suitable for training an NN. Hence,

: inusoidal chaoti roach is empl for rel ing th
The random initialization of the search agent/squirrels tPe sinusoidal chaotic approach is employed for relocating the

each sub-population is performed using Equatifn Each %qgli:iso%:riﬁg(iigf:ggtri;iﬁaizogé shown in Equatipn (
sub-population has its own population diversity and the alg&éed generate random sequen@ilas

rithm proceed with Pnding of new solutions using Equations
(17P9 for each sub-population separately. The best solution
and its position from each sub-population, i.e. (Squirrel position
at Hickory nut tree) is retrieved and stored in memory. The li
ear crossover is then employed to it as shown in Equagon (

and the solutions are stored in the memory.

CH;.1 = Ch CH2 sin( CH,), (25)

H_ereCh: 2.3 and the initial value GH is taken as 0.7, after
modibcation Equatio®® can be rewritten as in Equati@g)(

— -l u |
FS'?I = FStlh +(1 )FS;h, (23) Fs=F +CHx (R F). (26)

here is random number between 0 and=y}, FJ, are the
best solution from population set 1 and 2, respectiveli?%cénd 7 | THEORETICAL ANALYSIS OF ASA
is the solution generated after the crossover between two LESOMPARED WITH THE EXISTING
solutions from each sub-populatiomthtiteration. Thelf-s:ft is ALGORITHM EMPLOYED FOR
also stored in the memory. TRAINING NN
Post crossover all the best solutions stored in the memory
are mutated. The Gaussian Mutation is employed as showrB#&cause of the drawbacks associated with the Conventional-NN

Equation 24). [22, 23, the efforts were made in improving the performance of
NN using metaheuristic algorithm@8 [2T. The ASA is com-
F%m‘ = st‘ +(FY R)xgd0, ) pared with the hybrid Particle Swarm Optimization Gravita-
¢ tional Search Algorithm (PSOGSA), PSO, Gravitational Search
FY = R+ (RY R)xgd0 ) (24) : : i
Sih Sih s s ' Algorithm (GSA), ABC Algorithm employed in training the
FSZT‘ = R + (R F)x g40, ), NN. All the mentioned algorithms are used in weight and bias

optimization of NN so as to have minimized error between the
here F%mt' F%Tt’ Fg;:t are the mutated solutions of crossoverarget and the predicted information about the presence and the

solution and the best solutions from each sub—populatioﬂ?Sence of P.U' . .
respectively. Thgd0, ) is the Gaussian mutation factor with The PSO'is b ased on .the Bocking beh.awour of the swarms
0 mean and as the variance. In order to have emphasis o[#q’ the governing equations of PSO are :
exploration and exploitation during different stages of itera-
tion, i.e. to ensure high exploration during the start of iteration
and high exploitation during later stage, tle decreased as
t+1)= (t)xel. V"= WVt + C R (Personalbest X')
The mutated solutions stored in a repository are compared
with the solutions in memory and the best solution is selected. + C,Riy(Globalbest X'), (28)

X=X+ vt (27)
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Algorithm 1 Pseudocode of Advanced Squirrel Algorithm here acceleration of GSA is incorporated in the velocity
1: Initialize variables and the search space (Weights and biases of the Nnj!Pdate of the PSQH- ' ' .
2: Divide the population of the Search Agents into two sections be-le—h{leaAt?]g F?(I)gscl)t:gzntlfltshke)feeed :nr:j f'{?‘lrsgelggret)izaevi)oougu?:ltfgs
3: Randomly initialize the position of the each search agents in each sub Pé);a.mt&@d as employed bee, onlooker bee. Both FSSA and ABC
4 For eachiteration are based on the population division but in FSSA the popula-
5:  For each Decision Variables tion is divided after the initialization and based on the btness
6: Evaluate the Positions of the Search Agents level §2.
7: (Each Search Agents’ position represents the values of the variables,-il.-@?vgg%QGSA ISa p(_)werfl_JI optimization algorithm and has
and biases) superior performance in training NN as compared to PSO,
8 Evaluate the Fitness Function GSA, and ABCZ3, 2T. With hybrid PSOGSA, the perfor-
9 ComputelFF andF! mances of NN enhances but with the cost of increase in the
S o N _ N complexity. Due to the hybridization, the computational com-
10: Perform linear Crossover of the best solution’s position from eaci&lexity of PSOGSA increases. The order of computation of
sub-population ’ o .
1 F; pf Gaussian Mutation of C " dthe best géA isO(n?) [49, heremindicates the variable number. The
. erform Gaussian Mutation of Crossover position an epests %S order Of ComputatiOIO(snX n) [5(] Wlth m and n
osition of each sub-population . . . . X
P _ _ pop _ o considered as variables and population size, respectively. The
12: Obtain the optimal solution for the current iteration PSOGSA and ABC have high computational complexity as
13: Check for the maximum iteration (O(mx n) + O(n‘?)) andO(nS), respectively!f]. The ABC has
14: End higher complexity than PSOGSA, PSO, and GSA.
15: Go to Step:6 if iteration< Max iteration This research work also focussed on enhancing the perfor-
16:  End (iteration Max iteration) mance of NN using ASA without much increase in the compu-

tational complexity. In squirrel-based algorithm, the complexity
depends on the population size. Therefore, in ASA mutation,
crossover and chaotic approach is employed without increasing
the population size. So the complexity remai(dsx D)

here, Equatior?(?) governs the position and Equati8g @ov-  which is lower than PSOGSA, ABC, GSA, and comparable to
erns the velocity update of the ith particle at{)th iteration,  conventional PSO. The ASA has better performance in terms of
W is the weight coefbciefly, C; are the cognitive and social prediction accuracy and efbciency evident in Séctooom-

coefbcients, respectivel§j] pared to PSOGSA, PSO, and ABC.
The GSA algorithm is based on the gravitational law of

the physical bodiegf. In GSA, the velocity and the posi-
tion of the search agents are updated as in Equatrad 8 | ASA-TRAINED NN

(20.

17: Returnthe optimal solution

The proposed ASA is employed for optimizing the weights and
t+1 _ \st the biases of the NN used in the prediction of presence and
Vit =V xrands 4, (29) the absence of the PU. The optimization is used because the

conventional-NN employs the BP algorithm for training NN
and the BP algorithm is based on gradient descent method
which has the tendency of getting stuck to the local optima
and has a slow convergence 122e24. If the weights and the

where OaO is the acceleration of the search agents. The GSARGQs of an NN are not properly optimized then it will result

rithm is capable of Pnding the global optimum but has a proven 5 high deviation in the prediction error, which can further
drawback of slow search speed as iteration reaches its maxiny[fe incorrect prediction of the PUGs presence and can result
[27] and GSA also lacks good exploration ability. The PSO, giihe interference to the PU transmission. Therefore, it is very
the other hand, has high exploration ability but suffers from P'RAportant to obtain the optimized value of the weights and the

mature convergenc&]. o _ biases so as to minimize the error in the prediction of an NN
In PSOGSA, PSO is hybridized with GSA so as to haV@utput

proper trade-off between exploration and exploitation ability The ASA-NN starts with random initialization of the weights
[27. The hybridization of PSO and GSA is carried out is thgnq piases to the NN. For the weight and bias optimization,
low level co evolutionary heterogenous-based hybridiZa}ion [ihe NN structure considered is Pxed and it comprises of one

as shown in EquatioB1): input layer, one hidden layer, and an output layer. The num-
ber of input nodes is denoted by ON,O hidden nodes as OH,C
and the output nodes as OM.O For each learning epoch, the
output of theah hidden nodeD(h,) can be calculated as in

Xth=xte vt (30)

V"= W' + C Ry d + C;Rx(Globalbest X;'), (31)
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Equation 82): /‘ﬁ

0

1

o= o

(32)

wherec= 1,2, f Handh, = ;f"bcxg B, Wycis the weight )
value betweegh input node andth hidden node. The bias SRPUSPVSE) <[ VR .S _._.._..S."'Rm’.l]—-. 744
connected to theh hidden node is representedibgndX, is s
the input fromgh input node. Clc Frequeny(o e o) o). o] ——of ::: v
The hidden nodes are connected via weigths and biases I
the output node and the output from the output node can br Budwidh(BW )= [BW1) BN(.... B\’q"',".']—-._:-}':-_f val

represented by Equatict; S
CtreFrequene([2 1) 10),.... L) =l 5

H

o= wOMh) b (33)

=1

hereo= 1,2f M, wis the weight connection from ttik hid- 0
den node to thah output nodely, is the bias connected to the
dh output node. S

The erroré (btness function) and its average value is calc'l:JI—GURE 7 pictorial ation of NN model emoloved .
. . ICto
Iated asin Equatlon% and 63 ral representation o model employed 1or spectrum

prediction

- o o & o > > ® b ©

¢ = Ay TS, (34) 8.1 | ASA-NN for channel prediction

5 The ASA-trained NN is employed for efbcient channel pre-

¢ diction in CR-based ATC. The PU mainly considered is the

D (35) TV Broadcast system of a particular geographical location
(i.e. United Kingdom). For training NN, it is required to
have optimized weights, biases, and proper training input sam-
ples such that NN should be efbciently able to differentiate
between PUOs presence and absence from the channel state
information.

In a TV band, the presence of TV signals can be identi-
ed by its centre frequency, bandwidth, and the signal power
level. Moreover, TV signals employs modulations, therefore
they exhibit statistical properties as a periodic function of time,
i.e. the cyclostationary prope#ly For the correct prediction
from the channel state, the input samples employed for training
Figure7 shows the NN model and Fig8eshows a pictorial are SNR, Bandwidth of the PU, the centre frequency of the PU,
representation of ASA employed for weight optimization of aand the cyclic frequency associated with each centre frequency
NN. During the training phase for a given training input sanmof PU. The ASA optimizes the weights and biases of NN in the
ples, the weights are randomly initialized. The random weigM&TLAB environment using pre-dePned samples with the goal
are then fed to the ASA optimization as shown in Fiyiiee  of minimizing the error to % 10 0.

ASA starts with the sub-population formation and random ini- The proposed ASA-NN employed for channel prediction
tialization of search agents based on Equati@#((9 inthe  comprises of a training period and a working period. The train-
search space of the weight optimization to minimize the errimg period will be the same for SU of the 3D non-cooperative
as in Equation3Q). This process of crossover, mutation, anégpectrum sensing scheme and the CRs of the cooperative spec-
chaotic winter selection is then employed based on Equatidnsm sensing scheme. In the working period of the 3D non-

(23, (24), and (26), respectively, so as to obtain the optimizeabperative spectrum sensing scheme, SUs (Aircraft) makes the
weight values to minimize the error. In this way, initial weigltnal decision on the channel state based on the knowledge
values are then optimized using ASA and fed back to the Nd&se and the ASA-NN of the training period. In the case of
for the correct detection of the spectrum holes. Figjuoen-  cooperative spectrum sensing, CRs perform the spectrum sens-
prises of CRs whose spectrum sensing samples are fed toitigeand the data is sent to the FC, where trained ASA-NN
ASA-NN at CR base station/FC for the channel prediction. is employed to make bnal decision based on received samples

hereTy = Target output corresponding to tjie input node
for thedth training sample.

AS = Actual output for theh input node corresponding to
thedth training sample.

The objective function for the ASA for the weight and bia%
optimization in NN is as Equatioft)

min e (36)
wb



EAPPENET AL. 1337

ADVANCED SQUIRREL
R . ALGORITHM B ais e e e i s
f' d ; -. |& > -~
. = £
= - %
P = \
‘_.é - \\

Case 1:1y = Py 1
Case 2:R? < By,

,,,,,

Lacarion of Squrs i namal wr

ikt

Case Liry < By

Case 3R < B

M
"y

FIGURE 8 Pictorial representation of ASA-based weight optimization of NN

from CRs. In the proposed work, the real-time input samples Equation 87) [57.

are obtained using USRP N210 and B210, these input sam-

ples are then fed to the ASA-NN in the MATLAB environ- d n

ment. The ASA-NN makes the binary channel state prediction WVivp = Vi )

(1: PU is present, 0: PU is absent) based on the input sam-

ples. With the help of input samples and the optimized weights

and bias values, the proposed ASA-NN is able to efbciently hereTV . is the power received at TV recei®fy is

detect the spectrum holes and can enhance the opportunis_the power received by TV receiver for a reference distance

tic throughput of the SU. The input sample description is as of d,, asd, is considered 10 m, so for such a small value

follows: of reference distance ti¥, is considered equal to the
TV transmitter powen = 3,d is the distance between TV

1. SNR: It is considered that the TV transmitter is equipped transmitter and TV receiver.

with omnidirectional antenna and it is transmitting sig- With noise power spectral density gsaNd specibc band-

nal with a transmission power ranging from 10 to 50 KW idth B, the SNR of the TV transmission received can be
[51. As the TV transmission is assumed to have coveragewyritten as in Equatior3).

up to 2.5 km, so an SU within this coverage can oppor-
tunistically utilize the spectrum to enhance its bandwidth.
The TV power received within its coverage area depends
on the distance between its transmitter and receiver. The
relation between TV transmitted power and the received As the distance increaséNRy, decreases. The Federal

power as the function of distance can be denoted as in Communications Commission (FCC) has dePned certain

; 37

Wovp

N (38)

SNRy, =
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TABLE 1 PMSE bandwidth and power stationary property. The wide sense stationary noise signals
PMSE devices pRMSE_ B exhibit no correlation yvh(_are as modulateq PU signal exhibits
(@Bm 8) correlation due to periodic nature of the sigids [

Wireless microphone 78 200 kHz The cyclic spectral density of the received PU signal dur-
In-ear monitors 78 200 kHz ing spectrum sensing in Equatidh ¢an be calculated as
Talkback 78 200 kHz in Equation 40) [57:
Data links 78 200 kHz
Program audio links 78 200 kHz _ 2 f

gramaudio™ S(f, )= Ry()e’s ', (40)
Program video links 65 8 MHz r=

whereR, () can be calculated as in Equatiai): (

minimum threshold level foBNRy, [51, 53, 5). So
the SNRy, samples between its max and min bound are
employed as one of the input for training ASA-based NN.
The TV frequency band in UK. 470790 MHz (channel
21D60) in any particular location not used by digital terres-
trial television (DTT) ?OUId be useq by low power device_s. signals which are wide sense stationary does not have any
The P.rogra'mme Malgng and Special Eyents (.PMSE) equip- eriodicity associated with it, so their autocorrelation func-
ment like wireless microphone and audio devices have beerﬁon is b4
using these white spaces on opportunistic manner with the '
assistance of white space database (WSDB). The CR devices R
(CRd)/ white space devices (WSD) operating in these fre- R()=Ry(). (42)

uency range should not only consider the presence of DTT
gut alsyo tthMSE before trimsmission. TEe PMSE power As the cyclostationary signals comprises periodicity, there-

RA()=EMn+ )y (n )e? (41)

here , is the cyclic frequency. When cyclic frequency is
equal to fundamental frequency of the signal then cyclic
spectral density shows pegk [n addition to that, noise

can be calculated as in Equatif) [55. fore, their autocorrelation function can be written as
PMSE _ pSU PMSE 1 .

Faamey = Pz "+ 1 Dm * g+ o+ o R()=  Ry()e? =, (43)

39 r=

WhereP(';"‘é'r?]EB) is the PMSE signal power over its channel _ _ . _

bandwidthB, Py’ PMSEis the power spectral density limit where 4 is equivalent with peridkt

of the CRd signal to avoid interference with the PMSE sig- a

nals,nﬁé) is the coupling gain between CRd and PMSE sig- a= 7, a= 012 f. (44)

nals. The coupling gain margin is denotedyay r( f)qp

is the ratio of PMSE signal power over CRd signal power The cyclic frequency is used as one of the input feature for
at PMSE receiver. Thef is the channel separation (DTT-  detecting the PU signal.

8 MHz) between CRd and PMSE signal. The value 19.03

is equivalent to 10lgg80) and it converts PSD of CRd

signal from 8 MHz to 100 kHz. Therefore, PU SNR val9 | SIMULATION PARAMETERS

ues considered comprisesSt§Ry, signal to Noise Ratio AND RESULTS

for the TV signal and th8NRyse signal to Noise Ratio

for the PMSE signal. The Talllshows the PMSE band- The simulation results depict the performance of ASA in train-
width and the associated power. ing the NN for efpcient spectrum sensing in terms of the prob-

2. Bandwidth of the channel: The TV broadcast system inadility of detection, probability of false alarm, opportunistic
specibc geographical location operates at a particular bahdsughput, and the bit error rate (BER). The BER for different
width. In the United Kingdom, TV broadcast channel hatraining algorithm is estimated based on the efbciency of each
8 MHz as bandwidth and this information is employed foalgorithm in predicting the accurate spectrum holes and trans-
training the ASA-NN as a second input. In addition to thatpitting the data efpciently to CR receiver.
the bandwidth of the probable PMSE devices operating in The simulation parameters of each metaheuristic algorithm
the TV white space is also considered. employed for training NN are as follows:

3. Centre Frequency of the channels: The employed centre freFhe number of CRs deployed in the vicinity of the airport is
guency for training NN is as TV white space frequencies agnsidered as 10, 5 aircraft is considered to be approaching ATC
shown in Figuré. at a time, the number of spectrum sensing samé8. The

4. Cyclic Frequency (cyclostationary features of the signal): Thetower transmission power is assumed to be vary from 10
periodicity in a signal or in its mean and autocorrelatidn 50 kW depending on the geographical location of the place.
results in the cyclostationary properties. The noise signal dare noise power spectral density is’1the PU bandwidth is
be differentiated from the PU signal by employing the cycl8-MHz. The CRs and CR base station are assumed to be within
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TVCHANNEL [ 21 2 23 24 25 26 27 28 29 30
Freq. Range 470- | 478- | 486- | 494- | 502- | 510- | 518- | 526- | 534~ | 542-
. 478 MHz | 486 MHz | 494 MHz | 502 MHz | 510 MHz | 518 MHz | 526 MHz | 534 MHz | 542 MHz | 550 MHz
TV CHANNEL 31 32 33 34 35 36 37 38 39 40
—— 850- | 558 | 566- | S574- | S582- | S590- | 598- | 606- | 614- | 622-
Q- TANG® | 558 MHz |566 MHz | 574 MHz|582 MHz [500 MHz | 598 MHz | 606 MHz | 614 MHz [ 622 MHz | 630 MHz
TV CHANNEL 41 42 43 44 45 46 47 48 49 50
G 630- | 638- | 646- | 654- | 662- | 670- | 678~ | 686- | 694- | 702-
e T 638 MHz | 646 MHz | 654 MHz | 662 MHz [670 MHz | 678 MHz | 686 MHz | 634 MHz | 702 MHz | 710 MHz
[
TV CHANNEL | 51 52 53 54 55 56 57 58 59 60
Freq. Range 710~ | 718- | 726- | 734~ | 742- | 750~ | 788~ | 766~ | 774- | 782-
e 718 MHz | 726 MHz | 734 MHz | 742 MHz | 750 MHz | 758 MHz | 766 MHz | 774 MHz | 782 MHz | 700 MHz
TV CHANNEL 61 62 63 64 65 66 67 68 69 70
Freq. Range

[ interteaved Spectrum available for wireless microphones and IEM's.

[:]Channel 38 available for wireless microphones and IEM's on a shared license basis.

I C1o2red spectrum as a result of DSO. No longer available for wireless microphones and IEM's as of 31 December 2012
:W Channels 31-37 available for PMSE use on a six-month rolling notice period.

[ License free spectrum available now and not affected by DSO, Note only 2MHz slice of channel 70 is available.

FIGURE 9 TV carrier frequency allocation in the United Kingdah [

TABLE 2  Simulation parameters of metaheuristic algorithms employed for training NN

PSO/PSOGSA GSA ABC ASA

1. Personal Coefbcient and Social 1. Gravitational Constantl 1. Population Size 100 1. Population Size100
Coefbcient C_1=C_2=2

2. Inertia weightv= Linearly 2. Initial search agent velogity0,1] 2. Maximum lIteration 500 2. Maximum Iteratien 500
decreases from 0.9 to 0.4

3. Population Size 100 3. Descending Coefpbcier20 3. Total NN Layer 3 3. Gliding Constant 1.9

4. Maximum lteratios 500, 4. Initial value of acceleration, mass 4. Hidden Layer Size10 4. Random Gliding Distarnee9D20 m
Descending Coefbcient20 of the search agents setto O

5.R, R, = [0,1] 5. Population Size100 5. Scaling Facter 16D37

6. Total NN Layers 3 6. Maximum Iteration 500 6. (0)=1

7. Hidden Layer Size 10 7. Total NN Layers 3 7. Total NN Layers 3

8. Gravitational Constantl 8. Hidden Layer Size10 8. Hidden Layer Size10

the distance of 1 km from the TV transmission tower. The TWme training, USRP N210 (Number of N24(2, USRP 1
tower transmission range is assumed to be 2.5 km, the probad USRP 2) and B210 (Number of B21Q, USRP 3) are
bility of PU being active is considered to be 0.1. The Zableemployed. In the training phase, USRP 1 and USRP 3 transmit
shows the simulation parameters of metaheuristic algorithatdifferent SNR levels, bandwidth and carrier frequency so as
employed for training the NN. to replicate the TV and PMSE transmission. The USRP 2 has
the priori knowledge about the presence and the absence of PU
signal, trains the NN using the sensed samples and trains the
9.1 | Real-time training of NN with the help ASA-NN in the MATLAB environment.
of USRP, LabVIEW, and MATLAB During working phase, the USRP 2 act as the FC. The USRP
2 receives the sensed samples from USRP 1 and USRP 3, and
The NN is brst trained for the known samples of the receivad fed to ASA-trained NN in the MATLAB environment and
PU and PMSE SNR, the PU and PMSE centre frequency, Phhkes the Pnal decision. Figu&endl1shows the test bench
cyclic frequency, PU and PMSE signal bandwidth. For the resétup employed in this work. The training of NN starts with
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FIGURE 10 USRP 1 and USRP 2 (N210s) placed at a distance of 4 m (Testbench for the proposed algorithm)

values of NN to minimize the error in correct detection of the
spectrum holes. An efbcient algorithm can successfully detect
the presence and the absence of PU. The detection perfor-
mance of the NN training algorithm is evaluated in terms of
probability of detection. The better probability of detection
signibes the efbciency of the algorithm in training the NN
for the correct prediction about the presence and the absence
of PU.

The probability of detection of each algorithm is evaluated
with respect to probability of false alarm, sensing time, and the
received SNR of the PU.

1. Impact of Probability of False Alarm on Probability of
Detection for each Algorithm:
Figurel2shows the receiver operating characteristics (ROC)
for spectrum sensing with respect to probability of detection
and probability of false alarm.
Once the NN is trained using proposed algorithm, then the
probability of detection and probability of false alarm is plot-
ted by employing the real-time spectrum sensing samples
random initialization of the weight and the bias values. Dur- using USRP 2. The USRP 2 performs wide band spectrum
ing epoch 1, for the corresponding values of the weight and sensing in the TV white space band (4700790 MHz). From
bias, the output is generated and compared with the target valueghe sensed samples, the received PU SNR, its bandwidth,
(prior information about PU). The error value and the associ- cyclic frequency, and centre frequency is obtained. These
ated weight and the bias values are then called via applied optisamples are fed to the trained NN which predicts the pres-
mization algorithms. After brst iteration, the optimized weight ence and the absence of PU. For the particular SNR value
and bias values for the minimized error value is fed back to theand based on the NN prediction, the probability of detec-
NN, which then generates the output and compared with the tion is estimated via employing Equatiah. (Vith the given
target. The error signal along with the weight and bias valuesSNR SNR,, andSNR»,sg and for the predicted probabil-
are then again called by the optimization algorithm. The pro- ity of detection, the optimal detection threshold is estimated
cess continues until the target error minimization value has beerusing Equatior©)
reached or the iteration reaches the maximum level.

FIGURE 11 USRP 3 (B210) with horn antenna

- ng,sj(k) 14 1 (45)
9.2 | Evaluation of the detection performance _ , .
of the proposed and the existing algorithm Employing the above equations &nd45), the probabil-
ity of false alarm is estimated using Equati@Gn Erom
The detection performance of the proposed ASA-trained NN- Figurel2 it can be seen that for the probability of false
based spectrum sensing is compared with the PSOGSA-NN,alarm= 0.1 and sensing tin¥e 5 ms, the probability of
PSO-NN, ABC-NN, GSA-NN, and Conventional-NN. The detection for the ASA-trained NN is better as compared
efbciency of the optimization algorithm in training NN is t© the other algorithms. The probability of detection of

deduced by its effectiveness in optimizing the weight and bias®SA-NN is 1, whereas for PSOGSA-NN it i9.9. The
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FIGURE 12 Probability of detection versus 1
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FIGURE 13 Probability of detection versus PSONN
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PSO-NN has the comparable performance with the ABC- The PU SNR here comprises 8NRy, and SNRyse
NN of about 0.75. The detection probability for the GSA-  Figure14 shows the probability of detection for varying
NN and Conventional-NN are0.6 and 0.55, respectively. Received SNR values of PU signals. High SNR values guar-
2. Impact of Probability of Sensing Time on Probability of antees better detection performance of the NN. The pro-
Detection for each Algorithm: From Figurg it can be posed ASA-NN is able to reach high detection probability of
inferred that as the window of sensing time increases the 0.98 even at low SNR value of 0 dB. The proposed ASA-
probability of detection also increases. The increased sensNN is very efpcient in detecting the presence and absence of
ing time increases the accuracy of the sensed data, eventualBU for both high as well as for low SNR, as compared to the
the prediction error reduces. But if the sensing time is kept existing algorithms.
increasing then the transmission time reduces which evdn-Real-Time Detection of the Spectrum Holes using pro-
tually reduces the opportunistic throughput and increasesposed ASA-NN.
the energy consumption. Optimizing sensing time is another  Once NN is trained using ASA then the ASA-NN-based
problem which we have dealt in our previous work. For a spectrum sensing is carried out using USRP 2, which act as
frame period of 50 ms the maximum sensing time consid- FC. The FC receives sensed data from the USRP 1 and USRP
ered is 5 ms. The detection performance of the proposed 3. Based on the sensed samples and trained NN, the USRP
ASA-NN is better for varying sensing time as compared to 2 makes the Pnal decision on the presence and the absence
the existing PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN, of the PU. Once the PU is detected then the threshold is
and Conventional NN. varied based on Equatioi§)(and (4). The detected PU is
3. Impact of Probability of Received PU SNR on Probability of then displayed via LabVIEW front panel GUI, as shown in
Detection for each Algorithm: Figuresl5andi16
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1 PSO-NN FIGURE 14 Probability of detection versus
PSOGSA-NN SNR (received SNR of PU)
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Start Frequency || Debected Frequeney v Frinary Savaed

trained NN and has optimized the error in detection of the
spectrum holes via its novel mutation, crossover, and chaotic
winter selection scheme. The bgures corresponding to the
receiver USRP is accompanied by channel noise, but when
there is interference with the noise the received signal is as
shown in Figuré7and it is very difpcult to trace the origi-
nal transmitted signal.
i bbb i 2. BER analysis of different optimization algorithm employed
Spectrum Disploy wge ] e BY in training NN:
The efbciency of the optimization algorithm in training
NN to effectively detect the spectrum holes is analysed
with respect to BER as shown in Figuté&®2. From the
BER analysis, it can be inferred that the proposed ASA-
NN because of its crossover and mutation scheme is able

sisp Fraquency
o
Bendwidch

o ub o oh o m S s S SM s n s to obtain optimum weight values for correctly detecting the
: ; spectrum holes and has efbciently transmitted data from
USRP 2 to USRP 3.
FIGURE 15 NIUSRP-LabVIEW based detection of PU 3. Opportunistic throughput analysis of different optimization

algorithm employed in training NN:
The opportunistic throughput of a CRN is the through-

9.3 | Evaluation of the transmission put obtained at SU receiver. This throughput is calcu-
performance of the proposed and lated as per Equatioiq for transmission of data via
the existing algorithm detected spectrum holes. Better detection of the spec-

trum holes results in enhanced throughput. Therefore,
Based on how efbciently an algorithm-trained NN is able to efPciency of the optimization algorithm in training NN
detect the spectrum holes and effectively utilize it for the for efPcient prediction of the spectrum holes is analysed
transmission of data, the performance is evaluated in termswith respect to opportunistic throughput as shown in
of the BER and opportunistic throughput. The USRP 2 per- Figure23E25
forms the spectrum sensing and detect the spectrum holes
using optimization algorithm-trained NN and transmits the data . . )
to the USRP 3. The distance between USRP 2 and USR®.4 | Comparative analysis of each algorithm
is varied so as to have different values for the received SU
SNR. The comparative analysis of ASA-NN with the PSOGSA-NN,
PSO-NN, ABC-NN, GSA-NN, and Conventional-NN is as
1. ASA-NN based transmission of signals from USRP 2 g&hown in TableSES. Table3 shows performance evaluation
USRP 3 using different modulation scheme: of each NN training algorithm for probability of detection at
From FiguresL 7019, it can be inferred that with the pro- probability of false alarm 0.1. As discussed in the point
posed ASA-NN it is possible to efbciently detect the sped-of Subsection 9.2, the ASA has effectively improved NN
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FIGURE 16 Detected PU inthe TV band

FIGURE 17 Signal (PU interference)

as compared to other optimization algorithm for efbciently
detecting the presence and absence of PU. The ASA algo-
rithm has the tremendous trade-off between its exploration and
exploitation abilities. The chaotic behaviour introduced in ASA
(Equation26) has further enhanced its exploration ability with
which it tends to bnd global optimum solution.

Table4 depicts the performance evaluation of each train-
ing algorithm with respect to probability of detection and sens-
ing time.

Table5 shows the opportunistic throughput for each training
algorithm for varying SNR at SU Rx. As the result of efbcient
spectrum prediction and data transmission, the opportunistic
throughput of ASA-NN is better as compared to the PSOGSA-
NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.

In Tables3, 4, 5, and6, the performance of the proposed
ASA-NN is compared with the existing (PSOGSA-NN, PSO-
NN, GSA-NN, and Conventional-NN) for parameters (Vary-
ing P, sensing time, and SNR). Tablkghows by how much
percentage there is improvement in the Probability of Detec-
tion and opportunistic throughput using ASA-NN as com-
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FIGURE 18 Transmission at 16 QAM
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pared to the existing (PSOGSA-NN, PSO-NN, GSA-NN, andf!GURE 19  Reception at 16 QAM

Conventional-NN). From the best of authorsO knowledge, so far
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in the spectrum sensing based on NNs were carried for eitHd
P versus SNRS[, orP versus? [60, 6] or,P versus sens-

ing time. All the three parameters are considered simultaneously
(Tables3EX) to prove the efbcacy of the proposed algorithm.

9.5

The convergence curve signibes the convergence of the opti-
mization algorithm towards the best values of the variabl%’smq0 i
o

Convergence curve analysis
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FIGURE 27 Convergence curve of PSOGSA-NN for population size 50,
P, 150
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FIGURE 28 Convergence curve of PSO-NN for population size 50, 100,
150

resulting in the minimization/maximization of the objective
function. The aim of each optimization algorithm is to train
the NN by optimizing the weights of NN so as to obtain the
minimized error deviation between the observed and the target
sample values. The training is carried out in the training period,
the trained NN is then implied for predicting the PUOs presence
and absence.

The convergence curve is an important paradigm showing
the efpciency of the optimization algorithm during the train-
ing phase of an NN. The optimization algorithm having mini-
mized error deviation at the end of the training phase iterations
implies that the algorithm has obtained optimum weight val-
ues for which the deviation between the observed and the tar-
get value is minimum and has trained the NN in best way. The

FIGURE 26 Convergence curve of ASA-NN for population size 50, 100pptimal trained NN can efbciently detect the presence and the
150

absence of PU during the working phase.



Figure26 shows the convergence curve of the ASA-NN for From Figure32 and Table8 it can be seen that the ASA-
the population size 50, 100, 150. It can be seen that as td has shown signibcant improvement as compared to the
population size of an optimization algorithm increases, it coexisting PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN and
verges towards better solution, i.e. minimum error deviatioBonventional-NN. ASA-NN has shown 96.8% improvement as
But increasing population size to a very large value can increasapared to PSOGSA-NN for the population size 50.
the computational time during the training phase.

Similarly FigureA81 shows the convergence curve
for the PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN, and 10 | DISCUSSION
Conventional-NN, respectively. From these bgures, it can be
inferred that the population size enhances performance of Binthis work, NN is used for spectrum prediction, and from
optimization algorithm. the best of our knowledge ASA has been employed for the pbrst

The combined comparative analysis of the convergenime for training the NN. The question arises on the use of
curve of each algorithm for the population siZb0 is shown the NN for spectrum prediction. In Sectignthe drawbacks
in Figure32 Each algorithm is then analytically viewed viassociated with the conventional spectrum sensing have been

Tables. discussed, which pointed towards enhancing the performance
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FIGURE 29 Convergence curve of ABC-NN for population size 50, 100FIGURE 30 Convergence curve of GSA-NN for population size 50, 100,
150 150



; ; T : ; FIGURE 31 Convergence curve of the
Conventional-NN for population size 50, 100, 150
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TABLE 8 Converged error deviation for different population size of each/vorking period, This can reduce processing delays and improve

training algorithm the efbciency of spectrum utilization.
S.No. Training algorithm Population size Error deviation Another important question arises, why NN-based spectrum
n ASANN 0o 313 100 prediction should be preferred over conventional spectrum
' sensing with optimized parameters? The different optimiza-
100 1.0 10 20 tion algorithms have been employed for improving the con-
150 3.9 10 %' ventional spectrum sensing technigé@sd2, 6B In addition
2 PSOGSA-NN 50 9.7810 5 to that, the joint optimization scheme has also been employed
100 1.04& 10 16 for improving the energy detection-based spectrum seiising [
150 2 05 10 24 65. These optimization schemes can only optimize the param-
3 PSONN 50 136 10 3 gters of spectrum sensing tgchmqge t_)ut cannot completely mit-
’ igate the drawbacks associated with it, and NN has better con-
100 1.2410 10 vergence towards the desired solution as compared to optimiza-
150 25510 % tion algorithmsde.
4 ABC-NN 50 140x 10 3 The Conventional-NN using gradient descent-based BP
100 6.7% 10 7 scheme has the tendency of stucking to the local optima solu-
150 2 3% 10 18 tion [22D21t Therefore, the ASA-NN, because of its excel-
5 GSANN 50 196 10 2 lent exploﬂqtlon and explorathn'abllltles has been employed
for the efpcient spectrum prediction. The spectrum prediction
100 4.0 10 ° performed by ASA-NN has outperformed the PSOGSA-NN,
150 2.6x10 '3 PSO-NN, ABC-NN, GSA-NN and Conventional-NN in terms
6 Conventional-NN 50 2.%010 2 of improved ROC (Figurg?), high detection probability with
100 3.0% 10 3 respect to sensing time (Figlis improved detection proba-
150 9.34 10 6 bility with respect to SNR (Figuté), better BER (Figuresb

22), and better opportunistic throughput (Fig@&®5).

of the conventional spectrum sensing. Therefore, the NN is

employed to enhance the performance of conventional eneib%« | CONCLUSION

detector. The conventional energy detector has very poor per-

formance in low SNR. The other spectrum sensing techniquEe issue of spectrum congestion during air trafpc control
like the MF and cyclostationary detector are highly compléias been investigated, and 3D NCSS and cooperative spec-
so it is not preferred to employ NN on those technigiigs [ trum sensing have been proposed in this article. To overcome
The NN once trained using ASA in the training period, cathe drawbacks associated with conventional spectrum sensing,
efbciently be employed for spectrum prediction during ti8e novel Advanced Squirrel Search Algorithm-trained NN has



FIGURE 32 Combined convergence curve of 10°
different algorithm for population size 150
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been proposed for efbcient spectrum prediction in CRN-baser
air trafbc control. The efpciency of ASA-NN during train-
ing phase is evaluated in terms the ROC and probability of
detection with respect to sensing time and SNRARLSE).

The proposed ASA-NN has shown high detection probability
and spectrum hole prediction as compared to the PSOGSA-
NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.
The efpcacy of the proposed scheme for the real-time sce-
nario is checked via implementing ASA-NN-based spectrum
sensing via USRP N210 B210, LabVIEW 2018, and MATLAB
2019. The proposed ASA-NN has effectively detected the pres-
ence and the absence of the PU in real-time scenario. The pro-
posed scheme has shown high opportunistic throughput and
better BER (evaluated post-detection of the spectrum holes and
transferring data) as compared to the PSOGSA-NN, PSO-NN,
ABC-NN, GSA-NN, and Conventional-NN. The proposed
spectrum sensing scheme with ASA-NN can be employed fcr
efbciently detecting the spectrum holes for Air Trafpc Control
and thus overcoming the problem of spectrum congestion.
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