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Simple Summary: The proposed research aims to provide a deep insight into the deep learning and

machine learning techniques used for diagnosing skin cancer. While maintaining a healthy balance

between both Machine Learning as well as Deep Learning, the study also discusses open challenges

and future directions in this field. The research includes a comparison on widely used datasets and

prevalent review papers discussing skin cancer diagnosis using Artificial Intelligence. The authors

of this study aim to set this review as a benchmark for further studies in the field of skin cancer

diagnosis by also including limitations and benefits of historical approaches.

Abstract: Skin cancer continues to remain one of the major healthcare issues across the globe. If

diagnosed early, skin cancer can be treated successfully. While early diagnosis is paramount for an

effective cure for cancer, the current process requires the involvement of skin cancer specialists, which

makes it an expensive procedure and not easily available and affordable in developing countries. This

dearth of skin cancer specialists has given rise to the need to develop automated diagnosis systems.

In this context, Artificial Intelligence (AI)-based methods have been proposed. These systems can

assist in the early detection of skin cancer and can consequently lower its morbidity, and, in turn,

alleviate the mortality rate associated with it. Machine learning and deep learning are branches of

AI that deal with statistical modeling and inference, which progressively learn from data fed into

them to predict desired objectives and characteristics. This survey focuses on Machine Learning

and Deep Learning techniques deployed in the field of skin cancer diagnosis, while maintaining

a balance between both techniques. A comparison is made to widely used datasets and prevalent

review papers, discussing automated skin cancer diagnosis. The study also discusses the insights and

lessons yielded by the prior works. The survey culminates with future direction and scope, which

will subsequently help in addressing the challenges faced within automated skin cancer diagnosis.

Keywords: artificial intelligence; computer-aided diagnostics; deep learning; dermatologists;

dermatology; digital dermatology; machine learning; man-machine systems; skin cancer;

skin neoplasms

1. Introduction

Skin cancer is the abnormal growth of skin cells. The cancerous growth may affect
both the layers—dermis and epidermis, but this review is concerned primarily with epi-
dermal skin cancer; the two types of skin cancers that can arise from the epidermis are
carcinomas and melanomas, depending on their cell type—keratinocytes or melanocytes,
respectively [1–75]. It is a challenge to estimate the incidence of skin cancer due to various
reasons, such as the multiple sub-types of skin cancer [76–99]. This poses as a problem
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while collating data, as non-melanoma is often not tracked by registries or are left incom-
plete because most cases are treated via surgery. As of 2020, the World Cancer Research
Fund International reported a total of 300,000 cases of melanoma in skin, and a total of
1,198,073 cases of non-melanoma skin cancer [100–131]. The reasons for the occurrence
of skin cancer cannot be singled out, but they include and are not limited to exposure to
ultraviolet rays, family history, or a poor immune system [126]. The affected spot on the
skin is called a lesion, which can be further segregated into multiple categories depending
on its origin [1]. A comparison between different lesion types is usually accompanied by
the presence or the absence of certain dermoscopic features.

There are three stages associated with an automated dermoscopy image analysis
system, namely pre-processing, image segmentation, and feature extraction [2,4]. Seg-
mentation plays a vital role, as the succeeding steps are dependent on this stage’s output.
Segmentation can be carried out in a supervised manner by considering parameters such as
shapes, sizes, and colors, coupled with skin texture and type. Melanoma development that
takes place horizontally or radially along the epidermis is called “single cancer melanoma”,
which carries critical importance in the early diagnosis of skin cancer [3]. Dermoscopy is a
non-invasive diagnostic method which allows for a closer examination of the pigmented
skin lesion. It is performed with the help of an instrument called a dermatoscope. The
procedure of dermoscopy allows for a visualization of the skin structure in the epidermis
that would not otherwise be possible to the naked eye. Studies [127] suggest that a growing
number of practitioners are incorporating dermoscopy into their daily practices. Der-
moscopy can be categorized into three modes—polarized contact, polarized non-contact,
and nonpolarized contact (unpolarized dermoscopy). Polarized and nonpolarized der-
moscopy are complementary, and utilizing both to acquire clinical images increases the
diagnostic accuracy [128]. These images can then be processed with the help of AI methods
to assist in the diagnosis of skin cancer [132–134].

Even though the mortality rate of skin cancer is significantly high, early detection
helps to bolster the survival rate to over 95% [5]. Deep learning models are generalizations
of multi-layer perceptron models and are widely used due to their high accuracy in visual
imaging tasks. There are two major promising paths for skin cancer detection in this
research. The first is employing machine learning techniques and strategies to assist in
the detection of skin lesions, and classifying them accordingly. The second, as this article
discusses, is deep learning frameworks and model-based approaches being implemented
in the recent advancements concerning skin cancer diagnosis. Table A1 in Appendix A
contains a list of abbreviations used in this review, as well as their definitions.

1.1. Contribution of this Survey

We provide a comprehensive study of the various machine learning and deep learning
models used for skin cancer diagnosis. Brief explanations of several machine learning and
deep learning methodologies are included.

• This survey comprehensively discusses the application of various machine learning
and deep learning methods in the implementation of skin cancer diagnosis.

• There is a discussion of new techniques in skin lesion detection such as deep belief
networks and extreme learning machines, along with the traditional Computational
Intelligence techniques such as random forests, recurrent neural networks, and k-
nearest neighbors, etc.

• There is a designated tabular summary of works on the deep learning and machine
learning techniques used for skin cancer diagnosis and detection. The tabulated
summary also includes key contributions and limitations for the same.

• There is a classification of various types of skin cancer based on tumor characteristics
that have been elucidated for a deeper understanding of the problem statement.

• The study also describes various open challenges present and future research directions
for further improvements in the field of skin cancer diagnosis.
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Table 1 presents a comparison between the current review and the previous review
articles of machine-learning-based and deep-learning-based techniques in skin cancer
diagnosis. The depth of the discussion in Table 1 has been used as a criterion for comparing
different review articles. A high or H depth of the discussion indicates that the article
contains a dedicated session for the said topic. A moderate or M depth of the discussion
denotes that the review article has a subsection or a paragraph corresponding to the topic.
A low or L depth of the discussion implies that the article has mentioned the topic, but not
explained it comprehensively. A not discussed or N depth of the discussion indicates that
the topic has not been covered in the article.

Table 1. Comparison of the current review with the previous reviews in AI-powered skin

cancer diagnosis.

Reference Year One-Phrase Summary

Machine
Learning

Models in
Skin Cancer
Diagnosis

Deep Learning
in Skin Cancer

Diagnosis

Open
Challenges

in Skin
Cancer

Diagnosis

Future
Directions

for Skin
Cancer

Diagnosis

Our
review

-

A comprehensive survey on
machine learning and deep learning

techniques used to diagnose skin
cancer

H H H H

[11] 2022
A review on cancer diagnosis using

Artificial Intelligence
H H M N

[12] 2022

A research article on the recent
advancements in cancer diagnosis
using machine learning and deep

learning techniques

H H L M

[6] 2021
A review of machine learning and
its applications in the field of skin

cancer
H L M H

[7] 2021
A minireview on deep learning and

its use in cancer diagnosis and
prognosis prediction

N H M H

[10] 2021
A review on skin disease diagnosis

with deep learning
N H N H

[14] 2021
A review on skin cancer

classification via convolution neural
networks

N M M N

[15] 2021
A survey on deep learning

techniques for skin lesion analysis
and melanoma cancer detection

N H M N

[9] 2020
A review article on

Artificial-Intelligence-based
methods for diagnosis of skin cancer

M M H N

[13] 2020
A review on malignant melanoma
classification using deep learning

N H M H

[16] 2020
A survey in cancer detection using

machine learning
H N H H

[8] 2019
A bibliographic review on cancer

diagnosis using deep learning
N H M N

Depth of discussion: L—low, M—moderate, H—high, N—not discussed.
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1.2. Survey Methodology

1.2.1. Search Strategy and Literature Sources

Repositories and databases such as IEEE, ScienceDirect, and PubMed, etc., were used
to find relevant research studies and articles. The relevancy was determined based on the
paper’s context (the central theme of the paper being the diagnosis of skin cancer based on
AI/ML/DL models), the research paper’s title, abstract screening, keyword matching, and
the conclusion of the study. The keywords employed were cancer diagnosis, skin cancer,
deep learning, machine learning, skin lesion, melanoma cancer, and cancer detection, etc.
A total of 1057 non-duplicate articles were found initially. Table 2 includes the search terms
and the corresponding set of keywords associated with these terms.

Table 2. Search terms.

Search Term Set of Keywords

Skin skin cancer, skin disease, skin cancer diagnosis, skin cancer detection, skin lesion

Cancer cancer type, cancer diagnosis

Deep deep learning, deep neural networks

Melanoma melanoma skin cancer, melanoma cancer

Machine machine learning

Machine learning techniques
artificial neural network, naïve Bayes, decision tree, k-nearest neighbors, k-means

clustering, random forest, support vector machines, ensemble learning

Deep learning techniques
recurrent neural networks, deep autoencoders, long short-term memory, deep neural
network, deep belief network, deep convolutional neural network, deep Boltzmann

machine, deep reinforcement learning, extreme learning machine

1.2.2. Inclusion Criteria

The articles included were primarily filtered based on their relevance. Apart from rele-
vancy, only articles written in English were selected. Furthermore, only articles published
after 2014 were considered for inclusion.

1.2.3. Elimination Criteria

The elimination of articles was based on abstract and introduction screening. Articles
were then eliminated based on the quality of their research and the lack of references.
The parameters used to judge the research quality were the reputation of the journal the
article was published in, using metrics such as the h-index and impact factor, the date of
publication (the older the date, the less relevant the article may be in present day), and the
number of citations the research study had. In addition, any missing relevancy and the
redundancy of the research were also considered in the elimination process.

1.2.4. Results

Out of the 1057 non-duplicate articles filtered out from the various research reposito-
ries, 826 articles were excluded during the abstract and title screening. From the remaining
231 articles, 62 articles were excluded during the redundancy check and 48 articles were
excluded during the full text screening. Finally, 121 articles were obtained after applying
the inclusion/exclusion criteria. Figure 1 shows the PRISMA method implementation
for the same. Figure 2 indicates the number of reference papers published in each year.
Figure 3 demonstrates the various methods that this study encapsulates, and the number
of papers cited corresponding to each methodology.
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Figure 1. Flow diagram for the selection process of research articles using PRISMA method.

 
Figure 2. Number of papers per year, used in the review.
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Figure 3. ML and DL methods versus frequency of papers used in this work.

1.3. Structure of this Review

This paper is organized as follows. A comparison with previous reviews on skin cancer
diagnosis and survey methodology for the same is covered in Section 1. Section 2 provides
an overview of skin cancer, as well as the datasets commonly used in various studies in
the field of skin cancer diagnosis. Section 3 is divided into two major subsections. The
subsections describe the techniques used to diagnose skin cancer using machine learning
and deep learning frameworks and algorithms, respectively. Section 4 talks about the open
challenges faced in the field of skin cancer diagnosis, while Section 5 gives an insight into
future research directions. The conclusion is given in Section 6, followed by the references
used for this research. Figure 4 visualizes the structure of this study.
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Figure 4. Structure of this review.

2. Skin Cancer

Skin cancer is associated with the abnormal growth of skin cells that are found either
in the epidermis or the dermis. The skin cells are usually those that are exposed to sunlight,
but skin cancer can also occur in those cells that are not ordinarily exposed [129]. This
research focuses on the skin cancer that occurs in the epidermal cells, namely keratinocytes
and melanocytes. Skin cancer can be largely divided into three subcategories.

1. Basal cell carcinoma: this type of cancer affects and originates from the basal cells.
Basal cell carcinoma comes from keratinocytes, which are found in the epidermis.
These may invade the entire epidermal thickness.

2. Squamous cell carcinoma: this subdivision deals with the uncontrollable growth of
the abnormal squamous cells present in the root. Squamous cells are flat cells that
are found in the tissue that constitutes the surface of the skin, and the lining of vital
organs such as the respiratory organs, digestive tracts, and hollow organs of the body.

3. Melanoma: this form of cancer develops when melanocytes start to grow abnormally.
Melanocytes are the cells that can become melanoma. Melanoma can develop any-
where in the skin, while it can also form in other parts of the body such as the eyes,
mouth, and genitals, etc.

Figures 5 and 6 include images from the International Skin Imaging Collaboration
(ISIC) dataset to demonstrate the different types of skin cancer images that are available for
training and testing. Figure 5 shows dermoscopic images, while Figure 6 displays clinical
images from the skin cancer dataset.
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Figure 5. Dermoscopic sample images of skin cancer: (a) squamous cell carcinoma, (b) basal cell

carcinoma, (c) benign dermatofibroma, (d) benign seborrheic keratosis, (e) benign actinic keratosis,

and (f) malignant melanoma.

   

   

 
(a) 

 
(b) 

 
(c) 

Figure 6. Clinical sample images of skin cancer: (a) malignant melanoma, (b) squamous cell carci-

noma, and (c) basal cell carcinoma.

Branching out of skin cancer are skin tumors, which are chiefly responsible for the
mortality rate once diagnosed with the same [17]. Skin tumors can be categorized into two
types, namely melanoma and non-melanoma. Irrespective of the technological advance-
ments made in the field of curing cancer, to date, the early detection and diagnosis of any
tumor combined with enough therapy leads the way to a successful treatment [18]. There
are multiple ways to classify and categorize skin cancer. Most of them employ the use of
deep learning techniques such as convolution neural networks in [19], while the others use
specialized tools such as non-invasive imaging tools [20].

2.1. Skin Cancer Classification

When cells become cancerous, they start to grow uncontrollably due to various reasons,
one such reason being a damaged cell DNA. This random behavior of the cell may lead
to uneven accumulation and form a solid mass or lump, called a tumor. Tumors are often
associated with uncontrollable growth in solid tissues such as muscles and bones. Tumors
are further subdivided into two major categories, as described in the following section.
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2.1.1. Benign Tumor

Benign tumors are a collection of these cells that grow abnormally but are non-
cancerous. According to [21], these tumors are generally classified according to their
level of origin within the skin. The skin has three levels of subclassification in this regard,
the epidermal layer, the dermal layer, and the subcutaneous layer. Another common taxon-
omy followed for benign tumors is based on the cell of their origin. Certain well-known
examples are the melanocyte or the keratinocyte [22].

2.1.2. Malignant Tumor

Malignant tumors are tumors that are cancerous. The affected cells metastasize
through the bloodstream and the lymph nodes. In the context of skin cancer, malignant
tumors emerging from the surface epithelium of the skin and the epidermis include cuta-
neous melanoma and non-melanoma cancers such as basal cell carcinoma [23]. Cutaneous
melanomas constitute only 4% of all skin cancers, but they are by far the most significant
ones, due to their lethality [24]. Ref. [25] conducted a study on developing deep learning
techniques to help classify tumors as benign or malignant. False positives and negatives
lead to a substandard prognosis of skin cancer. Article [26] discusses the challenges of
detecting malignant tumors, which include, but are not limited to, noisy images, irregular
tumor boundaries, and uneven image sizes. Hence, the need for deep learning and machine
learning methods to detect malignant tumors is paramount.

2.1.3. Other Tumors

The last subclassification of tumors is loosely classified as pre-malignant tumors.
These cells are not cancerous at that moment of time, but they have the potential to become
malignant. The major problem faced by the authors of [27] while detecting pre-malignant
tumors was the scarcity of images. This led to them use the same dataset for training and
validation. This does not come a surprise, as the study conducted in [28] also faced difficulty
in recording pre-malignant lesion data. Pre-malignant tumors are often clubbed with certain
malignant subtypes such as actinic keratosis, which is a squamous cell carcinoma despite
being premalignant as well [25]. This makes it difficult to distinguish between the different
classes of tumors.

2.2. Skin Cancer Datasets

Table 3 describes the various datasets used in previous studies and analyzes the
constituents of each dataset. Furthermore, the table also identifies the skin cancer image
categories available in the respective datasets.

Table 3. List of various skin cancer datasets employed by previous studies.

Reference
Creator and Year

of Dataset
Skin Cancer Categories Dataset Used Dataset Size Type of Data

Details About the
Dataset

[132]

International Skin
Imaging

Collaboration,
2020

Actinic keratosis, basal
cell carcinoma,

dermatofibroma,
melanoma, nevus,

seborrheic keratosis,
squamous cell carcinoma,

vascular lesion

ISIC 2357 images Dermoscopic
images

Contains images of
malignant and benign
oncological diseases.
Melanoma and mole
images are slightly

dominant in the dataset

[133]
Nilsel Ilter, H.
Altay Guvenir,

1998

Melanoma and
non-melanoma

DermIS,
DermQuest

72 images in
DermIS and

274 images in
DermQuest

Not reported

Contains lesion images.
They are subject to

various artifacts such as
drastic shadow effect and

differing illumination.
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Table 3. Cont.

Reference
Creator and Year

of Dataset
Skin Cancer Categories Dataset Used Dataset Size Type of Data

Details About the
Dataset

[134] Tschandl, P., 2018

Actinic keratoses and
intraepithelial carcinoma,

basal cell carcinoma,
benign keratosis-like

lesions, dermatofibroma,
melanoma, melanocytic

nevi, and vascular lesions

HAM10000 10015 images Dermoscopic
images

More than half of lesion
images are validated

through histopathology.
Remaining images are

confirmed through
expert consensus or

in-vivo confocal
microscopy.

[35]

Dongtan Sacred
Heart Hospital,

Hallym
University, and
Sanggye Paik
Hospital, Inje

University, 2016

Basal cell carcinoma Hallym 152 images Dermoscopic
images

Country of origin is
South Korea and a total

of 106 members
participated in the

creation of this dataset

[35]

Department of
Dermatology at
Asan Medical
Center, 2017

Basal cell carcinoma,
squamous cell carcinoma,
intraepithelial carcinoma,

and melanoma

Asan Dataset
17125 images
and 1276 test

images
Clinical images

While the thumbnails
were available for free

downloading, the
full-size images required
external permission and

it came at a cost of
US $200 or £145.

[34] Mitko Veta et al.,
2016 Not reported

TUPAC 2016
Dataset

500 training
and 321 test

images

Whole slide
images

Images to predict tumor
proliferation scores from

whole slide images.

3. Machine Learning and Deep Learning Models for Skin Cancer Diagnosis

3.1. Need for Machine Learning and Deep Learning Models for Skin Cancer Diagnosis

Artificial Intelligence has laid the foundation for integrating computers into the med-
ical field seamlessly [30]. It provides an added dimension to diagnosis, prognosis, and
therapy [36]. Recent studies have indicated that machine learning and deep learning mod-
els for skin cancer screening have been on the rise. This is primarily because these models,
as well as other variants of Artificial Intelligence, use a concoction of algorithms, and when
provided with data, accomplish tasks. In the current scenario, the tasks include, but are
not limited to, the diagnosis of the patient, the prognosis of the patient, or predicting the
status governing the ongoing treatment [37]. Diagnosis is the process of understanding the
prevailing state of the patient, while prognosis refers to the process of predicting the future
condition of the patient by extrapolating all the current parameters and their corresponding
outputs. AI has now progressed to the point where it can be successfully used to detect
cancer earlier than the traditional methods [6]. As early detection is key for a fruitful
treatment and better outcome of skin cancer, the need for machine learning and deep
learning models in the field of skin cancer is paramount.

3.2. Machine Learning Techniques

3.2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are systems that draw inspiration from the animal
brain. ANNs have been used to predict non-melanoma skin cancer by inputting a certain
set of tried and tested parameters fit for training, such as gender, vigorous exercise habits,
hypertension, asthma, age, and heart disease etc. [38] The ANN takes the entire dataset
as the input. To improve the accuracy of the model, the network inputs are normalized to
values between 0 and 1. The outputs are treated as typical classification outputs, which
return fractional values between 0 and 1. ANNs can also be used to detect skin cancer
by taking an image input and subjecting it through hidden layers [39]. This process is
carried out in four sequential steps, the first of which is to initialize random weights
in the ANN system. Next, each of the activation values are calculated. Consequently,
the magnitude of the error is also known as the loss change. The weights are updated
proportionately, with respect to the loss. Until the loss reaches a certain lower bound
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or a floor value, the three steps are repeated. In this field that pertains to skin cancer
detection, visual inspection is the introductory stage. This is due to the similarities shared
between various subcategories of tumors, such as color, area, and distribution. Owing to
this reason, the use of ANNs is encouraged to enhance multi-class skin lesion detection [40].
The trained network models are used with a logistic regression model to successfully
detect skin lesions while reducing the false positives and negatives in the process. The
choice of activation function for the ANN is completely dependent on the user, and it is
to be noted that each function carries its own sets of advantages and disadvantages with
respect to the convergence of the model and the computational load [40]. ANNs have been
used to simultaneously predict various symptoms that generally occur in cancer-affected
patients, as seen in [41]. The risk of symptoms predicted were that of pain, depression,
and poor well-being. The input to the ANN was a list of 39 distinct covariates. The
input features can be classified into five subcategories, such as demographic characteristics
such as age and sex, clinical characteristics such as the cancer type and stage, treatment
characteristics such as the radiation treatment and cancer surgery, baseline patient reported
measures such as the performance status and symptom burden status, and finally, health
care utilization measures such as whether the patient has been hospitalized or if they have
a live-in caregiver. ANNs play an important role in predicting skin cancer and the presence
of a tumor, due to their flexible structure and data-driven nature, owing to which they are
considered as a potential modeling approach [42].

The model proposed by [38] reports a sensitivity of 88.5% and a specificity of 62.2% on
the training set, while the validation set showed a comparable sensitivity of 86.2% and a
specificity of 62.7%. Similarly, the ANN model in [39] was tested over multiple sets, each
using an increasing number of training and testing image ratios. The accuracy returned by
the model falls between 80% and 88.88%.

In [38–40], emphasis is put on the need for optimizing predictors, increased model
parameters, and the conduction of more clinical testing to improve the sensitivity and
specificity of the model. Despite being easy to implement and cost effective, ANN models
require further development in future studies for skin cancer diagnosis.

3.2.2. Naïve Bayes

Naïve Bayes classifiers are probabilistic classifiers that work by employing the use
of Bayes’ theorem. Naïve Bayes classifiers have been used in the field of skin cancer to
classify clinical and dermatological images with high precision [43]. The model has reached
an accuracy of 70.15%, as it makes use of important pieces of data to develop a strong
judgement and assists physicians in the diagnosis and precise detection of the disease.
Naïve Bayes classifiers extend their applications by providing a means to detect and
segment skin diseases [44]. For each output class of the classifier, a posterior probability
distribution is obtained. This process is performed iteratively, which implies that the
method requires lesser computational resources, as it avoids the need for multiple training
sessions. The Bayesian approach has also been used to probabilistically predict the nature
of a data point to a high degree of accuracy, as seen in [45]. The final classification made in
this case combines the existing knowledge of data points to use in the Bayesian analysis.
The Bayesian sequential framework has also been put into use to aid models that help to
detect a melanoma invasion into human skin. A total of three model parameters were
estimated with the help of the model, namely, the melanoma cell proliferation rate, the
melanoma cell diffusivity, and ultimately, a constant that determines the degradation rate
of melanoma cells in the skin tissue. The algorithm learns data through the following, in a
sequential manner: a spatially uniform cell assay, a 2D circular barrier assay, and finally, a
3D invasion assay. This Bayesian framework can be extracted and used in other biological
contexts due to its versatile nature. This is chiefly possible in situations where detailed
quantitative biological measurements, such as skin lesion extraction from scientific images,
is not easy; hence, the extraction method must incorporate simple measurements from the
images provided, like the Bayesian framework does [46].
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Naïve Bayes classifiers, as discussed in [43], achieve an accuracy of 70.15% and a speci-
ficity of 73.33%. At the same time, the classifiers do not breach the 70% mark in sensitivity
and precision. The accuracy appears to follow a similar pattern in naïve Bayes classifiers
from other studies such as [44], where the diagnostic accuracies reported are 72.7%.

The recurring scope of improvement in [43–45] revolves around experimenting with
different color models, as well as using different types of dermal cancer datasets in the
training. In [44,46], they elucidate the pressing need for further pre-processing before
training naïve Bayes classifiers for skin cancer diagnosis.

3.2.3. Decision Tree

Decision trees are a supervised learning method which are primarily used for classi-
fication problems and are occasionally extended to fit regression problem statements as
well. Decision trees have been used to provide an intuitive algorithm that helps quantify
the long-term risk of non-melanoma skin cancer after a liver transplant. This is done by
utilizing the variables closely associated with the peri-transplant period [47]. The classifier
is used as a view for the patients which provides personalized solutions such as chemo-
prophylaxis. A slight variation of decision trees can also be employed, as seen in [48].
The article proposes a random decision tree algorithm to detect breast surgery infection.
The risk factors that came along with the algorithm in this case were obesity, diabetes,
and kidney failure, etc. While the study investigates breast cancer, skin cancer is most
closely associated with breast cancer due to the presence of the dangerous melanoma type.
Decision trees showcase its versatility in the way it is used. In [49], decision trees are used as
a mode for the visual representation of problem by dividing each branch into the different
outcomes possible during a clinical procedure. The decision tree model was used to gauge
the cost effectiveness of the sentinel lymph node biopsy, a new standard technique used in
the treatment of melanoma and breast cancer. The cost effectiveness was measured with
respect to head and neck cutaneous squamous cell carcinoma, a subsection of skin cancer.
The decision tree presented outputs to determine whether the treatment was cost effective
for a particular set of tumors, or if it could be used generally. Decision trees can also be
used as an intermediate layer instead of keeping them as a standalone classifier. In [50],
they demonstrate the effectiveness of this architecture in extracting regions and classifying
skin cancer, using deep convolution neural networks. Most of the features are classified
using decision trees and other counterpart algorithms such as support vector machines
and k-nearest neighbors. Decision trees are also used to attain clarity in the classification of
breast cancer, as can be seen from [51]. The error analysis of the proposed model reveals
that the foundational decision tree models provide users with easy-to-use outcomes and
a very high degree of clinical detection and diagnostic performance, as compared to its
predecessors.

The decision tree model from [47] reports a specificity of 42% and a sensitivity of
91%. Similarly, the models presented in [48] return a sensitivity, specificity, and accuracy
greater than 90%. This trend follows suit in the model proposed by [50], where all the three
parameters cross 94%. On the contrary, models like those in [49] return a slightly lower
sensitivity of 77% but report a 100% specificity.

Decision trees’ model predictions are heavily dependent on the quality of the datasets.
The common pitfalls encountered by [47,50] are that the model testing and training datasets
had an identical distribution of variables; hence, this eliminates the prospect of training the
model on entirely independent cohorts.

3.2.4. K-Nearest Neighbors

The k-nearest neighbors algorithm, also referred to as the KNN, is a parametric
supervised classification algorithm that uses distance and proximity as metrics to classify
the data points. KNNs were used as an evaluation algorithm to detect skin cancer and
melanomas. The KNN model was then used to produce a confusion matrix which helps
with visualizing the accuracy of the entire model [52]. Apart from this case of use, KNNs
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have also been used extensively by extending the model as per requirement. In [53], they
extend KNN to use the Radius Nearest Neighbors classifier to classify breast cancer and
calculate the evaluation metrics such as accuracy and specificity. The reason for augmenting
the KNN solely lay in the limitations posed by an extreme value of k. For a small k, the
KNN classifier is highly sensitive to outliers, and for a large value of k, the classifier
underfits on the training data points. This problem is overcome by normalizing the radius
value of each point to recognize outliers effectively. The applications of KNNs have been
expanded by using them for detecting the anomalous growth of skin lesions [54]. KNNs
are hybridized with Firefly to provide quantitative information about a skin lesion without
having to perform any unnecessary skin biopsies. The hybrid classifier built upon KNN is
used to predict and classify using two primary methods: threshold-based segmentation and
ABCD feature extraction. The Firefly optimization coupled with KNN helps to recognize
skin cancer much more effectively than its predecessors, while keeping computational
and temporal complexity to a minimum. To classify and discriminate between melanoma
and benign skin lesion in clinical images, ref. [55] made use of multiple classifiers, out of
which the KNN classifier returned competent results. The article also makes use of different
color spaces and tests the classifiers on each of them to demonstrate the feasibility of the
algorithms to detect melanomas in various color spaces.

The KNN classifiers of [52], with the number of neighbors set to 15, returned an
accuracy of 66.8%, with a precision and recall for positive predictions of 71% and 46%,
respectively. The recall value increases almost twofold for negative predictions, while the
precision score for the same lingers around 65%. The values in [53] provide a different
perspective to the modified KNN classifiers, as they report an accuracy of over 96%. Fuzzy
KNN classifiers, as shown in [54], have an accuracy of 93.33%, with a sensitivity of 88.89%
and a specificity of 100%.

Despite being a viable approach to diagnosing skin cancer, KNN classifiers require
the provision to be trained continually, as suggested by [52]. Furthermore, with the dearth
of feasible datasets, the size of suitable training data proves to be a limitation for [52,53].
To mitigate the adverse effects of minimal training data, the KNN classifier can fit into an
online learning method that builds over time and keeps learning as and when the classifier
acquires more data.

3.2.5. K-Means Clustering

K-means clustering is a clustering method that is grouped under unsupervised learn-
ing. By employing a fuzzy logic with the existing k-means clustering algorithm, studies
have been conducted on segmenting the skin melanoma at its earliest stage [56]. Fuzzy
k-means clustering is applied to the pre-processed clinical images to delineate the affected
regions. This aids the process to subsequently be used in melanoma disease recognition.
K-means clustering has widespread cases of use and can be used to segment skin lesions,
as seen in [57]. The algorithm groups objects, thereby ensuring that the variance within
each group is at minimum. This enables the classifier to return high-feature segmented
images. Each image pixel is assigned a randomly initialized class center. The centers are
recalculated based on every data point added. The process is repeated until all the data
points have been assigned clusters. Unlike a binary classifier like k-means, where each data
point can belong to only one cluster, fuzzy c-means clustering enables the data points to
be a part of any number of clusters, with a likelihood attached to hit. The fuzzy c-means
algorithm outputs comparatively better results in comparison with the legacy k-means
clustering algorithm. Fuzzy c-means provide a probability for data points that depends on
the distance between the cluster center and the point itself. In [58], fuzzy c-means were
used in place of the k-means algorithm to detect skin cancer, inspired by a differential
evolution artificial neural network. The simulated results indicated that the proposed
method outperformed traditional approaches in this regard. The k-means algorithm can
also be used as an intermediate layer to produce outputs, as trained on by deep learning
methods. In [59], they demonstrated an algorithm where k-means were used to segment
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the input images based on the variation of intensities. The clusters thus formed were then
subjected to further processing to aid in the detection of melanoma cancer. The traditional
k-means algorithm can also be used to detect skin lesions. To augment the quality of the
results, it can be used with a gray level co-event matrix, a local binary pattern, and red,
green, and blue color modes [60]. K-means clustering is heavily dependent on external
factors being extracted successfully, such as color features, lesion orientation, and image
contrast [56,58,59]. This engenders the need for coherency in the diagnosis pipeline that
utilizes the k-means clustering. The pipeline must accurately extract external features
before the clustering algorithms take them as input.

K-means clustering models tend to return a high detection accuracy. For instance, the
model that extends fuzzy logic, like in [56], returns an accuracy of over 95%. Other k-means
clustering models, like those in [58] and [59], also report a detection accuracy of 90%.

3.2.6. Random Forest

Random forests are an extension of decision trees. They are an ensemble learning
method commonly used for classification problems. Random forests extend their appli-
cations to detect skin cancer and classify skin lesions, as done in [61]. Random forests
permit the evaluation of sampling allocation. The steps followed in the proposed method
are to initialize a training set. The training set is then bootstrapped to generate multiple
sub-training sets. By calculating the Gini index for each of the sub-training sets, the model
is then populated with decision values. The individual decision values are then combined
to generate a model that classifies by voting on the test samples. Skin cancer can also be
classified by characterizing the Mueller matrix elements using the random forest algo-
rithm [62]. The random forest algorithm builds various sub-decision trees as the foundation
for classification and categorization tasks. Every individual decision tree is provided with
a unique logic that constitutes the binary question framework used in the entirety of the
system. In comparison with the original decision tree, the random forest provides enhanced
results while reducing the variance bias. This helps to prevent the overfitting of the data,
which was otherwise seen in decision trees. Other studies in the classification of skin
cancer involve classifying the dermoscopic images into seven sub-types. This has been
implemented with the help of random forests [63]. The procedure to create a random forest
is slightly unconventional in this study. After preparing a dataset to train on, the random
forest is then amassed by arranging a relapse tree. The ballot casting is conducted after
the forest architecture is built. The different types of sub-classifications that the random
forest was trained on were basal cell carcinoma, benign keratosis lesion, dermatofibroma,
melanocytic nevi, melanoma, and vascular types. Similarly, skin lesion classification has
also been performed with the help of random forests and decision trees in [64]. Using
random forests are key since predecessor algorithms lack the reliability aspect of skin image
segmentation and classification. The random forest is generated by selecting a subset of
random samples in the skin lesion dataset. For each feature in the subsets, a decision tree
is created to get a prediction. A voting process is then established for each of the prior
outputs, and a forecast result with the most votes is selected as the final step.

Random forest classifiers, as seen in [61], report an accuracy, sensitivity, and specificity
of around 70%, regardless of the features incorporated to segment the required area, such
as ABCD rule or GLCM features. Depending on the dataset used, random forest classifiers
can also have a high accuracy while detecting skin cancer. The models in [62] achieved an
average accuracy of 93%.

The features of a random forest classification algorithm are invariant to image transla-
tion and rotation [61,64]. This allows future research to be more liberal with its datasets
and extend them to a variety of geographies to discern the consistency in results returned
by skin cancer classification.
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3.2.7. Support Vector Machine

Support vector machines (SVMs) are supervised learning models that help classify,
predict, and extrapolate data by analyzing them. SVMs can be used to classify different
types of skin lesions. In [65], ABCD features are used for extracting the characteristic
features like shape, color, and size from the clinical images provided. After selecting the
features, the skin lesion is classified with the help of SVMs into melanoma, seborrheic
keratosis, and lupus erythematosus. This method of using ABCD along with SVM generates
great results while delivering significant information. For a narrower classification, SVMs
have also been used to classify skin lesions as melanoma or non-melanoma [66]. The process
was divided into six phases: acquiring the image, pre-processing the image, segmentation,
extracting the features, classifying the image, and viewing the result. From the experiment,
the features extracted were texture, color, and shape. To extend the nature of the above
model, SVMs have also been employed to identify and detect carcinoma or infection
in the early stages before it aggravates [67]. The chief difference in the extension and
itself lies in the feature extraction procedure. In [67], they pre-process the input image
by employing grey scale conversion and then chaining the resultant image with noise
removal and binarization subprocesses. The region of interest is removed in segmentation
to help with accurate classification. Similarly, for the early detection and diagnosis of skin
cancer, a bag-of-features method was used, which included spatial information. The SVM
was developed with the help of a histogram of an oriented gradient optimized set. This
resulted in encouraging results when compared to state-of-the-art algorithms [68]. By using
Bendlet Transform (BT) as features of the SVM classifier, unwanted features such as hair
and noise are discarded. These are removed using the preliminary step of median filtering.
BT outperforms representation systems such as wavelets, curvelets, and contourlets, as it
can classify singularities in images much more precisely [69].

The average accuracy of the SVM classifier models presented in [65] was about 98%,
while the sensitivity and specificity averaged to 95%. The SVM model in [66] also had all
three parameters greater than 90%.

3.2.8. Ensemble Learning

Ensemble learning is a machine learning model that combines the predictions of two
or more models. The constituent models are also called ensemble members. These models
can be trained on the same dataset or can be suited to something completely different. The
ensemble members are grouped together to output a prediction for the problem statement.
Ensemble classifiers have been used for diagnosing melanoma as malignant or benign [70].
The ensemble members for the same are trained individually on balanced subspaces,
thereby reducing the redundant predictors. The remaining classifiers are grouped using a
neural network fuser. The presented ensemble classifier model returns statistically better
results than other individual dedicated classifier models. Furthermore, ensemble learning
has also been used in the multi-class classification of skin lesions to assist clinicians in
early detection [71]. The ensemble model made use of five deep neural network models:
ResNeXt, SeResNeXt, ResNet, Xception, and DenseNet. Collectively, the ensemble model
performed better than all of them individually.

3.2.9. Summary of Machine Learning Techniques

Analyzing the various implementations of machine learning models in the field of
skin cancer diagnosis indicates that simple vector machines are undoubtedly the most
precise and accurate models. The main caveat of using SVMs is the need for the meticulous
pre-processing of input data. In terms of user flexibility, k-means clustering and k-nearest
neighbors lead the way, without compromising much on accuracy and performance. KNNs,
however, require to be trained continuously as more data points are added. This might
prove to be quite tedious as the volume of input data is highly irregular and cannot be
predicted. Naïve Bayes models have the lowest accuracy of all the machine learning
techniques studied in this paper, and understandably so, as various techniques make use
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of the fundamentals of the naïve Bayes theorem and develop it further, such as decision
trees and random forests. Decision trees perform decently but are highly dependent on the
quality of the dataset, which is an uncontrollable variable in the system. Random forests
do not have the provision to learn image rotation and translation on the fly, reflecting the
same in their classification accuracy. Depending on the dataset used, random forests can
either perform really well, or get only around 50% of classifications correct. ANNs, being
the steppingstone for various techniques to develop, suggest that while the results may be
good, they cannot be increased further. ANNs have reached a saturation point in terms
of the modifications made, and other techniques must be employed if any improvement
is expected. Ensemble models, although complicated and tough to implement, return
accuracies higher than the models taken individually for the multi-class classification.

Table 4 provides an executive summary of the machine learning techniques used in
the diagnosis of skin cancer. Figure 7 conceptualizes the machine learning models in skin
cancer diagnosis discussed in this study.

 

Figure 7. Current machine learning models in skin cancer diagnosis: tree illustration.
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Table 4. Summary of works on machine learning techniques in skin cancer diagnosis.

Reference
Skin

Cancer
Category

Machine
Learning

Model

Description of
Approach Used

Dataset Key Contribution Limitations

Performance
Evaluation
Metrics and

Results

[38]
Non-

melanoma
skin cancer

Artificial
neural

network

12 neurons in each
layer, inputs

normalized to fall
between 0 and 1,

sigmoid activation
function

National
Health

Interview
Survey Dataset

(NHIS 2016)

Multi-
parametrized

artificial neural
network

Model does not
include

ultraviolet
radiation

exposure and
family history

data while
making

predictions

AUC is area
under ROC

curve.
Training

AUC—0.8058,
validation

AUC—0.8099

[44]

Skin
disease

detection
and seg-

mentation

Naïve
Bayes

classifier

Skin lesion
segmentation using a

dynamic graph cut
algorithm followed

by a naïve bayes
classifier for skin

disease classification

ISIC 2017

Flexible group
minimizing for
alike functions,
making them

decipherable in
polynomial time

Cannot
differentiate

between certain
colors

Diagnostic
accuracy–72.7%,

sensitivity–
91.7%,

specificity-70.1%

[47]
Non-

melanoma
skin cancer

Decision
tree

Cox regression
analysis to identify
variables that enter

the decision tree
analysis

Oregon
Procurement
Transplant

Network STAR
2016

Confirms
importance of

known risk factors
and also identifies

new variables
establishing risk of

getting non
melanoma skin

cancer

Model building
and validation
sets were not

from
independent

cohorts

Cumulative
incidence rate

highest risk
group: 7.4%,

intermediate risk
group: 3.1–5.5%,

lowest risk
group: 0.8%

[54] Skin lesion
K-nearest
neighbor
classifier

Firefly with k-nearest
neighbor algorithm

to predict and
classify skin cancer

using
threshold-based

segmentation

-

Recognize skin
cancer without

performing
unnecessary skin

biopsies

Image
pre-processing

and
segmentation is

heavily
dependent on

threshold values

False predictive
value: 0.0, false
negative rate:

11.11%,
sensitivity:

88.89%,
specificity: 100%

[56] Melanoma
skin cancer

K-means
clustering

Region-based
convolutional neural
networks along with

fuzzy k-means
clustering.

ISIC 2016, ISIC
2017, PH2

Fully automated
skin lesion

segmentation at its
earliest stage

Model is heavily
reliant on
successful

segmentation
from the R-CNN

stage

Sensitivity: 90%,
specificity: 97.1%,
accuracy: 95.4%

[61]
Melanoma

skin
Cancer

Random
forest

Watershed
segmentation used

for feature extraction
and then classified
with random forest

ISIC
Section lesions on

skin with increased
precision

Same
classification can

be carried out
with higher

accuracy using a
simple vector

machine

Accuracy:
74.32%,

sensitivity:
76.85%,

specificity:
71.79%

[66] Melanoma
skin cancer

Simple
vector

machine

Extracted features
such as texture, color,
shape are inputs to

the SVM classifier for
skin lesion

classification

University
Medical Center

Groningen
(UMCG)
database

Computer Aided
Diagnosis support
system for image

acquisition,
pre-processing,
segmentation,

extraction,
classification, and

result viewing

No support for
hair removal and
image cropping

techniques,
classification
model can be

improved further

Confusion
matrix:

[3,7,62,64], where
[true positive,
true negative,
false positive,
false negative]

sensitivity: 90%,
specificity: 96%

[71] Multi-class
skin cancer

Ensemble
learning

Weighted average
ensemble learning

based model using 5
deep learning models

Human
Against
Machine

(HAM10000),
ISIC 2019

Significantly
improved result as

compared to
models

individually and
existing systems

Trained over a
highly

imbalanced
dataset leading
to compromised

results while
testing and
validation

Confusion
matrix,

ROC-AUC score

3.3. Deep Learning Techniques

3.3.1. Recurrent Neural Network

A recurrent neural network (RNN) is categorized as a subdivision of artificial neural
networks. RNNs have been used in the detection of melanoma skin cancer [72]. The
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classification phase of the proposed model employs deep learning techniques by combining
the optimization notion into an RNN. The existing region growing algorithm and RNN
have been improved by using them alongside the modified deer hunting optimization
algorithm (DHOA). Apart from standalone models, RNNs have also been used in ensemble
models alongside convolution neural networks, as seen in [73], to classify skin diseases.
Predecessor models were unable to use the long-term dependence connection between key
image features and image classes. This served as the motivation for the proposed model.
Deep features are extracted from the clinical images, after which the features are fed into
the dual bidirectional long short-term memory network to learn the features. Ultimately, a
SoftMax activation function is used to classify the images. Similarly, ensemble models can
also be used to automate the detection of mammogram breast cancer [74]. Just like in [73],
the first step involves feature extraction through the grey level co-occurrence matrix and
the grey level run-length matrix. These two are then given to the RNN layer as inputs, and
the tumor segmented binary image is provided as input to the convolution neural network
layer. The two independent classifiers’ results show an improved diagnostic accuracy.
RNNs have also been used in the segmentation of various dermoscopic images [75]. The
reason for incorporating a recurrent model is primarily due to its ability to train deeper
and bigger models. Furthermore, recurrent models ensure better feature representation
and ultimately, better performance for the same number of parameters.

Modified RNNs, as proposed in [72], have an average accuracy of slightly over 90%,
with an F1-score of 0.865. By varying the variable value in the equation used, the accuracy
follows a linear trend by increasing as the value increases. Like the previous result, the
RNNs in [74] have an accuracy of 98% but an F1-score of 0.745. The model in [75] reports a
testing accuracy of 87.09% and an average F1-score of 0.86.

3.3.2. Deep Autoencoder

Deep autoencoders are neural networks that are trained to emulate the input as the out-
put. They consist of two symmetrical deep belief networks. In the field of skin cancer, deep
autoencoders have been used for reconstructing the dataset, which is then used to detect
melanocytes by employing spiked neural networks [76]. The structure of the autoencoder
model consists of three main layers: the input layer, hidden layers, and the output layer.
The model is run on the foundational principle that every feature is not independent of each
other, otherwise it would compromise the efficiency of the model. Autoencoders have also
been used to recognize and detect melanoma skin disease [77]. The various autoencoders
used were Deeplabv3+, Inception-ResNet-v2-unet, mobilenetv2_unet, Resnet50_unet, and
vgg19_unet. Quantitative evaluation metrics showed that the Deeplabv3+ was a significant
upgrade from the other architectures used in the study to detect melanoma skin. Skin
cancer detection has also been carried out with the help of custom algorithms involving
autoencoders, such as the social bat optimization algorithm [78]. The detection process
takes place in three steps. Firstly, the clinical images are pre-processed to remove the noise
and artefacts present. The pre-processed images are then fed to the feature extraction
stage through a convolution neural network and a local pixel pattern-based texture feature.
Right after this stage, the classification is completed using a deep stacked autoencoder,
much like the evaluation in [77,79] of different autoencoders for skin lesion detection. The
five architectures evaluated in this study are u-net, resu-net, vgg16unet, desnenet121, and
efficientnetb0. Among the evaluated architectures, the densenet121 architecture showed
the highest accuracy.

The autoencoder-based dataset used in [76] returned an average accuracy of 87.32%,
with the sensitivity and specificity within one point of accuracy as well. The study in [77]
concluded that using autoencoders consistently increased the accuracy and F1-score in
various datasets, as opposed to the models that did not employ deep autoencoders. The
average accuracy of the models in [77] after using autoencoders is around 94%. In a similar
fashion, the deep stacked autoencoder presented in [78] returned an average accuracy of
93%, sensitivity of 84%, and specificity of 96%.
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3.3.3. Long Short-Term Memory

Long short-term memory, or LSTM, is an artificial neural network that uses feedback
connections to enable the processing of not only single data points, but also sequential data.
LSTM has helped in classifying skin diseases by efficiently maintaining stateful information
for accurate predictions [80]. The robustness of the proposed algorithm helps to recognize
target regions faster, while using almost half the number of computations compared to
predecessor algorithms. The use of LSTM further bolsters the accuracy of prediction due to
its previous timestamp retention properties. Other than plain recognition, LSTMs can also
be used to predict cancer and tumors in irregular medical data [81]. This is made possible
by the enhanced overall performance of LSTMs in screening time series data. The risk
groups being dealt with in the proposed study correlated well to the temporal cancer data
(time to cancer diagnosis). Skin disease classification models have been designed using
deep learning approaches like LSTM with the assistance of hybrid optimization algorithms
such as the Hybrid Squirrel Butterfly Search Optimization algorithm (HSBSO) [82]. The
modified LSTM is developed by implementing the HSBSO and the optimized parameters
of an LSTM model to maximize the classification accuracy. LSTMs help in improving the
overall efficiency of the proposed skin disease classification model. Deep learning models
are not only limited to the clinical images of tumors. Certain studies demonstrate the usage
of convolutional LSTMs to detect aneurysms on angiography images [83]. The angiography
images are obtained from the 2D digital subtraction angiography, thereby making it hard
to distinguish cerebral aneurysms from the overlapping vessels. The convolutional LSTM
(C-LSTM) is a variant of the LSTM. Each LSTM cell has a convolutional operation associated
with it. C-LSTM inherits the advantages of LSTM while being very suitable for the analysis
of spatiotemporal data due to its internal convolution architecture. In real-life diagnoses,
physicians combine lateral and frontal sequences to aid the decision-making process.
Employing a similar concept, the C-LSTM is fed with two inputs: frontal and lateral
images to increase the spatial information, consequently improving the performance of the
entire system.

The incorporation of LSTM components to pretrained models such as the MobileNet
V2, as seen in [81], outperforms some state-of-the-art models, with a training accuracy of
93.89% and validation accuracy of 90.72%. The study conducted in [82] demonstrated that
LSTM performs better than most machine learning models, with an average sensitivity of
53% and specificity of 80%.

3.3.4. Deep Neural Network

Deep neural networks are those neural networks that expand to a certain level of
complexity and depth. Vaguely, the certain level is decided to be two or more layers.
Deep nets have been used to estimate the uncertainty lying in skin cancer detection [84].
The motivation behind the model lies in the ineptness of publicly available skin cancer
detection software for providing confident estimates of the predictions. The study proposes
the Deep Uncertainty Estimation for Skin Cancer (DUNEScan) that provides an in-depth
and intuitive analysis of the uncertainty involved in each prediction. Deep nets have also
been used to classify skin cancer at a dermatological level [85]. The classification of skin
lesions, with the help of images alone, is an arduous task due to the minute variations in
the visual appearance of lesions. Deep nets show immense potential for varied tasks that
constitute multiple fine subcategories. The performance of the model is evaluated using
biopsy-proven clinical images that were classified into two binary classification problems:
keratinocyte carcinomas and benign seborrheic keratoses, and malignant melanomas and
benign nevi. The deep net model achieves a performance that matches and, in some cases,
outperforms all the experts associated with the evaluation program. For instance, the
confusion matrix comparison between deep nets and dermatologists (experts) exhibits
similarities in the misclassification of tumors [85]. The distribution demonstrates the
difficulty in classifying malignant dermal tumors for both experts as well as deep nets,
but also shows that experts noticeably confuse benign and malignant melanocytic lesions
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with each other, while the deep net classifies it with a higher degree of accuracy. Deep nets
are usually implemented as a single-stream network. Two-stream deep nets, on the other
hand, combine two recognition streams to handle the separate features associated with the
input data. Two-stream deep nets have been used to design intelligent systems that classify
skin cancer [86]. The two streams in the proposed method are a fusion-based contrast
enhancement technique coupled with a pretrained DenseNet201 architecture, and down
sample the extracted features using the proposed selection framework. The evaluation
parameters suggest that the proposed method returns an improved performance upgrade
over the predecessor models. Deep net models have also been deployed in real world
applications, empowering medical professionals by assisting the process of diagnosing
skin cancer and employing a prediction model for over 100 skin disorders [87]. The
deep learning algorithms have proven to be a successful method with which to diagnose
malignant tumors, as well as suggest treatment if trained with a dataset consisting of
substantial numbers of Asian and Caucasian populations. Using a convolution neural
network as the ancillary tool, the performance is elevated and can be used to diagnose
cutaneous skin diseases.

3.3.5. Deep Belief Network

Deep belief networks (DBN) are generative graphical models that are composed of
multiple layers of latent variables. DBNs have been used for cancer prediction, as can
be seen in [88]. They perform the model training in two steps. Firstly, each layer is
separately trained in an unsupervised manner. This is done to retain the maximum feature
information. Subsequently, the output features are taken and used to train the entity
relationship classifier in a supervised manner. DBNs have been designed to automatically
detect regions of breast mass and diagnose them as benign, malignant, or neither [89].
The proposed DBN performs comparatively better than its conventional counterparts.
This is because the conventional approaches depend on the output of selection feature
algorithms. On the contrary, all the features were directly used without any reduction in
their dimensions for the DBN model. To improve the diagnosis of skin melanoma by using
DBNs in place of the traditional approach, dermoscopy has been studied [90]. The deep
belief learning network architecture disperses the weights and hyperparameters to every
position in the clinical image. By doing so, this makes it possible to scale the algorithm
to varying sizes. The images are first use a Gaussian filter to remove the high and low
intensities from the images. Subsequently, the pre-processed images are segmented using
the k-means algorithm. The resultant images are then classified as per the output format of
the proposed DBN.

The DBN presented in [88] reports a diagnostic accuracy of 81.48%. According to
the study, for the evaluation criteria tested, the DBN outperformed the RNNs and CNNs,
which had an accuracy of 73% and 68%, respectively. DBNs that are used to complement
computer-aided diagnosis, as seen in [89], report an average accuracy of around 91%. For
unsegmented images, the DBN model in [90] achieves an accuracy of 73% while the same
model, when subjected to segmented images, achieves an accuracy of 90%. This suggests
that DBNs might accurately predict if the input is segmented and pre-processed correctly.

3.3.6. Deep Convolutional Neural Network

Convolutional neural networks (CNNs) are artificial neural networks that are primar-
ily used in image processing and recognition. Deep convolutional neural networks have
been implemented to classify skin cancer into four different categories: basal cell carci-
noma, squamous cell carcinoma, actinic keratosis, and melanoma [91]. The methodology
involves two methods, an error-correcting output codes simple vector machine (ECOC
SVM) classifier, and a deep CNN. The authors use accuracy, sensitivity, and specificity as
evaluation parameters. A slight variation from the previous method introduces a LeNet-5
architecture along with a deep CNN to classify the image data [92]. The model aids the
diagnosis of melanoma cancer. The experiment results indicate that training data and
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number of epochs for training are integral to the process of the detection and diagnosis of
melanoma cancer. Results suggest that training the model for over 100 epochs may lead to
overfitting while training it for below 100 epochs leads to underfitting. In addition, there
are several parameters which account for the accuracy of the results, such as the learning
rate, number of layers, and dimensions of the input image. Since dermatologists use patient
data along with deep CNNs for an increased diagnostic accuracy, recent studies have
investigated the influence of integrating image feature data into the deep CNN model [93].
The commonly used patient data were sex, age, and lesion location. To accommodate the
patient data, one-hot encoding was performed. The key differentiator between fusing the
image features was the complexity associated with each classification, respectively. The
studies indicate the potential benefits and advantages of amalgamating patient data into a
deep CNN algorithm. Region-based CNNs have been employed to detect keratinocytic
skin cancer on the face [94]. The algorithm aims to automatically locate the affected and
suspected areas by returning a probabilistic value of a malignant lesion. The deep CNN
was trained on over one million image crops to help locate and diagnose cancer. While the
algorithm demonstrated great potential, certain pitfalls were highlighted: skin markings
were mistaken as lesions by the deep CNN model. Secondly, the testing data usually
made use of the physician’s evaluation data, rather than the clinical photographs alone,
which ultimately led to the need for a multimodal approach. The developments of recent
studies have enabled newly designed models to outperform expert dermatologists and
contemporary deep learning methods in the field of multi-class skin cancer classification,
using deep CNNs [95]. The model was fine-tuned over seven classes in the HAM10000
dataset. While ensemble models increase the accuracy for classification problems, they do
not have a major role in refining the performance of the finely-tuned hyperparameter setup
for deep CNNs.

The deep CNNs, as seen in [91], could classify skin cancer with an accuracy of 94.2%.
Furthermore, the sensitivity and specificity of the model were also above 90%. Region-
based CNN that is used to classify skin cancer on the face [94] returns an average accuracy
of 91.5%. The study further emphasized the benefits of using a CNN-based model as a
screening tool to improve public health, as the sensitivity of the general public was merely
50%. The model, on the other hand, averaged a sensitivity of 85%.

3.3.7. Deep Boltzmann Machine

Deep Boltzmann machines (DBM) are probabilistic, unsupervised, and generative
models that possess undirected connections between multiple layers within the model.
Multi-modal DBMs have been proposed to monitor and diagnose cancer before the mor-
tality rate rises [96]. The multi-modal DBM learns the correlation between an instance’s
genetic structure. The testing and evaluation phase use the same to predict the genes that
are cancer-causing mutations specific to the specimen. By combining restricted Boltzmann
machines (RBM) and a skin lesion classification model through optimal segmentation,
the OS-RBM model helps to detect and classify the presence of skin lesions in clinical
images [97]. The OS-RBM model carries out certain steps sequentially: image acquisition,
pre-processing using Gaussian filters, segmenting the pre-processed images, extracting the
features, and classifying the images. Segmenting images is executed through the Artificial
Bee Colony algorithm.

3.3.8. Deep Reinforcement Learning

Reinforcement learning (RL) is a training method often associated with rewarding
and punishing the desired and undesired behaviors, respectively. Reinforcement learning
algorithms have been incorporated into the medical scene to automatically detect skin
lesions [98]. This is done by initially proceeding from coarse segmentation to sharp and
fine results. The model is trained on the popular ISIC 2017 dataset and HAM10000 dataset.
The regions are initially delineated. By tuning the hyperparameters appropriately, the
segmentation accuracy is also boosted. As deep RL methods have the capability to detect
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and segment small irregular shapes, the potential for deep RLs in the medical background
is immense.

3.3.9. Extreme Learning Machine

Extreme learning machines (ELM) are essentially feedforward neural networks. While
they provide a good generalization performance, the major difference arises in the learning
speed. ELM models have been proposed to tackle the existing problem of skin cancer
detection [99]. This detection takes place by differentiating between benign and malignant
lesions. Upon pre-processing the clinical images, the regions are segmented using the Otsu
method. The model optimizes and learns with the help of a deep belief network which
introduces a Thermal Exchange Optimization algorithm. Using hybrid pretrained models
along with ELMs for diagnosing skin cancer has also been researched [100]. The proposed
diagnostic model makes use of the SqueezeNet model for the batch normalization layers.
The layers towards the end of the model are replaced by ELMs. The ELMs are usually
linked with a metaheuristic, for instance, the Bald Eagle Search Optimization metaheuristic,
that enable the model to converge much faster than its contemporary counterparts. Instead
of pretrained models, hybrid deep learning models have also been combined with extreme
learning machines to classify skin lesions into multiple classes [101]. While majority of the
steps remain the same, the major differences lie in the deep feature extraction that uses
transfer learning and feature selection, which makes use of hybrid whale optimization
and entropy-mutual information algorithms. Extreme learning machines can also be
modified and used as an extreme gradient boosting method for the remote diagnosis of
skin cancer [102]. Apart from diagnosis, the model also helps in the process of health triage.
The major problem faced by the authors were the unbalanced categories in the dataset. To
overcome this imbalance, data augmentation was incorporated. Integrating the skin lesions
with the clinical data reinforced the accuracy and efficacy of the model.

ELM models that are used for multi-class skin lesion classification [101] produce
high-quality predictions with an accuracy of over 94%. ELM models have been shown
to consistently outperform respective benchmark studies, as seen in [102]. Even though
the accuracy of the model in [102] hovers around 77%, it is significantly higher than the
benchmark studies for the same set of data and conditions. When coupled with data
augmentation, ELMs can avoid the risk of overfitting.

3.3.10. Summary of Deep Learning Models

Deep learning models provide robust solutions for skin cancer detection. Recurrent
neural networks can accurately predict the incidence of skin cancer to a fairly high degree,
but they come with the limitation of being efficient only when using large datasets. For
smaller data points, RNNs will not have enough data to learn the features and predict
as accurately. Autoencoders serve as a recourse for insufficient data. Deep autoencoder-
based datasets, used with pretrained models, return highly accurate results. The major
drawback involved in deep autoencoders is the parameter value initialization. Most of
the studies employ a preliminary trial method to settle for the initial parameter values,
which may prove to be infeasible for large models. Long short-term memory models
outperform other deep learning techniques in terms of classification and tumor growth
progress analysis, but the accuracy of the model sharply drops to below 80% when the
quality of the images is substandard, such as poor illumination or conditions different
from those in the testing dataset. Deep neural networks produce good results but cannot
match the versatility of other deep learning techniques such as RNNs or LSTMs. DNN
models find it tough to distinguish between blurry shadows or irregular borders unless
they have been trained on such data. To be widely adopted, DNNs require training images
with adequate quality, making it a cause of concern, as clinical data may not emulate the
training dataset conditions. Deep belief network models return highly accurate results, but
in similar conditions, are often outperformed by convolutional neural networks. CNNs
provide users with the flexibility to extend the model with different learning techniques,
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as well as accurately predict different types of skin cancer. Most of the studies involving
CNNs reported an average accuracy of over 90%. New techniques in the deep learning
space make use of extreme learning machines. These models outperform state-of-the-art
techniques, with reported accuracies of over 93%. While they return accurate results, they
are susceptible to poorly augmented datasets, which can sharply decrease the accuracy of
the model.

Table 5 summarizes the works discussed on deep learning models used for skin cancer
diagnosis. Figure 8 shows the deep learning models in skin cancer diagnosis, as elucidated
in this study.

 

Figure 8. Current deep learning models for skin cancer diagnosis: tree illustration. 
Figure 8. Current deep learning models for skin cancer diagnosis: tree illustration.
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Table 5. Summary of works on deep learning models in skin cancer diagnosis.

Reference
Skin Cancer

Category
Deep Learning

Model Description of Approach Used Dataset Key Contribution Limitations Performance Evaluation
Metrics and Results

[72] Melanoma
skin cancer

Recurrent neural
networks

Classification phases uses modified deep
learning algorithm by coalescing

optimization concepts from RNNs
PH2

Superior to existing algorithms
in terms of optimal

segmentation and classification
for melanoma skin cancer

Heavy dependence on
parameters for segmentation

and classification

Algorithmic analysis
including specificity: 0.94915,
sensitivity: 0.83051, precision:

0.89091, F1-score: 0.85965,
etc.

[76] Skin cancer
detection Autoencoders

Dataset is reconstructed using
autoencoder model, reconstruction and
spiking networks contribute to enhanced

performance

ISIC
Feature sets obtained from

convolution model are suitable
for merging

Model extracts many
unnecessary and irrelevant

features

Specificity: 0.9332, sensitivity:
0.9372, precision: 0.9450,

F1-score: 0.9411, accuracy:
0.9354

[81] Skin cancer
diagnosis

Long short-term
memory model

Tumor marker data values were used to
train and test an LSTM model

Two independent
medical centers

LSTM model demonstrates
superiority while dealing with
irregular data and can be used
when time intervals between

tests vary

Inability to analyze irregular
tumor marker data for cancer

screening

Time-to-cancer diagnosis in
different risk groups, risk

stratification

[87]

Binary classi-
fication,

multi-class
skin cancer
diagnosis

Deep neural
network

CNN architectures trained on large
datasets and evaluated against

algorithm-assisted clinicians’ results

Edinburgh and
SNU datasets

Model serves as an ancillary
tool to enhance diagnostic

accuracy of clinicians

Outcome of algorithm is
significantly affected by

composition of input images;
performance is sub-optimal if

input image quality is low

Improvement in sensitivity
and specificity by 12.1% and

1.1%, respectively

[88]
Malignant

tumor
detection

Deep belief network

Analyze patient data from deep learning
perspective, merged with patient

attributes and case reports to construct
an expert system helping to predict the

probability of early cancer

Jiangsu Provincial
Hospital of

Traditional Chinese
Medicine

Relatively effective
dimensional reduction and

noise cancellation technique,
reduces missed clinician

diagnoses during endoscopy
and treatment

Medium runtime in
comparison to other deep

learning methods

Accuracy: 0.8148, precision:
0.8571, recall: 0.6, F1 score:

0.7059

[91]
Melanoma,
carcinoma,
keratosis

Deep convolutional
neural network

Classifies skin cancer using ECOC SVM
and deep CNN, images are cropped to

reduce noise

Pretrained on
ImageNet, Internet

Images for
fine-tuning

Multi-class skin cancer
classification using fine-tuned
pretrained ImageNet model

Model does not extend to
ABCD (asymmetry, border,

color, diameter) rule

Accuracy: 0.942, specificity:
0.9074, sensitivity: 0.9783

[96]

Tumor
causing
somatic

mutations

Deep Boltzmann
machine

Multi-modal deep Boltzmann machine
approach for prediction of somatic

mutation genes that undergo malignant
transformation, model learns relation

between germline and mutation profiles
using data

-
Genome-based diagnostic test
to monitor for the presence of

cancer-driving mutations

Sample size of is limited,
Whole Exome Sequencing

(WES) data displayed at gene
level

Average accuracy: 0.7176,
p-value

[99] Melanoma
skin cancer

Extreme learning
machine

After pre-processing, Otsu method is
employed to segment region of interest,

subsequently, feature extraction is
applied to mine important

characteristics, deep belief network is
used to categorize and classify

ISIC for training,
SIIM-ISIC

melanoma for
validation

Optimized Pipeline feature
designed for efficient detection

of melanoma from images,
DBN uses Thermal Exchange
Optimization Algorithm as
new meta-heuristic method

Computationally very
intensive and time

consuming

Accuracy: 0.9265, specificity:
0.8970, sensitivity: 0.9118,
PPV: 0.8676, NPV: 0.9412
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4. Open Challenges in Skin Cancer Diagnosis

4.1. Communication Barrier between AI and Dermatologists

Giant strides in the field of Artificial Intelligence for skin cancer diagnosis mean it
may have established its place in the scene for years to come, but it has still not been
able to breach the communication barrier that exists between dermatologists and AI.
In [103], it is suggested that dermatologists must embrace the potential shown by AI
applications in various fields, such as clinical and research situations. The preconceived
notion surrounding the use of AI in the cancer diagnosis domain that the introduction of
technology may eventually downsize the workforce, has set the wrong precedent, and has
brought about apprehensions about adopting AI for the same. It must be understood that,
while AI has been ever improving and returns a higher accuracy with respect to diagnoses,
clinicians are undoubtedly more skillful in identifying mimetics, as well as patterns that
have not been made available to the models through the training datasets [103]. The
authors of [103] reiterate that the role of dermatologists is not limited to detecting and
identifying skin lesions, but also to extract valuable information and inferences from their
observations. At present, the latter is not quite fine-tuned and is still in the rudimentary
stages in machines. In a survey conducted on Chinese dermatologists [104], the majority of
the participants believed that AI in the workplace assisted with daily activities involving
diagnosis and treatment. In accordance with the claims made by the authors of [103],
the survey results indicated that only 3% of the dermatologist participants believed that
AI could and would replace their day-to-day work. Another survey in [105] indicated
positive diagnosis results and a higher accuracy, as compared to traditional approaches,
after dermatologists used the help of AI in making their decisions. The need to bridge the
communication gap between AI and dermatologists is paramount, and efforts must be
taken to involve the various functionalities offered by AIs in the workplace.

4.2. Dataset Availability and Features

Incorporating deep learning into cancer diagnosis in the real world comes with one
major roadblock—the lack of availability of datasets. Machine learning and deep learning
algorithms require huge amounts of datasets to be trained upon, without which the models
will ultimately return subpar results. Some databases do not include benign lesions such
as blisters and warts; these lesions are managed by dermatologists daily, making it a very
common occurrence in day-to-day diagnoses. This poses the threat of missing skin cancer
among benign lesions, as they are not included in the datasets. According to [7], most of
the online publicly available datasets consist of only raw images. This essentially means
that most of the headway must be generated by the researchers themselves. To tackle the
prevalent issue of an imbalance in the datasets, researchers have started employing data
augmentation techniques such as cropping, rotation, and filtering, which, in turn, increases
the number of training images the models can use [8]. While the datasets provide a rich
source of information for the researchers, the absence of clarity in the metadata for various
characteristics, such as ethnicity and skin types, inhibits the utility of clinical images [33].
The future of datasets and the furthering of improvement in AI-based diagnostic methods
have already been set in motion in the form of open science, such as providing clinical
decision support for diagnoses and screening. To overcome the problems faced in obtaining
datasets to a greater extent, the adoption of open science must gain traction.

4.3. Patient Perspectives on Artificial Intelligence

Artificial Intelligence is assured to change the way patients interact with healthcare-
associated processes, but it has remained elusive in terms of patients’ outlook and perspec-
tives on AI in healthcare. The survey conducted in [106] aims to decipher the reception of
Artificial Intelligence in healthcare by the patients. The central theme of most responses
revolved around the diagnosis of the illness. This establishes a symbiotic relation between
patients and the use of AI. While around 75% of the patients were keen to recommend AI in
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healthcare to family members, the apprehension of the remaining 25% is concerning. One
way to tackle this is by ensuring that the response to conflict can be resolved by seeking
a biopsy to complement the Artificial Intelligence decision-making. Apart from incorrect
diagnoses, patients also are wary about their medical and clinical history being made
available if used for datasets. Without properly labeled images, AI will be unable to train
properly, leading to incorrect diagnosis results. Data analytics involving AI models for skin
cancer diagnoses heavily use these labels to infer observations for future research [35]. By
concealing the data, or submitting falsified information, this destroys the purpose of train-
ing an AI. This can be mitigated by ensuring that data collection organizations maintain
non-disclosure policies.

4.4. Variation in Lesion Images

Skin cancer diagnosis using machine learning and deep learning involves multiple
steps, out of which the primary step is skin lesion segmentation. As straightforward
as it may seem, this task is commonly associated with setbacks that inhibit its smooth
completion, namely the variations in lesion sizes, imprecise and indistinct boundaries,
and different skin colors. The variation in different images, such as illumination differ-
ence, leads to uneven shadows and bright areas, making it tougher to segment the skin
lesions [107]. Conventional algorithms such as CNNs and CNN-based approaches may
perform superiorly in terms of labeling, but they still return a poor contrast between lesion
and regular skin images. This is due to the deviations in the dataset, such as skin tone and
aberrations, etc. The immense variation in datasets leads to the lack of inference drawn from
the results, as suggested in [108]. A varying methodological quality shows higher amounts
of specificity and sensitivity when compared to an expert’s diagnosis, thus rendering the
use of AI in healthcare less useful. The corresponding diagnostic score and criteria for
qualifying as an expert have been covered in a review that studies optical coherence while
diagnosing adult skin cancer [108]. To tackle the problem of the varying characteristics of
skin lesions, AI models must look to maximize their diversification and intensification [109].
By employing such mechanisms, the models can overcome the stagnation faced due to
the increasing variation. In addition, the diagnosis of skin cancer in people of color is put
off until advanced stages, due to the variations in lesion images that engender from the
difference in skin tones [122]. Furthermore, due to socio-economic factors such as care
barriers, models are not trained on different skin tones [122]. They develop an inherent
bias towards the dominant skin tone and lesion color that the model has been trained on,
which ultimately compromises the quality of the skin cancer diagnosis.

4.5. Dermatological Image Acquisition

Image acquisition in dermatology generally deals with close-up images of lesions or
dermatosis. In most cases, the anatomical context of such images is lost due to the exclusion
of surrounding structures, while the primary focus of the image is the lesion. Furthermore,
with the rapid adoption of digital skin imaging applications, the utilization of smartphone-
acquired images in dermatology have also increased proportionally [123]. While many
studies have proposed methods to detect melanomas from inconsistent dermoscopy images,
most of them produce localized results that cannot be used universally due to the acquisitive
conditions they are trained on, such as isolated datasets and specific illumination conditions,
etc. [124]. In addition to these problems, the quality of the acquired images is significantly
compromised due to the varying illumination conditions during the acquisition phase,
such as specular reflection. In [125], a generative adversarial neural network is proposed
to deal with the persisting present problem of color inconsistency. The wider adoption of
such methods, and an increase in the novelty of ideas that overcome erratic dermoscopy
images, are required for overcoming the challenges faced by image acquisition.
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4.6. Ethical and Legal Perspectives

While the use of AI in the clinical practice and healthcare domains has lots of upsides,
it raises many ethical challenges. The use of health AI, albeit for transforming the patient–
clinician relationship, carries ambiguity around the use of informed consent. The clinicians
are unaware about the circumstances under which they should or should not inform the
patient about AI being a part of the relationship [110]. AI decisions carry lots of weight,
and they come with the challenges of safety and transparency. While it is understood that
no AI model can be correct all the time, incorrect decisions can prove to be fatal, as well as
mold correct decisions as unsafe. This gives rise to the concern around model algorithms’
fairness and bias. Models are trained on a particular set of data, making them biased to
the characters they inferred from the dataset. It is virtually impossible for any dataset
to exactly sample the world’s population and thus raises a flag for a cause for concern.
AI technology has been identified to have a tremendous capability to threaten patient
preference [111]. Parallelly, the use of health-related AI inevitably intersects with the law
in more than one way. The question of how liability should be attributed in the case of
harmful treatment is still unanswered. Similarly, AI bias against historically disadvantaged
groups can attract anti-discrimination and human rights laws [112]. It is yet unknown
whether the existing privacy laws can protect patients undergoing AI-based healthcare. It
is necessary to understand that, while the potential benefits of AI in healthcare are plenty, it
cannot be adopted for commercial use unless the ethical and legal challenges are responded
to, as they serve as the bedrock of the entire system.

Figure 9 visualizes the open problems in skin cancer diagnosis using machine-learning-
and deep-learning-based techniques.

Figure 9. Open challenges in skin cancer diagnosis.
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5. Future Research Directions

5.1. Combining AI with Next-Generation Sequencing for Refining Skin Cancer Diagnosis

Next-generation sequencing (NGS) technologies have progressed to facilitate the
increase in data output and the efficiencies associated with it. NGS is categorized based
on its respective read lengths [113]. NGS is used to determine the order of nucleotides in
entire genomes or targeted regions in RNA and DNA. High-throughput DNA sequencing
technology and methods have paved the way for commercializing new techniques [114].
The goal of DNA sequencing methods is to support speed while staying accurate, coupled
with lower input rates of DNA and RNA input data. Squamous cell carcinoma (SCC) carries
one of the highest tumor mutation burdens amongst all cancers. By employing the targeted
next-generation sequencing of localized and metastatic high-risk SCCs, gene mutations
can be compared with the intention of identifying key differences and improving targeted
treatment alternatives [115]. Since the introduction of molecular tools, the discovery of
new viruses, such as the papillomavirus, has been accelerated. NGS can be combined with
improved protocols to help detect known and unknown human papillomaviruses [116].

5.2. AI-powered Automated Decision Support Systems for Skin Cancer Diagnosis

Decision support systems are computerized programs used to assist with decision-
making and choosing the right course of action; Artificial-Intelligence-powered decision
support systems can be used in the diagnosis of skin cancer. They provide options of
flexibility in designing deep learning classification models by hinting at the common proce-
dures and looping patterns [117]. Support systems can be initialized with pretrained deep
neural network models combined with transfer learning to classify skin lesion localization
and classification [118]. Present day decision support systems are fused with automated
deep learning methods. These methods are fine-tuned and trained with the help of transfer
learning using imbalanced data [119]. The model extracts the features using an average
pooling layer, although the extracted features are not sufficient. By employing a modified
genetic algorithm based on metaheuristics, relevant and significant features are extracted
which can further be sent to a classifier that acts as a decision support system. As men-
tioned in [120], using AI-powered decision support systems can help clinicians diagnose
and potentially replace invasive diagnostic techniques.

5.3. Smart Robotics for Skin Cancer Diagnosis

Robots can be used to improve the detection of skin cancer. Existing robots like
Vectra WB360 combine 3D images with the corresponding sequential digital dermoscopic
images, owing to the non-invasive tracking of melanoma and non-melanoma skin cancer.
The photographic analysis of the WB360 allows for a global view of the skin surface and
generates a body map to record the evolution of the lesions. This feature is very useful in
detecting any suspicious developments promptly.

5.4. Wearable Computing for Skin Cancer Diagnosis

Wearable computing is a paradigm that involves the computation of accessories that
can be worn by humans. Any small device capable of computing and processing data that
can be worn on the body is categorized as a wearable computer. Wearable computers have
been used in the field of cancer detection [121]. A few challenges that have not allowed
for widespread clinical adoption yet are the high fragility, bendability, non-cooperative
form factor of the sensors used, inappropriate connectivity, clinical inertia, and ultimately
the awareness, as well as the cost, associated with wearable devices. Future research and
corporations should aim to reduce the cost policy while tackling the challenges of using
wearable computing as a vital alternative for cancer detection.

These event-driven tools are beneficial when concerning computational effectiveness,
higher efficiency, power consumption, flexibility, and improved real-time performance. The
possibility of incorporating these tools into wearable devices could be beneficial in terms of
performance enhancement.
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5.5. Teledermatology

Teledermatology is described as technology that supports healthcare from a dis-
tance [130]. Teledermatology aims to provide clinical services to patients, monitor their
health, and provide resources through remote locations. This technology can be used for
diagnosing, screening, and even managing skin cancer effectively. In total, three prospec-
tive solutions for implementing these are the store and forward method, real-time video
conferencing, and a hybrid solution that includes both. At present, the store and forward
method is widely in use with patients taking pictures and videos, which are then forwarded
to the dermatologist. The ease of the convenience and the inexpensiveness make it a very
popular choice. Real-time video conferencing uses the interaction between patient and
physician through a video calling software to provide immediate advice. This simulates an
in-person clinic experience, where the physician can verify medical data and history before
prescribing anything. This method requires a stable internet connection and a high-quality
video camera if it must be used for skin cancer. A low-quality camera may not fully capture
the border and may eventually lead to erroneous diagnoses. The hybrid method mixes the
advantages of both the methods: real-time video conferencing coupled with high-quality
images sent to the dermatologist. Together, these serve as a beneficial way to consult and
diagnose skin cancer. Teledermatology can be used with many machine learning and deep
learning techniques to make the entire process much smoother. For instance, there are
various CNN architectures which can be employed using transfer learning [131]. Doing so
can help the dermatologist make decisions with a higher degree of confidence. Ensemble
models can be incorporated into the pipeline for the store and forward method, enabling
the system to be more accurate after the patient sends adequate-quality photos or videos.

Figure 10 illustrates the future directions for machine-learning- and deep-learning-
enabled skin cancer diagnosis.

 

Figure 10. Future research directions of skin cancer diagnosis.
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The internet of medical things (IoMT) and cloud computing will be the essential
elements in upcoming mobile AI-powered healthcare-related decision support systems. In
this framework, the event-driven tools can be beneficial when concerning computational
effectiveness, real-time compression, data transmission efficiency, power consumption, and
flexibility [135–137]. The possibility of incorporating these tools into contemporary mobile
healthcare solutions can be investigated in the future.

6. Conclusions

A comprehensive survey is presented on machine learning and deep learning tech-
niques, deployed for an automated skin cancer diagnosis. A comparison is made to the
widely used skin cancer datasets and dominant studies. An insight discussion is had while
exploring the lessons from prior works. Its aim is to set this survey as a benchmark for
further studies in the field of skin cancer diagnosis by also including the limitations and
benefits of the previous works. It is concluded that the Artificial Intelligence (AI)-based
healthcare solutions come with many pre-requisites, dependencies and issues that must
first be resolved before they can scale up. The AI research carries ethical and legal ambigui-
ties, along with a lack of clinical data on all skin types, thereby inducing unintended bias
in the model’s prediction. Moreover, although AI is gaining traction in the dermatology
discipline, it still has lots of room to grow and enhance further in terms of the sensitivity,
specificity, and accuracy of detecting the skin lesions. Additionally, dermatologists must
take the first step in accepting and embracing AI, not as a threat to their professions, but as
an ancillary tool to complement their diagnoses. While considering the challenges for im-
planting end-to-end AI-based solutions in healthcare, there are lots of prospects, promises,
and challenges. Wearable computing and robotics are evolving, and AI healthcare can
be incorporated into these recent innovations to ease the apprehensive market. While
the limited available data suggest a parity between those who are keen on adopting AI
healthcare, and those aversive towards it, the room to improve automated skin cancer
detection has been established.
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Appendix A

Table A1. List of abbreviations used in this manuscript along with their full form.

Acronym Definition

AI Artificial Intelligence

ANN Artificial neural network

KNN K-nearest neighbors

ABCD Asymmetry, border, color, diameter

SVM Support vector machine



Cancers 2023, 15, 1183 31 of 36

Table A1. Cont.

Acronym Definition

ROC Receiver Operating Characteristic

AUC Area under curve

RNN Recurrent neural network

DHOA Deer hunting optimization algorithm

LSTM Long short-term memory

DBN Deep belief network

CNN Convolutional neural network

DBM Deep Boltzmann machine

RL Reinforcement learning

ELM Extreme learning machine

NGS Next generation sequencing

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

SCC Squamous cell carcinoma
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