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Abstract—The missing data and noisy data are common in a data set and the finding the effect it causes 

on the accuracy is very important to be determined. In statistics, missing data, or such values, occur when 

no data value is assigned for a field in a dataset. Missing data are a common occurrence and can have a 

significant effect on the conclusions that can be drawn from the data given or taken from warehouses.  

Missing data reduce the representativeness of the sample and can therefore distort/deviate inferences & 

conclusions about the population. This study aims at calculating the effect of missing values on Naïve 

Bayes algorithm by using two data sets that are lymphoma and breast cancer. The values are skipped in 

certain order of both the data set and accuracy is computed and results were compared in a table. Naïve 

Bayes is based on probalistic model. 
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I. INTRODUCTION 

Missing data is an issue in multivariate data because a case will be skipped from the analysis if it is missing data 
for a variable included in the analysis process [1], [2]. The following are the reasons for missing data. 

1. Missing data can occur because of lack of response: no information is provided for several 
items/objects or no information is provided for a whole unit. 

2. Dropout is a type of missingness that occurs mostly when studying development over a period of time. 
In this type of study the measurement is seen repeated after a certain period of time. Missingness 
occurs when participants leave before the test ends and one or more such measurements are missing. 

3. Sometimes missing values are caused by the researcher itself. 
II. LITERATURE REVIEW 

Jonathan Sterne and colleagues did study describing about the use and guidance about multiple imputation 
approach to dealing with them in their paper [3], [4].  Brick, J. Michael, and Graham Kalton did a research on 
handling missing data on survey in Statistical method in 1996 and calculating heir effects [5]. Naïve Bayesian 
has used in medical diagnosis. Russell and Norvig was the first to study about Naïve Bayesian and they have 
mentioned in their first book. Rish, Irina in 2001 who worked on an empirical study of the Naïve Bayesian [6]. 
Altman, Douglas G., and J. Martin Bland did a article in British medical journal describing the effects of 
missing data [7]. 

A. Types of missing data 

Understanding the reasons in depth why data are missing can help with analyzing the remaining data. If values 
are missing at random, the data sample may still be typical of the population. But if the values are missing 
systematically, analysis may be harder comparatively [3], [8]. 

MCAR : Values in a data set are missing completely at random if the events that lead to any particular data-item 
being missing are independent both of observed variables and of unobserved parameters of interest, and takes 
place entirely at random [9]. 

MAR : Missing at random occurs when the missing-ness is not random, but where missing-ness can be fully 
accounted for by the variables where there is complete information. MAR is an assumption that is indispensable 
to verify statistically, we must depend on its firm reasonableness [10]. 

MNAR : Missing not at random (also known as unavoidable nonresponse) is data that is neither MAR nor 
MCAR (i.e. the value of the variable that's missing is related to the reason why it's missing) [11]. 
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III. METHODOLOGY 

The naıve Bayesian classification gives the class label of a tuple, the values of the attributes are assumed to be 
conditionally independent of one another. The naïve Bayesian classifier is the most correct in comparison with 
all other classifiers [6]. Bayesian classification is the statistical classifiers and for each new sample they provide 
that the sample belongs to a class. For ex: - sample john (age=27, income=high, student=no, 
credit_rating=fair).It uses the concept of joint conditional probability distributions, which makes class 
conditional independencies to be defined between subsets of variables and also it have a graphical model of 
relationships, by which learning can be performed. A belief network has directed acyclic graph and set of 
conditional probability tables’ components, Each and every node in directed acyclic graph represents a random 
variable which can be discrete- or continuous-valued. They may be actual attributes given in the data or can be 
“hidden variables” understood to form a relationship. In this directed acyclic graph each and every arc 
represents probabilistic dependence. If an arc is drawn from a node A to a node B, then A is a parent or 
immediate predecessor of B, and B is a descendant of A. Every variable in the graph is independent of its non-
descendants, gives its parents [12]. The reasons behind choosing Bayesian network among all the various 
classification techniques are: 

1. The probabilistic nature of the Bayesian network is calculation the probabilities for hypothesis, 
among the most practical approaches to certain types of problems. 

2. The incremental nature of Bayesian network i.e. each and every training example can be 
incrementally increase or decrease the probability that a hypothesis is correct.  

3. Various types of past knowledge can be combined with observed data. 

Let assumed that there is a sample called A, the probability of a hypothesis h, P(h|A) follows the Bayes theorem 
stated mathematically as the following equation ܲሺܤ|ܣሻ ൌ  ܲሺܣ|ܤሻ  ܲሺܣሻܲሺܤሻ  

During the training of a belief network, various scenarios are possible. The network topology is constructed by 
human experts or inferred from the data and the network variables may be observable by some training tuples. 
The hidden data case is which is also called as missing values. Several algorithms exist for learning the missing 
values from the training data. The problem is one of discrete optimization. For solutions, Bayesian classification 
is the best choice. When the pattern of missing is known and the variables of training tuples is given are 
observable, then training the dataset is candid. It consists of computing the continuous probability table (CBT) 
entries, as is similarly done when computing the probabilities involved in naıve Bayesian classification [11]. 

In Bayesian network, Naïve Bayesian classifier is also used in which we assume that attributes are conditionally 
independent. 
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Fig. 1.  Fuzzy unordered Rules Induction Algorithm 

The data sets were taken from UCI-repository. The data set is of breast cancer and other is of lymphograpy. First 
data set has 699 rows and 9 attributes whereas other dataset has 142 rows and 18 attributes. The data set was 
converted to CSV (comma delimiter file) and imported to PHPMyAdmin in form of RDBMS tables. The IDE 
used to create is Net Beans 8.0 and JDK 6.0. The language used is JSP (java Servlet packages).  

VI. RESULT ANALYSIS 

The data set is varied as reducing 5%, 10%, 20%, 30% and 45%.  For 5% rows are deleted and for greater than 
20% some attributes are deleted. Both of them showed that the accuracy initially increases and start decreasing 
after a certain point. The accuracy is calculated by no. of values matching the correct label by the total number 
of values. 

TABLE IV – Imputed Results 

Missing Data (%) 
Imputed Results in Data Set 

Lymphoma Breast Cancer 

5 127/140 96 

10 124/140 620/650 

30 82/110 534/570 

40 72/90 416/450 
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VII. CONCLUSION 

Imputation missing value is one of the major tasks of data pre-processing when performing data mining. Simply 
removing the records which contain missing value from the original datasets can bring more problems than 
solutions. A suitable method for imputing the missing value can help to produce good quality datasets for better 
analysing trials. Mean/mode imputation, fuzzy unordered rule generation algorithm for imputation, decision tree 
imputation and other machine learning algorithms are used for imputing the missing value and the final datasets 
are classified using K-Mean clustering. The experiment shows that performance is improved when the fuzzy 
unordered rule induction algorithm is used to predict missing attribute values. According to the results and 
observations it can be seen that initially the accuracy increases up to a certain point and then it started 
decreasing gradually. As Naïve Bayes algorithm is based on probabilistic model and all the values are 
considered while testing hence reducing some values can have a positive impact but up to some limit. 
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