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Abstract

In this paper, we propose an efficient fourth-order compact finite difference scheme
with low numerical dispersion to solve the two-dimensional acoustic wave equa-
tion. Combined with the alternating direction implicit(ADI) technique and Padé
approximation, the standard second-order finite difference scheme can be improved
to fourth-order and solved as a sequence of one-dimensional problems with high
computational efficiency. However such compact higher-order methods suffer from
high numerical dispersion. To suppress numerical dispersion, the compact and non-
compact stages are interlinked to produce a hybrid scheme, in which the compact
stage is based on Padé approximation in both y and temporal dimensions while the
non-compact stage is based on Padé approximation in y dimension only. Stability
analysis shows that the new scheme is conditionally stable and superior to some
existing methods in terms of the Courant-Friedrichs-Lewy (CFL) condition. The
dispersion analysis shows that the new scheme has lower numerical dispersion in
comparison to the existing compact ADI scheme and the higher-order locally one-
dimensional (LOD) scheme. Three numerical examples are solved to demonstrate
the accuracy and efficiency of the new method.
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1 Introduction

Numerical solutions of the acoustic wave equations have been widely used
in many areas, for example in geophysics, for the purpose of oil exploration,
and in medical science, for medical imaging. Among the various numerical
methods available, finite difference schemes have attracted the interests of
many researchers working on seismic wave propagation (see [12,19,20,22] and
references therein) and inverse problems [6,17]. Explicit time-stepping finite
difference schemes are very popular in practice due to their ease of imple-
mentation [7,12,20], but they usually suffer from moderate to severe stability
conditions which only allow very small time step size. The implicit finite dif-
ference schemes are more complicated and less efficient in terms of implemen-
tation. However such schemes are more stable and allow the use of larger time
step size, consequently, are more efficient. Another issue with the numerical
simulation of acoustic wave propagation is the numerical dispersion. One rem-
edy is to use highly accurate numerical methods. However it is known that
the development of numerical methods with good stability and high accuracy
remains a challenging task.

Recently, a great deal of efforts have been devoted to develop higher-order fi-
nite difference schemes with low numerical dispersion for the above mentioned
acoustic equations and elastic wave equations. For example, in [19], using a
plane wave theory and the Taylor series expansion, Liu and Sen proposed a
new low dispersive time-space domain finite difference scheme with error of
O(τ 2 +h2M) for 1-D, 2-D and 3-D acoustic wave equations, where τ and h are
time step and spatial grid size, respectively, if a (2M + 1)-point stencil is used
for each spatial dimension. It was then shown[20] that, along certain fixed
directions the error can be improved to O(τ 2M +h2M). In [7], Cohen and Joly
extended the works of Dablain [8], Shubin and Bell [24] and Bayliss et al. [2]
developed a fourth-order accurate explicit scheme with error of O(τ 4 + h4) to
solve the heterogeneous acoustic wave equation. Chu and Stoffa[4] proposed
a new implicit finite-difference method which combines a three-level implicit
splitting time integration method in time and implicit finite-difference op-
erators of arbitrary order in space. In [30], Yang etc. developed an optimal
nearly-analytic discrete to solve the wave equation in 3D anisotropic media.
More related works on the accurate and low dispersive numerical methods can
be found in [3,21,26,28,29,31–34] and the references therein.

These high order methods are accurate but result in non-compact schemes,
which give rise to two issues: efficiency and difficulty in boundary condition
treatment. To resolve these issues, many researchers have developed a variety
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of compact higher-order finite difference schemes to approximate the spatial
derivatives. In [5], the authors developed a family of fourth-order three-point
combined difference schemes to approximate the first- and second-order spatial
derivatives. In [13], the authors introduced a family of three-level implicit finite
difference schemes which incorporate the locally one-dimensional method. For
more recent compact higher-order difference methods, the readers are referred
to [16,18,25,27,35].

Padé approximation based compact higher-order difference scheme works flaw-
lessly for 1D problems, however, for multi-dimensional problems, the difference
operator is replaced by a rational function of the finite difference operator, so
a block tridiagonal system needs to be solved at each step. To efficiently solve
such large linear system, some operator splitting techniques are required to
provide efficient boundary treatment and break the multi-dimensional problem
down to a number of decoupled one-dimensional problems. Two important op-
erator splitting methods: the alternating direction implicit (ADI) method and
the locally one-dimensional (LOD) method are widely used for this purpose.
ADI method, which was originally introduced by Peaceman and Rachford
[23] to solve parabolic and elliptic equations, has witnessed a lot of develop-
ment over the years for hyperbolic equations as well [9,14,15]. For example,
Fairweather and Mitchell [10] developed a fourth-order compact ADI scheme
(THOC-ADI) for solving the wave equation. Recently, locally one-dimensional
(LOD) methods have also been found to be very efficient in solving wave equa-
tion. Zhang et al. [36] have developed a fourth-order compact LOD scheme
(HOC-LOD) which has lower dispersion than the typical higher-order com-
pact ADI scheme (THOC-ADI), however it uses an additional intermediate
variable although the increase in computational cost and computer memory
is marginal.

In this paper, we aim to develop a fourth-order finite difference scheme by
integrating Padé approximation in temporal and one spatial dimension and
the ADI technique. The resulting scheme is fourth-order in both time and
space, and this feature is a perfect fit for hyperbolic-type PDEs such as wave
equation, since the CFL condition normally requires that the time step size
should be proportional to the spatial step size. Another feature of the new
scheme is the flexibility which allows non-compact higher-order approximation
of the spatial derivative ∂2u

∂x2 to reduce numerical dispersion.

The rest of the paper is organized as follows. A brief introduction of two exist-
ing higher-order splitting schemes is presented in Section 2. A new ADI-based
compact finite difference scheme is developed, which is then modified to obtain
the new efficient low dispersive scheme in Section 3. The numerical dispersion
analysis and stability analysis of the new scheme are conducted in Sections 4
and 5, respectively. We then demonstrate the accuracy and efficiency of the
new scheme by applying it to solve three numerical examples in Section 6. Fi-
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nally, the conclusions and possible future extensions are addressed in Section
7.

2 Some existing higher-order splitting schemes

In this section we briefly introduce two existing fourth-order compact schemes
that have been proposed to solve the 2-D acoustic wave equation in homoge-
neous media given by

1

ν2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ Ω × [0, T ], (1)

where ν is the wave velocity. The initial conditions are

u(x, y, 0) = f1(x, y), (x, y) ∈ Ω, (2)

ut(x, y, 0) = f2(x, y), (x, y) ∈ Ω (3)

and the boundary condition is defined as

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω × [0, T ]. (4)

To simplify the discussion, we assume that Ω = [0, 1]× [0, 1], which is divided
into a uniform Nx ×Ny grid with equal spatial grid spacing hx = 1/(Nx − 1),
hy = 1/(Ny − 1), and the grid points are defined as (xi, yj) = ((i− 1)hx, (j −
1)hy) for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. τ denotes the time step size, while uni,j
denotes the numerical approximation of u(xi, yj, tn). The following acronyms
will be used throughout the rest of the paper to simplify the presentation.

• THOC-ADI: Typical higher-order compact alternating direction implicit
scheme.
• HOC-LOD: Higher-order compact locally one-dimensional scheme.
• CPD-ADI: Compact Padé approximation based alternating direction im-

plicit scheme.
• NCPD-ADI: Non-compact Padé approximation based alternating direction

implicit scheme.
• IPD-ADI: Inter-linked Padé approximation based alternating direction im-

plicit scheme.
• THOM-ADI: Typical higher-order modified alternating direction implicit

scheme.

It is well-known [1] that the standard compact central finite difference opera-
tors δ2

t , δ
2
x and δ2

y defined by
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∂2u

∂t2
(xi, yj, tn) ≈ δ2

t

τ 2
uni,j =

1

τ 2

[
−2uni,j +

(
un−1
i,j + un+1

i,j

)]
, (5)

∂2u

∂x2
(xi, yj, tn)≈ δ2

x

h2
x

uni,j =
1

h2
x

[
−2uni,j +

(
uni−1,j + uni+1,j

)]
, (6)

∂2u

∂y2
(xi, yj, tn) ≈ δ2

y

h2
y

uni,j =
1

h2
y

[
−2uni,j +

(
uni,j−1 + uni,j+1

)]
(7)

give only second-order approximations to utt, uxx and uyy at (xi, yj, tn), re-
spectively, where τ is time step, hx and hy are grid sizes in x and y directions.
To obtain higher-order scheme, one needs to approximate these derivatives
with higher-order accuracy.

For comparison, we first introduce a typical higher-order compact ADI scheme
(THOC-ADI)[10], which is fourth-order accurate in both time and space. For
the simplified case of h = hx = hy, it is defined as

(
1 +

1− r2

12
δ2
x

)
u∗i,j =

[
2 +

1 + 5r2

6
δ2
x −

2(1 + r2)

1− r2
δ2
y

]
uni,j

−
[
1 +

1− r2

12
δ2
x

]
un−1
i,j ,

(
1 +

1− r2

12
δ2
y

)
un+1
i,j =u∗i,j +

1− r2

12
δ2
y

[
2(1 + 10r2 + r4)

(1− r2)2 uni,j − un−1
i,j

]
, (8)

where r = vτ
h

is the CFL number, and u∗i,j is an intermediate solution defined at
some time level t∗ ∈ (tn, tn+1). Note here the time level t∗ is usually unknown
and also no need to be specified.

The second scheme [36] is a fourth-order compact LOD scheme (HOC-LOD)
with an error of O(τ 4 + h4), which involves the following three stages:

(b+ r2c2δ
2
x)u

n
i,j + (a+ r2c3δ

2
x)u

n−1
i,j = (a+ b+ r2c1δ

2
x)u

n−1+s
i,j , (9)

(a+ r2ć3δ
2
y)u

n+s
i,j + (b+ r2ć3δ

2
y)u

n−1+s
i,j = (a+ b+ r2ć1δ

2
y)u

n
i,j, (10)

(b+ r2c2δ
2
x)u

n+1
i,j + (a+ r2c3δ

2
x)u

n
i,j = (a+ b+ r2c1δ

2
x)u

n+s
i,j , (11)

where 0 < s < 1 is a parameter. It was shown[36] that to optimize the order

of accuracy, s = 3−
√

3
6

should be chosen. Other parameters are defined as

a= 6 + 2
√

3, b = 6− 2
√

3,

c1 = c
′
1 = 1 +

1

r
, c2 = c

′
2 =

2(1− r)
ar

, c3 = c
′
3 =

2(1− r)
br

.
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Note the intermediate value un−1+s
i,j is obtained through solving Eq. (9), which

is then used in Eq. (10) to solve for the second intermediate value un+s
i,j . Finally

the numerical solution un+1
i,j is computed by solving Eq. (11).

Apparently, both schemes are efficient as all linear algebraic equations being
solved are tridiagonal systems. However, the second scheme (HOC-LOD) is
more expensive and requires more memory since two intermediate values are
required at each time step. On the other side, as stated in [36] and also demon-
strated in Section 4, the numerical dispersion of HOC-LOD is lower than that
of HOC-ADI. Both higher-order compact schemes will be compared with the
new scheme in terms of efficiency, accuracy, stability and numerical dispersion.

3 The new higher-order ADI scheme

To develop the new higher-order finite difference scheme we will use two differ-
ent types of higher-order spatial stencils to approximate the spatial derivatives
uxx and uyy.

We first introduce the conventional finite difference spatial stencils which are
given in [20] as

∂2u

∂x2
(xi, yj, tn) =

1

h2

[
a0u

n
i,j +

M∑

m=1

am
(
uni−m,j + uni+m,j

)]
+ O(h2M) (12)

∂2u

∂y2
(xi, yj, tn) =

1

h2

[
a0u

n
i,j +

M∑

m=1

am
(
uni,j−m + uni,j+m

)]
+ O(h2M). (13)

Note here for simplicity, we let hx = hy = h.

Let’s denote the non-compact finite difference operators Lx and Ly as

Lxu
n
i,j = a0u

n
i,j +

M∑

m=1

am
(
uni−m,j + uni+m,j

)
, (14)

Lyu
n
i,j = a0u

n
i,j +

M∑

m=1

am
(
uni,j−m + uni,j+m

)
, (15)

where the coefficients a′is are obtained by standard Taylor series expansions of
Eqs. (12-13). Note that in the conventional finite difference stencils, M ≥ 2 is
required to get fourth-order accuracy in space thus the higher-order conven-
tional finite difference stencils are non-compact in general.

The second type of higher-order spatial stencils are developed by applying the
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Padé approximation to the second-order stencils δ2
x, δ

2
y and δ2

t [1,16], which are
given as

δ2
x

h2
(
1 + 1

12
δ2
x

)uni,j =
∂2u

∂x2
(xi, yj, tn) + O(h4), (16)

δ2
y

h2
(
1 + 1

12
δ2
y

)uni,j =
∂2u

∂y2
(xi, yj, tn) + O(h4), (17)

δ2
t

τ 2
(
1 + 1

12
δ2
t

)uni,j =
∂2u

∂t2
(xi, yj, tn) + O(τ 4). (18)

Although the conventional finite difference stencils are non-compact they demon-
strate lower numerical dispersion. This is because, using compact schemes we
cannot increase space stencil greater than 4, but with non-compact scheme,
we can take M > 4 (see Section 4). So a hybrid scheme will be derived, which
consists of conventional higher-order finite difference stencil for interior nodes
and compact finite difference stencils for nodes near boundary. In what follows,
we describe the two higher-order schemes in detail.

3.1 Higher-order compact ADI scheme

Substituting the fourth-order Padé approximations given in Eqs. (16-18) into
the acoustic wave equation Eq. (1) yields

δ2
t

ν2τ 2(1 + 1
12
δ2
t )
uni,j =

δ2
x

h2(1 + 1
12
δ2
x)
uni,j +

δ2
y

h2(1 + 1
12
δ2
y)
uni,j +O(τ 4 + h4). (19)

Ignoring the fourth-order error term, and applying ν2τ 2(1+ 1
12
δ2
t )(1+ 1

12
δ2
x)(1+

1
12
δ2
y) to both sides of Eq. (19) lead to

(
1 +

1

12
δ2
x

)(
1 +

1

12
δ2
y

)
δ2
t u

n
i,j =

r2
[(

1 +
1

12
δ2
y

)(
1 +

1

12
δ2
t

)
δ2
x +

(
1 +

1

12
δ2
x

)(
1 +

1

12
δ2
t

)
δ2
y

]
uni,j, (20)

where r = ντ
h

.

Collecting terms δ2
t u

n
i,j we obtain

[
1 +

1− r2

12
δ2
x +

1− r2

12
δ2
y +

1− 2r2

144
δ2
xδ

2
y

]
δ2
t u

n
i,j = r2

[
δ2
x + δ2

y +
δ2
xδ

2
y

6

]
uni,j, (21)
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which is equivalent to

[
1 +

1− r2

12
δ2
x

] [
1 +

1− r2

12
δ2
y

]
δ2
t u

n
i,j = r2

[
δ2
x + δ2

y +
1

6
δ2
xδ

2
y

]
uni,j + Err, (22)

where the truncation error term Err = r4

144
δ2
xδ

2
yδ

2
t u

n
i,j = O(τ 6), provided that

uxxyytt exits and is bounded on Ω× [0, T ].

Ignoring the truncation error term Err, we obtain the following compact
fourth-order numerical scheme
[
1 +

1− r2

12
δ2
x

] [
1 +

1− r2

12
δ2
y

]
δ2
t u

n
i,j = r2

[
δ2
x + δ2

y +
1

6
δ2
xδ

2
y

]
uni,j, (23)

which can be efficiently solved in two steps:

(
1− r2 − 1

12
δ2
x

)
ũi,j =

[
r2δ2

x + r2δ2
y +

r2

6
δ2
xδ

2
y

]
uni,j, (24)

(
1− r2 − 1

12
δ2
y

)
δ2
t u

n
i,j = ũi,j, (25)

Note that the horizontal boundary conditions ũ1,j and ũN,j, 1 < j < N are
obtained by setting i = 1 and i = N in Eq. (25), respectively. Eq. (25) is a
three-level scheme that involves solving a tridiagonal system. To see this, we
rewrite it in detail as

(
1− r2 − 1

12
δ2
y

)
un+1
i,j = ũi,j +

(
1− r2 − 1

12
δ2
y

)
(2uni,j − un−1

i,j ). (26)

The scheme defined in Eqs. (24-25) is compact and fourth-order accurate, and
can be solved by ADI technique, so it is referred as CPD-ADI.

3.2 Higher-order interlinked ADI scheme

Despite of its efficiency and accuracy, the compact higher-order finite differ-
ence scheme(CPD-ADI) defined in Eqs. (24-25) suffers from moderate numer-
ical dispersion. Actually, it was reported in [20] that the larger number of
spatial points been used in Eqs. (12-13), the lower the numerical dispersion
will be. We therefore modify this CPD-ADI scheme by replacing the compact
Padé approximation based ADI scheme with non-compact higher-order finite
difference stencil for interior nodes. More specifically, in the new hybrid ADI
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scheme, there are two stages: compact and non-compact stages, which are
interlinked and we thereby refer to this new scheme as the interlinked Padé
approximation based ADI scheme (IPD-ADI).

In what follows, we describe the new hybrid scheme in detail, with focus on the
perspective of implementation. Substituting Lx for the fourth-order difference

operator δ2x
1+ 1

12
δ2x

in Eq. (19) gives

δ2
t

v2τ 2
(
1 + 1

12
δ2
t

)uni,j =
Lx
h2
uni,j +

δ2
y

h2
(
1 + 1

12
δ2
y

)uni,j, (27)

which will be used for interior nodes while the ADI scheme in Eq. (19) will be
used for nodes near horizontal boundary. To ensure the fourth-order accuracy
of the hybrid scheme, the difference between the intermediate values of the two
ADI schemes to be interlinked must be of truncation order four or higher. Note
in our new hybrid scheme, both stages have the same intermediate values.

Apparently the scheme in Eq. (27) can be interpreted as the result of dis-
cretizing the spatial derivatives along y and the temporal derivative Eq. (18)
by Padé approximation based higher-order compact scheme and discretizing
the spatial derivatives along x by the conventional non-compact higher-order
finite difference stencils from Eq. (12). Here we don’t use conventional FD
stencils in both x and y as the increase in computational cost will be too high
to compensate for the decrease in numerical dispersion. Collecting the terms
δ2
t u

n
i,j leads to

[
1 +

1− r2

12
δ2
y −

r2

12
(1 +

1

12
δ2
y)Lx

]
δ2
t u

n
i,j =

[
r2Lx + r2δ2

y +
r2

12
δ2
yLx

]
uni,j, (28)

which can be further simplified as

(
1− r2

12
Lx

)(
1− r2 − 1

12
δ2
y

)
δ2
t u

n
i,j =

(
r2Lx + r2δ2

y

)
uni,j +

r2

12
δ2
yδ

2
xu

n
i,j. (29)

To ensure that the simplified scheme in Eq.(29) is still fourth-order, we need
to verify that the difference between Eq. (28) and Eq. (29) is at least fourth-
order. Subtracting Eq.(29) from Eq.(28), we can see the difference on the
left-hand side is − r4

144
Lxδ

2
yδ

2
t u

n
i,j, while the difference on the right-hand side is

r2

12
δ2
y(δ

2
x − Lx)uni,j, hence the total error introduced during the simplification,

or in other words, the difference between Eq. (28) and Eq. (29) is

r4

144
Lxδ

2
yδ

2
t u

n
i,j +

r2

12
δ2
y(δ

2
x − Lx)uni,j. (30)

9



If the solution is sufficiently smooth, using Taylor series, one can show that

Lxu
n
i,j = h2uxx(xi, yj, tn) +O(h2M), δ2

xu
n
i,j = h2uxx(xi, yj, tn) +O(h4),

and

δ2
yu

n
i,j = h2uyy(xi, yj, tn) +O(h4), δ2

t u
n
i,j = τ 2utt(xi, yj, tn) +O(τ 4),

where M ≥ 2. Since all derivatives are bounded, we can show that

Lxδ
2
yδ

2
t u

n
i,j = O(h4τ 2), δ2

y(δ
2
x − Lx)uni,j = O(h6).

Inserting these results into Eq. (30), considering that r = ντ
h

, we can see the
difference between Eq. (28) and Eq. (29) is

r4

144
Lxδ

2
yδ

2
t u

n
i,j +

r2

12
δ2
y(δ

2
x − Lx)uni,j

=
ν4τ 4

144h4
·O(h4τ 2) +

ν2τ 2

12h2
·O(h6)

= O(τ 6 + τ 2h4),

which is at least fourth-order in both time and space. We point out here that
the reason we substitute δ2

x for Lx on the right-hand side of Eq. (29) is to
reduce computational cost, as Lx results in a wider stencil.

Similarly, Eq. (29) can be efficiently solved in two steps as

(
1− r2

12
Lx

)
u∗i,j =

(
r2Lx + r2δ2

y

)
uni,j +

r2

12
δ2
yδ

2
xu

n
i,j, (31)

(
1− r2 − 1

12
δ2
y

)
δ2
t u

n
i,j =u∗i,j. (32)

In summary, the higher-order non-compact ADI scheme(NCPD-ADI) given in
Eqs. (31-32) is used in the non-compact stages for interior nodes while the
higher-order compact ADI scheme given in Eqs. (24 -25) will be used in the
compact stages for nodes near the horizontal boundary.

We now write the new interlinked Padé approximation based scheme in the
decoupled form using intermediate values ũi,j and u∗i,j. For interior nodes we
use the NCPD-ADI scheme
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(
1− r2

12
Lx

)
u∗i,j =

(
r2Lx + r2δ2

y

)
uni,j +

r2

12
δ2
xδ

2
yu

n
i,j, (33)

(
1− r2 − 1

12
δ2
y

)
δ2
t u

n
i,j =u∗i,j, (34)

while for the nodes near the horizontal boundary we use the following CPD-
ADI scheme

(
1− r2 − 1

12
δ2
x

)
ũi,j =

[
r2δ2

x + r2δ2
y +

r2

6
δ2
xδ

2
y

]
uni,j, (35)

(
1− r2 − 1

12
δ2
y

)
δ2
t u

n
i,j = ũi,j, (36)

where the choice of M in Lx which determines horizontal stencil size is dis-
cussed in Section 4.

We outline the main steps of the new higher-order IPD-ADI method as the
following(assuming Nx = Ny = N):

• Step 1: Compute the initial conditions u(xi, yj, 0) and u(xi, yj, τ), for 1 ≤
i, j ≤ N .
• Step 2: Compute the horizontal boundary conditions of ũ by setting i = 1

and i = N for 1 < j < N in Eq. (36).
• Step 3: For 1 < j < N compute the intermediate variables by solving a

sparse linear system, in which the first M equations(for 2 ≤ i ≤ M + 1)
and the last M equations(for N −M ≤ i ≤ N − 1) are formed using Eq.
(35), while the other N − 2M − 2 equations (for M + 1 < i < N −M) are
formed using Eq. (33).
• Step 4: Upon the solution of the intermediate variables (ũ or u∗), solve Eq.

(34) or Eq. (36) to compute un+1
i,j .

• Step 5: Update the current time level and two initial conditions, and repeat
steps 2 - 4 till the final time level reached.

A natural question arises whether the same strategy of using larger spatial fi-
nite difference stencils can be applied to the existing schemes to reduce numer-
ical dispersion. Among the higher-order ADI and LOD schemes, ADI schemes
are more suitable to implement larger spatial FD stencils because ADI schemes
uses less steps than LOD schemes. The increase in computational complexity
on implementing larger spatial finite difference stencils for ADI schemes will
be much less than that of the LOD schemes. Hence we only present numerical
dispersion comparison between the new NCPD-ADI scheme and the THOC-
ADI scheme modified by larger spatial finite difference stencils (THOM-ADI)
which is obtained using Eq. (8) and Eq. (12) as
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(
1 +

1− r2

12
Lx

)
u∗i,j =

1− r2

12
Lx

[
2(1 + 5r2)

(1− r2)
uni,j − un−1

i,j

]

2uni,j − un−1
i,j −

r2(1 + r2)

(1− r2)
δ2
yu

n
i,j, (37)

(
1 +

1− r2

12
δ2
y

)
un+1
i,j =u∗i,j +

1− r2

12
δ2
y

[
2(1 + 10r2 + r4)

(1− r2)2 uni,j − un−1
i,j

]
, (38)

and as before with the IPD-ADI scheme, the above scheme is used with the
interior nodes only while the original THOC-ADI scheme is used for nodes near
the horizontal boundary to preserve the compactness of boundary condition
treatment.

3.3 Higher-order approximation of the initial condition

As one can see that both the CPD-ADI scheme and the hybrid scheme IPD-
ADI involves a three level scheme which requires two initial conditions to
start the computational procedure. In practice, only the first initial condition
is explicitly specified. Here we present a fourth-order method to approximate
the second initial condition for the three level scheme CPD-ADI given in
Eqs. (24-25) and the three level scheme NCPD-ADI given in Eqs. (31-32). To
simplify the discussion, we assume that the uniform time step size τ is used.
Apparently the first initial condition is explicitly defined as

u1
i,j = u(xi, yj, 0) = f1(xi, yj), 1 ≤ i, j ≤ N. (39)

At a fixed node (xi, yj), the function u(xi, yj, t) is a single variable function
of t. Expanding it by Taylor series at t = 0, we obtain u2

i,j, the fourth-order
approximation of u(xi, yj, τ) as

u2
i,j =u1

i,j + τ
∂u

∂t
(xi, yj, 0) +

τ 2

2

∂2u

∂t2
(xi, yj, 0) +

τ 3

6

∂3u

∂t3
(xi, yj, 0)

+
τ 4

24

∂4u

∂t4
(xi, yj, 0) +O(τ 5)

=u1
i,j + τf2(xi, yj) +

ν2τ 2

2
4f1(xi, yj) +

ν2τ 3

6
4f2(xi, yj)

+
ν4τ 4

24
42f1(xi, yj) +O(τ 5), 1 ≤ i, j ≤ N, (40)

provided that f1(x, y) and f2(x, y) are sufficiently smooth.
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4 Dispersion analysis

Numerical dispersion is the phase error generated when we apply the plane
wave theory to the discretized equation with relation to the non-discretized
equation. The physical implication of numerical dispersion is the difference in
numerical wave speed from the actual wave speed, v. For applying plane wave
theory let

uni,j = eI[kcosθ(x+ih)+ksinθ(y+jh)−ω(t+nτ)], I =
√
−1 ∈ C, (41)

where k is the numerical wave number and θ is the wave propagation angle.
For the sake of simplicity we consider h = hx = hy. Substituting Eq. (41) into
Eq. (29) we get the dispersion relation for NCPD-ADI scheme

−4

(
1− r2

12
S1

)(
1− r2 − 1

12
S3

)
sin2

(
rkh

2

)
= r2S1 + r2S3 +

r2

12
S2S3, (42)

where S1, S2, &S3 are obtained by substituting Eq. (41) into the difference
operators Lx, δ

2
x, and δ2

y , receptively,

S1 = a0 + 2
M∑

m=1

amcos(khcosθ), (43)

S2 =−4sin2

(
khcosθ

2

)
, S3 = −4sin2

(
khsinθ

2

)
. (44)

Similarly the dispersion relation for CPD-ADI scheme can be derived from
Eq. (22) as

−4

(
1− r2 − 1

12
S2

)(
1− r2 − 1

12
S3

)
sin2

(
rkh

2

)
= r2

(
S2 + S3 +

S2S3

6

)
. (45)

For comparison, we derived the dispersion relations for THOC-ADI scheme
from Eq. (8) as

−4sin2

(
rkh

2

)
= (S2 + S3)

[
1

6
(1− r2)cos(rkh)− (1 + 5r2)

6

]

+S2S3

[
(1− r2)

2

72
cos(rkh)− (1 + 10r2 + r4)

72

]
, (46)

and the THOM-ADI scheme from Eq. (38) as
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−4sin2

(
rkh

2

)
= (S1 + S3)

[
1

6
(1− r2)cos(rkh)− (1 + 5r2)

6

]

+S1S3

[
(1− r2)

2

72
cos(rkh)− (1 + 10r2 + r4)

72

]
. (47)

The dispersion relation of the HOC-LOD scheme has been derived in [36] and
is available therein. Let δ be the normalized phase error given by vFD/v, which
is then graphically compared with the exact dispersion relation obtained by
substituting Eq. (41) into Eq. (1):

ω2 = v2k2. (48)

The normalized phase error is plotted with respect to 0 < kh ≤ π, where π is
the upper limit at Nyquist frequency. Additionally, we also plot the discrete
L2-norm of deviation of δ from δexact, which is defined as

‖ · ‖2 :=
1

P

[
P∑

i=1

[δ(k[i]h)− δexact]2
] 1

2

, k = [ki]P , (49)

where P = 100. Since the analytic representations for dispersion relations are
available, instead of using L2 norm error, we can also use integral average of
the error between δ and δexact, however the plots are the same. The dispersion
relations of CPD-ADI, THOC-ADI and HOC-LOD are π/2 periodic in θ and
symmetric about π/4, which determines the range of their θ variation in Fig.
2. Likewise, the dispersion relation for NCPD-ADI (see Eq. (42)) scheme is π
periodic in θ and symmetric about π/2, so it is plotted for a higher range.

Fig. 1 shows the variation of the numerical dispersion with kh for different
numbers of spatial points. It can be observed that if the number of spa-
tial points along one direction increases, there is a decrease in net numerical
dispersion in the NCPD-ADI scheme, while the numerical dispersion in the
THOM-ADI scheme becomes larger, though for M = 2 it demonstrates com-
parable numerical dispersion. Further, it can be inferred that on increasing M
the number of operations for the THOM-ADI scheme grows faster than that
of the NCPD-ADI scheme. For example, for M = 3, if we compare the number
of discrete time and space points needed for computing each time step, it is 15
for THOM-ADI and 13 for NCPD-ADI. Since our aim is to develop schemes
with low dispersion, a reasonable increase in computational cost is acceptable,
so throughout the rest of the paper, we use M = 3 for the NCPD-ADI and
IPD-ADI schemes.

To compare the numerical dispersion of the existing and the new schemes, we
plotted the normalized phase errors for several propagation angles in Fig. 2.
To illustrate the effect of kh and θ, we fixed r = 0.5 for all cases. We can see
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Fig. 1. ‖δ − δexact‖2 vs. propagation angles θ for different M , r = 0.5. Left:
THOM-ADI scheme. Right: NCPD-ADI scheme.
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Fig. 2. Normalized phase error for different propagation angles θ, r = 0.5.
a) THOC-ADI b) HOC-LOD c) NCPD-ADI d) CPD-ADI.

that the numerical dispersions of the HOC-LOD and CPD-ADI schemes are
almost identical, and are smaller than that of the THOC-ADI scheme, but
are slightly greater than that of the NCPD-ADI scheme. To further show the
difference in numerical dispersions, the L2 norm of the difference δ− δexact for
all of the four schemes are plotted in Fig. 3, which confirmed the conclusion
drawn from Fig. 2, that is, the numerical dispersion of the new NCPD-ADI
scheme is the least among all of the schemes, and the HOC-LOD and CPD-
ADI schemes produced similar numerical dispersion which are smaller than
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that of the THOC-ADI, but higher than that of NCPD-ADI. This reconciles
with our earlier logic in Section 3, where we used the CPD-ADI scheme just for
nodes near the horizontal boundary, so that its effect on the overall numerical
dispersion of the IPD-ADI scheme is negligible if a reasonably fine grid is
assumed.

To illustrate the effect of CFL number on the numerical dispersion, the nor-
malized phase errors for r = 0.2, r = 0.3, r = 0.4 and r = 0.5 are plotted
and compared among the four schemes in Fig. 4 for θ = 0, and in Fig. 5
for θ = π/4. Interestingly, one can observe that all of the four schemes dis-
play similar numerical dispersions, which are not sensitive to the variation
of r, However one can still see some difference between the dispersion curves
of the new NCPD-ADI scheme and the dispersion curves of the other three
schemes, especially when θ = π/4. In summary, the NCPD-ADI scheme is
better than other existing schemes and CPD-ADI in suppressing numerical
dispersion along several propagation angles.

5 Stability analysis

It is known that most of the finite difference schemes used to solve the acoustic
wave equation are just conditionally stable and subject to moderate to severe
constraints on time step size. Here we analyze the stability of the new schemes
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NCPD-ADI and CPD-ADI. using the Von Neumann stability analysis. As we
will see later, both new schemes are conditionally stable, however the CFL
conditions are different. To make comparison among these schemes, we derive
the CFL conditions in the following. For the sake of simplicity, let hx = hy = h,
then r = ντ/h is the CFL number which should satisfy the CFL condition to
ensure stability.

Let uni,j = wneI[kcosθih+ksinθjh], then substitute it into the NCPD-ADI scheme
Eq. (29), we obtain

[
wn+1 − 2wn + wn−1

] [
1− (r2 − 1)

12
S3 −

r2

12
S1 +

r2(r2 − 1)

144
S1S3

]

= wn
[
r2S1 + r2S3 +

r2

12
S2S3

]
,

where S1, S2 and S3 are given by Eq. (43). This equation can be rewritten as

wn+1 = wn
(2A+B)

A
− wn−1, (50)

where

A=

[
1− (r2 − 1)

12
S3 −

r2

12
S1 +

r2(r2 − 1)

144
S1S3

]
,

B=

[
r2S1 + r2S3 +

r2

12
S2S3

]
.

Apparently, the characteristic equation of Eq. (50) is

P (z) = z2 − 2A+B

A
z + 1 = 0. (51)

In order for the scheme be stable, the root condition must be satisfied, i.e, we
need

−2 <
2A+B

A
< 2⇐⇒ −4 <

B

A
< 0. (52)

Similarly, for the CPD-ADI scheme, the stability condition is derived as

−4 <
B́

Á
< 0, (53)

where

18



Á=

[
1− (r2

x − 1)

12
S2 −

(r2
y − 1)

12
S3 +

(r2
x − 1)(r2

y − 1)

144
S2S3

]
,

B́=

[
r2
xS2 + r2

yS3 +
r2
x

12
S2S3 +

r2
y

12
S2S3

]
.

For comparison, we list the CFL conditions of the four schemes in Table 1. It

Table 1
CFL conditions for various FD schemes

Scheme Courant-Friedrichs-Lewy(CFL) condition

THOC-ADI ντ
h < 0.7321

HOC-LOD ντ
h < 0.7321

CPD-ADI ντ
h < 0.7657

NCPD-ADI ντ
h < 0.8186

is shown that the four schemes are comparable in terms of stability, however
the new non-compact higher-order method is slightly more stable than others.
Here the CFL condition for IPD-ADI has not been derived, but should be
between the CPD-ADI and NCPD-ADI.

6 Numerical examples

Three numerical examples are used to demonstrate the efficiency and accuracy
of the new higher-order ADI scheme.

6.1 Example 1

We first solve the following initial-boundary value problem on a unit square
domain D = [0, 1] × [0, 1] to validate the accuracy and efficiency of the new
schemes:

utt =uxx + uyy, (x, y, t) ∈ D × [0, T ],

u(x, y, 0) =u0(x, y), (x, y) ∈ D,
ut(x, y, 0) =u1(x, y), (x, y) ∈ D,

u|∂D = g(x, y, t), (x, y, t) ∈ ∂D × [0, T ],
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which has the analytical solution

u(x, y, t) = cos(
√

2t) cos(x) sin(y).

To show that the new schemes CPD-ADI and IPD-ADI are fourth-order ac-
curate in space, we fixed τ = 0.0025 so the truncation error from time dis-
cretization is negligible, then used various h to solve the example. The L2 and
maximal norms of the errors for both schemes are included in Table 2 and
Table 3, respectively, which clearly show that both schemes are fourth-order
accurate in space, as the errors are reduced by a factor of 16(roughly) when
h is reduced by a factor of 2. It is also clear that IPD-ADI is more accurate
than CPD-ADI, as can be seen both the L2 and Maximum errors of CPD-ADI
scheme are about three times of those of the IPD-ADI scheme.

Table 2
L2 and Maximum errors for example 1 with τ = 0.0025 at T = 1 by the CPD-ADI
scheme.

h 1/10 1/20 1/40 1/80

L2 error: E2(h) 6.2355e-009 4.0810e-010 2.6200e-011 1.7324e-012

E2(h)/E2(h/2) - 15.2793 15.5763 15.1235

Conv. Rate - 3.9335 3.9613 3.9187

Max. error: EM (h) 1.2208e-008 7.7230e-010 4.8443e-11 3.1005e-012

EM (h)/EM (h/2) - 15.8073 15.9424 15.6243

Conv. Rate - 3.9825 3.9948 3.9657

Table 3
L2 and Maximum errors for example 1 with τ = 0.0025 at T = 1 by the IPD-ADI
scheme.

h 1/10 1/20 1/40 1/80

L2 error: E2(h) 1.9335e-009 1.0217e-010 7.9268e-012 4.6875e-013

E2(h)/E2(h/2) - 18.9243 12.8892 16.9105

Conv. Rate - 4.2422 3.6881 4.0798

Max. error: EM (h) 5.5647e-009 2.3578e-010 1.5475e-11 9.3357e-013

EM (h)/EM (h/2) - 23.6012 15.2362 16.5762

Conv. Rate - 4.5608 3.9294 4.0510

We then show that the two schemes are fourth-order in time as well. Since the
schemes are conditionally stable, and the CFL condition must be satisfied, it
is impractical to use very small h so that the spatial truncation error can be
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ignored. However, we can show the fourth-order accuracy in time by simul-
taneously reducing h and τ meanwhile maintaining the CFL condition. The
order of convergence can be proved by the following contradiction argument.
If the scheme is pth-order in time, with p < 4, halving h and τ several times,
the truncation error in time will dominate the total error, thus the total error
will be reduced by a factor of 2p < 16 when h and τ been halved. In the
following numerical test cases, we start from h = 0.1, τ = 0.05, and each time
we halve both h and τ . The results for both schemes are included in Table
4 and Table 5, respectively. One can see that the total error is reduced by a
factor of 16 (roughly) each time when h and τ are halved, which confirmed
that the schemes are fourth-order in time.
Table 4
L2 and Maximum errors for example 1 with h = 2τ at T = 1 by the CPD-ADI
scheme.

(h, τ) (1/10,1/20) (1/20,1/40) (1/40, 1/80) (1/80,1/160)

L2 error: E2(h, τ) 6.2010e-09 3.7547e-10 2.3054e-11 1.4209e-12

E2(h)/E2(h/2) - 16.5153 16.2865 16.2249

Conv. Rate - 4.0457 4.0256 4.0201

Max. error: EM (h) 1.2256e-08 7.1176e-10 4.2668e-11 2.6009e-12

EM (h)/EM (h/2) - 17.2193 16.6814 16.4051

Conv. Rate - 4.1060 4.0602 4.0361

Table 5
L2 and Maximum errors for example 1 with h = 2τ at T = 1 by the IPD-ADI
scheme.

(h, τ) (1/10,1/20) (1/20,1/40) (1/40, 1/80) (1/80,1/160)

L2 error: E2(h, τ) 2.1052e-09 1.7894e-10 1.2549e-11 8.1184e-13

E2(h)/E2(h/2) - 11.7648 14.2593 15.4575

Conv. Rate - 3.5564 3.8338 3.9502

Max. error: EM (h) 5.6571e-09 3.9317e-10 2.4064e-11 1.4953e-12

EM (h)/EM (h/2) - 14.3884 16.3385 16.0931

Conv. Rate - 3.8468 4.0302 4.0084

To compare the schemes with other existing schemes in efficiency, we imple-
mented the THOC-ADI scheme [10] and the HOC-LOD scheme [36]. When
the same grid and time step are used, the HOC-LOD is the fastest method
but it gives the largest error, while the IPD-ADI is the slowest one however it
produces the most accurate solution. The CPD-ADI and THOC-ADI are very
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Table 6
Efficiency comparison of the four higher-order compact schemes.

Scheme (h, τ) L2 error Max. error CPU time(seconds)

HOC-LOD (1/125, 1/250) 7.1108e-13 1.3062e-12 6.7133

THOC-ADI (1/125, 1/250) 2.6670e-13 4.8819e-13 7.4863

CPD-ADI (1/125, 1/250) 2.5308e-13 4.6223e-13 7.7333

IPD-ADI (1/125, 1/250) 1.3131e-13 2.3947e-13 11.6933

Table 7
Efficiency comparison of the four higher-order compact schemes.

Scheme (h, τ) L2 error Max. error CPU time(seconds)

HOC-LOD (1/125, 1/250) 7.1108e-13 1.3062e-12 6.7133

THOC-ADI (1/100, 1/200) 6.0369e-13 1.1020e-12 3.713

CPD-ADI (1/100, 1/200) 5.9484e-13 1.0853e-12 3.8500

IPD-ADI (1/85, 1/170) 6.2027e-13 1.1425e-12 3.6733

close to each other in terms of both CPU time and accuracy. The results are
given in Table 6. In order to make the comparison more sensible, we use the
setting for HOC-LOD as the reference, and adjust the grid size h and time
step τ for the other three schemes to reach the same error level(roughly), and
compare the CPU times. To rule out the effects from some random factors, we
ran a large size model, and take the average CPU times of five simulations.
The results are included in Table 7, which clearly shows that both CPD-ADI
and THOC-ADI comparable in terms of efficiency, while the HOC-LOD is less
efficient. Although the IPD-ADI is more efficient than other schemes. However
we are aware that the actual results may depend on other factors such as the
hardware, software environment and the programming style.

6.2 Example 2

To further confirm the conclusion from the previous example, we solve the
second numerical example which is defined as

1

v2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
, (x, y, t) ∈ [0, 1]× [0, 1]× [0, T ], (54)

where v = 1 is the wave propagation velocity. The initial conditions are

u(x, y, 0) = cos (−x− y) ,
∂u(x, y, 0)

∂t
= −
√

2sin (−x− y) ,
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Fig. 6. Log-log plots of L2-norm errors of the four fourth-order schemes for varying
spatial grid size keeping time step size fixed at τ = 0.0025 sec.

while the boundary conditions are chosen accordingly so the analytical solution
is

u(x, y, t) = cos
(√

2t− x− y
)
.

We solve this initial-boundary value problem for T = 1, and compute the L2

norm and maximum norm errors for various spatial and temporal discretiza-
tions.

First, the fourth-order accuracy in space is illustrated by using a small time
step size τ , combined with various h. The L2-norm errors are showed in Table
8, which indicates that the scheme IPD-ADI is the most accurate method,
while the THOC-ADI, CPD-ADI and HOC-LOD are comparable, although
all schemes are fourth-order accurate in space, as indicated from the Log-Log
plots of the L2-norm error in Fig. 6. However, one can see from Table 8 that
the convergence rate of HOC-LOD is slightly lower than fourth-order.

We then calculated the maximum errors for each case and the results are
included in Table 9 which clearly confirmed that the four schemes are fourth-
order in space, as the maximal error for each scheme is reduced by a factor
of 16(roughly) when h is halved. It is worthy to point out that, due to the
conditional stability, h and τ have to be reduced simultaneously, thus we fix
the CFL number r when τ is reduced. The L2 and maximal errors by various
time step size τ are included in Table 10 and Table 11, respectively. One can
see that all of the four schemes are fourth-order in time. Additionally, the
Log-Log plots of the L2 norm errors in Fig. 7 also verify that the four schemes
are fourth-order in time as well.
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Fig. 7. Log-log plot of L2-norm errors of the four fourth-order schemes for varying
time step sizes keeping the CFL number fixed at r = 0.5.

Table 8
L2 norm errors at T = 1 by different schemes with τ = 0.0025 and various h.

h = hx = hy THOC-ADI HOC-LOD CPD-ADI IPD-ADI

1/5 6.4455e-07 6.4394e-07 6.4455e-07 6.4455e-07

1/10 4.3974e-008 4.3891e-008 4.3974e-008 7.0756e-009

1/20 2.8785e-009 2.8814e-009 2.8786e-009 6.8012e-010

1/40 1.8559e-010 2.0220e-010 1.8470e-010 5.6304e-011

1/80 1.3959e-011 1.8366e-011 1.2537e-011 2.9731e-012

Table 9
Maximum errors at T = 1 by different schemes with τ = 0.0025 and various h.

h = hx = hy THOC-ADI HOC-LOD CPD-ADI IPD-ADI

1/5 1.3769e-06 1.3757e-06 1.3769e-06 1.3769e-06

1/10 8.6606e-008 8.6343e-008 8.6608e-008 2.0245e-008

1/20 5.4688e-009 5.4730e-009 5.4690e-009 1.4498e-009

1/40 3.4449e-010 3.7600e-010 3.4277e-010 1.0746e-010

1/80 2.5746e-011 3.4394e-011 2.3074e-011 5.4340e-012

One interesting observation is that, the IPD-ADI scheme shows some incon-
sistency in error reduction when h and τ are reduced. For example, when
(h, τ) is reduced from (1/5, 1/10) to (1/10, 1/20), both L2 and maximal errors
of IPD-ADI shows a convergence order higher than 4. Then, when (h, τ) is
further reduced from (1/10, 1/20) to (1/20, 1/40), the IPD-ADI scheme shows
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Table 10
Comparison of L2 norm errors for various temporal discretizations τ with r = 0.5.

(h, τ) THOC-ADI HOC-LOD CPD-ADI IPD-ADI

(1/5, 1/10) 5.8698e-07 4.3402e-07 5.8698e-07 5.8698e-07

(1/10,1/20) 3.8736e-008 2.1267e-008 3.8736e-008 7.3290e-009

(1/20,1/40) 2.4943e-009 1.2133e-009 2.4943e-009 1.1205e-009

(1/40,1/80) 1.5835e-010 7.4417e-011 1.5837e-010 8.4554e-011

(1/80, 1/160) 9.8253e-012 6.2578e-012 9.9039e-012 5.6429e-012

Table 11
Comparison of maximum errors for various temporal discretizations τ with r = 0.5.

(h, τ) THOC-ADI HOC-LOD CPD-ADI IPD-ADI

(1/5, 1/10) 1.2670e-06 9.6829e-07 1.2670e-06 1.2670e-06

(1/10,1/20) 7.6259e-008 4.2143e-008 7.6259e-008 1.8736e-008

(1/20,1/40) 4.7401e-009 2.4180e-009 4.7401e-009 2.3039e-009

(1/40,1/80) 2.9384e-010 1.5111e-010 2.9388e-010 1.5999e-010

(1/80,1/160) 1.8005e-011 1.2392e-011 1.8150e-011 1.0401e-011

an order lower than 4. After that, a consistent fourth-order convergence is
observed. Nevertheless, the IPD-ADI is the most accurate method.

6.3 Example 3

To show that the proposed new schemes also work well for a more realist case
where a non-zero source term is used to generated the seismic wave, we add
a source term to the acoustic wave equation, Eq. (1), which is defined on a
square domain [0, 2400m] × [0, 2400m]. Here we use the Ricker’s wavelet as
the source term, which is given by

f(x, y, t) = δ(x− x0, y − y0)
[
1− 2{πfp(t− dr)}2

]
e−{πfp(t−dr)}2 ,

where fp is the peak frequency, dr is the temporal delay and δ(x− x0, y − y0)
is the Dirac delta function centered at x0, y0. In this numerical example, we
take the peak frequency fp = 30hz, dr = 2/fp, x0 = 1000m, y0 = 1000m and
wave velocity v = 3000m/s.
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Fig. 8. Normalized waveforms computed by the four schemes with τ = 0.002,
h = 40m at the coordinates (1200m, 1200m) and the normalized exact waveform by
De Hoop. Wave velocity v = 3000m/s. The waveforms are generated by a Ricker
wavelet source of 30 hz peak frequency located at (1000m, 1000m).

To avoid boundary reflection, and to better compare the four numerical meth-
ods, we run the numerical simulations for t ∈ [0, 0.6], and generate the exact
waveform using the analytic solution given in [11]. Fig. (8) shows the normal-
ized amplitudes of the calculated waveforms and the normalized amplitude of
the exact waveform. Clearly all of the four methods produce accurate results.
As one can see, when h = 40m, there is only slight difference between the
exact wave form and the calculated waveform by any of the four methods.
However, one can still see that the IPD-ADI scheme is slightly more accurate
than the other three methods. We also noticed that the CPD-ADI scheme and
THOC-ADI give almost exactly the same results, while the HOC-LOD is a
little less accurate than the other three methods, although the difference is
small. This observation is consistent to the data in Table 6 for example 2. Fig.
(9) shows the comparison when h = 10m. Clearly all methods produced very
accurate results, since there is no visible difference between the exact solution
and computed solutions by the four methods.

To validate the new schemes, we plotted the wavefield snapshots computed
by IPD-ADI at t = 0.2s, 0.4s, 0.5s and 0.6s in Fig.(10). It is noted that when
h = 10m, the numerical results generated by the four methods are very close

26



0 0.1 0.2 0.3 0.4 0.5 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

 

 

Exact − De Hoop

CPD−ADI
HOC−LOD
NCPD−ADI

THOC−ADI

Fig. 9. Normalized waveforms computed by the four schemes with τ = 0.001,
h = 10m at the coordinates (1200m, 1200m) and the normalized exact waveform by
De Hoop. Wave velocity v = 3000m/s. The waveforms are generated by a Ricker
wavelet source of 30 hz peak frequency located at (1000m, 1000m).

to each other, so we show the result by IPD-ADI only. One can clearly see the
simulated wave propagation is very accurate as the wave front is in a nearly
perfect circle shape. When t = 0.5s, we can see the wave front arrives the
boundary and some reflection can be observed. When t = 0.6s, reflections at
the four sides of the boundary are clearly shown.

7 Conclusions and future work

We first developed a fourth-order compact ADI finite difference scheme(CPD-
ADI) to solve the two-dimensional acoustic wave equation, which is slightly
superior to the classical ADI finite difference scheme (THOC-ADI) and com-
parable to the higher-order compact locally one-dimensional scheme(HOC-
LOD). To further improve the method in suppressing numerical dispersion,
we then modified CPD-ADI to IPD-ADI scheme. We investigated the feasibil-
ity of combining Padé approximation of difference operator with ADI method
to obtain higher-order accuracy and efficiency in numerical simulation of wave
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Fig. 10. Wavefield snapshots at (a) t=0.2s, (b) t = 0.3s, (c) t = 0.4s and (d) t=0.5s.

propagation. The proposed new method(NCPD-ADI) is a three level scheme
with error of O(τ 4 + h4), which is obtained by applying Padé approxima-
tions in both temporal and spatial dimensions. The new scheme is condition-
ally stable and the CFL condition is superior to that of many other widely
used difference methods. This feature is critical for efficiency as it allows the
use of larger time step. Numerical results demonstrate that the new scheme
NCPD-ADI is more accurate, at the cost of some increase in computational
cost, which makes it suitable for efficient and accurate numerical simulation of
wave propagation. Meanwhile we noticed that the IPD-ADI’s flexibility (due
to the variable order M in its non-compact statge) makes it an excellent com-
plimentary scheme to the existing higher-order schemes such as THOC-ADI,
HOC-LOD and CPD-ADI. In the future, we plan to extend the method to the
acoustic wave equation with variable velocity or elastic wave equations, and
three-dimensional problems as well.
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