
Abstract
Background: Floating Point (FP) multiplication has found its importance in many microprocessors but it is very difficult
to implement on FPGA because of its complicated internal computation. Methods: We investigate partial product (PP)
reduced FP multiplication based on Radix-4 Booth Encoded Algorithm (BEA). Radix-4 BEA reduces the number of PP
generation by half. PP reduction performed in three steps such as Grouping bits (3-bit for each group), Encode the group
and PP calculation for each group. Findings: The investigation results show that Radix-4 BEA works perfectly on signed
 multiplication and unsigned (FP mantissa) multiplication needs some extra consideration. Radix-4 BEA grouping multiplier
bits need overlapping one bit from both adjacent group that limits block and parallel processing. 2’s complement calculation
and sign extension essential for PP generation that increases the resource utilization. In this paper, 32 bit improved FP
multiplication based on classical recoding and parallel processing method is proposed. Classical recoding reduces PP
 generation by half without overlapping, sign extension and 2’s complement. 24 bit mantissa split into blocks (8 bit each)
and each block is recoded using classical recoding algorithm and all blocks are performed in parallel. Applications: The
experimental results show that our proposed design runs with high frequency with less resource utilization and suitable
for signal processing applications.

An Efficient Single Precision Floating Point Multiplier
Architecture based on Classical Recoding Algorithm

J. Jean Jenifer Nesam* and Sivanantham Sathasivam

School of Electronics Engineering, VIT University, Vellore - 632014, Tamil Nadu, India; jean.jenifernesam@vit.ac.in,
ssivanantham@vit.ac.in.

Keywords: Block Multiplication, Classical Recoding, Floating Point Multiplier, Parallel Processing, Single-Precision

1. Introduction
Floating point arithmetic has been used in most of the
DSP processor and scientific calculation because of
its wide range and accuracy1. The implementation of
Floating-Point (FP) on FPGA (Field Programmable
Gate Array) has some limitation in terms of speed and
area. Related works on FP multiplier based on Booth2-4
and other architectures 5-8shows that lot of changes need
algorithm itself for unsigned FP mantissa multiplication.
Booth originally developed for fixed point signed multi-
plication. Booth performs recoding on multiplier based
on 2’s complement form and also need sign extension for
getting perfect ` result. FP does not need this consider-
ation because mantissa of any FP format is an unsigned
number format.

Investigation works provide knowledge about Booth
on FP multiplication2 which needs some consideration
like unsigned to signed number format conversion. These
changes need extra calculation makes FP multiplication
more complex. Above all there is no guarantee for perfect
result.

The floating point multiplication actually has three
different calculations

Sign calculation1.
Exponent calculation2.
Mantissa calculation3.

The difficult part in above three is mantissa calcula-
tion. We consider single precision floating point number
for both algorithms whereas mantissa has 24 bit (includ-
ing hidden bit). Since the FP number has separate bit

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(5), DOI: 10.17485/ijst/2016/v9i5/87159, February 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Efficient Single Precision Floating Point Multiplier Architecture based on Classical Recoding Algorithm

Indian Journal of Science and Technology2 Vol 9 (5) | February 2016 | www.indjst.org

for sign, we do not worry about the signed mantissa
 multiplication, because the mantissa of any FP number
always an unsigned number. The modified Radix-4 Booth
multiplication is suitable for signed number multiplica-
tion. It takes MSB as sign bit. We all know that MSB of ‘1’
always represent negative number. Since the MSB of any
FP number (hidden bit) is always ‘1’, that not mean the
mantissa is negative number. The mantissa of FP num-
ber is always a positive. Hence here itself the modified
Radix-4 Booth encoding fails to provide perfect answer
with their original behavior.

Booth encoding used for unsigned multiplication
needs some extra added bit and calculation2. However
that not matches for all FP number. The main focused
thing on using booth encoding is to reduce the number of
partial product to half of its actual strength. The new pro-
posed scheme also provide the same advantage whereas
the booth encoding needs overlapping bit for proper
encoding the proposed one does not need that.

In this paper, we have illustrated the novel recoding
suitable for unsigned FP multiplication without any need
of modification. Instead of pipelined architecture we
design architecture with divide the operands and paral-
lel processing method9. Our design performance shows
better performance in terms of area, power and speed on
FPGA family devices.

2. General Floating Point
Multiplier Architecture

2.1 Floating point (FP) Number format
(IEEE 754 Standard)

The IEEE 754 standard FP number format is composed of
a sign bit (1 bit length), exponent and mantissa3,10. They
usually using 32 bit for single precision, 64 bit for double
precision. Single precision FP word format is given in
Figure 1.

Each word represented as,

 X = S × 2efp–bias × F.mfp (1)

F in the above equation is the hidden bit always 1
for normalized number. The term biasing ensures the

exponent always positive and the bias value is equal to
(2 efp-1-1). Different types of representation used to indi-
cate FP number as zero, infinites, NaN (Not an Number)
and normalized and de normalized number is tabulated
in Table 1. This differentiation is based on exponent and
mantissa values. FP operation includes the number type
identification, Exception handling, Normalize the num-
ber if required. All above defined criteria is known as pre
normalization11. After pre normalization, calculation unit
performs FP multiplication that includes sign calculation,
Exponent adder, and Mantissa multiplication. Obtaining
all above the results is sent to post normalization unit.

The basic steps involved in floating point multiplication
are shown in Figure 2. The post normalization handles the
normalization the number if required, Rounding, Result
exception handling, Format the result to fit the specified
format. In this paper all the calculation except the man-
tissa multiplication is performed in regular manner.

3.   Modified Radix-4 Booth 
Recoding

The technique used to reduce the partial product by
half is radix-4 booth recoding. Instead of multiplying
the multiplier by 1 or 0, booth recoding multiply it by
±1,±2,±0 to obtain the same result. The booth recod-
ing considers three blocks of bits for recoding and each
block is overlap with previous block with one bit. We
add ‘0’ as LSB that include the block which is considered
as first block. Booth recoding is mainly used for signed

Figure 1. FP number format.

8. Sivanantham S. Design of low power floating point multiplier with reduced switching

activity in deep submicron technology. International Journal of Applied Engineering

Research. 2013; 8(7):851–59.

9. Jaiwal MK, Cheung RC. Area-efficient architectures for double precision multiplier on

FPGA, with run-time-reconfigurable dual single precision support. Microelectronics

Journal. 2013; 44(5):421–30.

10. Even G, Mueller SM, Seidel PM. A dual precision IEEE floating-point multiplier.

Integration, the VLSI Journal. 2000; 29(2):167–80.

11. Jaiswal MK, Cheung RCC. VLSI implementation of double precision floating-point

multiplier using karatsuba technique. Circuits, systems, and signal processing. 2013;

32(1):15–27.

12. Wang JP, Kuang SR, Liang SC. High-Accuracy Fixed-Width Modified Booth

Multipliers for Lossy Applications. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems. 2011; 19(1):52–60.

13. Akkas A, Schulte MJ. Dual-mode floating-point multiplier architectures with parallel

operations. Journal of Systems Architecture. 2006; 52(10):549–62.

14. Park J, Kim S, Lee YS. A Low-Power Booth Multiplier Using Novel Data Partition

Method. Proceeding of the EEE Asia-Pacific Conference on Advanced System Integrated

Circuits (AP-AS1C2004). 2004. p. 54–57.

15. Elguibaly F. A fast parallel multiplier-accumulator using the modified Booth algorithm.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing.

2000; 47 (9):902–908.

16. Jeong YS. Parallel Processing Scheme for Minimizing Computational and

Communication Cost of Bioinformatics Data. Indian Journal of Science and Technology.

2015; 8(15):1–8.

31 30-23 22-0
Sign Exponent Mantissa
Figure 1. FP number format.

Y

Result

Calculati
on unit

Pre
Normali
-zation

Post
Normaliz
ation

X

Table 1. Number type based on exponent and
mantissa value

Number type
Exponent

value
Mantissa

value
F(hidden

bit
Number

value

Zero 0 0 - ±0

Infinites 2 efp-1 0 - ±∞

Denormalized 0 ≠0 0
As in

Equation
(1)

Normalized 1 to 2efp-2 - 1
As in

Equation
(1)

NaN 2 efp-1 ≠0 - Not
number

J. Jean Jenifer Nesam and Sivanantham Sathasivam

Indian Journal of Science and Technology 3Vol 9 (5) | February 2016 | www.indjst.org

4.  Integration of Topologies
CRSOPP stands for Classical Recoding Split Operand and
Parallel Processing. The performance of CRSOPP algo-
rithm is explained in this section. Since the mantissa of
FP number is always positive, there is no need for sign
consideration. New Unsigned floating point multiplicand
recoding method is perfect suit for FP number multiplica-
tion compared to Booth recoding. The proposed method
takes two consecutive numbers for recoding. No overlap
needed. This method also reduces the partial product by
half. Proposed recoding explained in Table 3. If the mul-
tiplier and multiplicand is n bit length the recoding as
 follows

It takes two consecutive numbers for recoding. No
overlapping needed12. New recoding method reduces the
partial product by the factor of two and also has some
added advantage compare to booth recoding

No sign extension needed•	
Neglecting overlapping in grouping recode bit reduces •	
the possible combination only by four (00, 01, 10, 11)
No overlapping needed•	
No need for 2’s complement calculation•	

The 8x8 multiplier needs 8 partial products and addi-
tion of the PP’s produce more carry propagation delay.
The proposed architecture reduces the PP by 4 and split
the 8 bit operands into two 4 bit blocks and performs
multiplication and addition in parallel13. In this paper
we take single precision multiplication that uses 24x24
bit multiplication. 24x24 multiplications generate 24
PP and adding PP produce more carry propagation
delay. However usage of booth recoding reduces the
partial product by half (13 PP one PP extra needed for
unsigned conversion) the adder have to add all PP gives
more delay. Proposed CRSOPP method is explained in
Figure 4.

Figure 2. Basic steps involved in FP multiplication.

8. Sivanantham S. Design of low power floating point multiplier with reduced switching

activity in deep submicron technology. International Journal of Applied Engineering

Research. 2013; 8(7):851–59.

9. Jaiwal MK, Cheung RC. Area-efficient architectures for double precision multiplier on

FPGA, with run-time-reconfigurable dual single precision support. Microelectronics

Journal. 2013; 44(5):421–30.

10. Even G, Mueller SM, Seidel PM. A dual precision IEEE floating-point multiplier.

Integration, the VLSI Journal. 2000; 29(2):167–80.

11. Jaiswal MK, Cheung RCC. VLSI implementation of double precision floating-point

multiplier using karatsuba technique. Circuits, systems, and signal processing. 2013;

32(1):15–27.

12. Wang JP, Kuang SR, Liang SC. High-Accuracy Fixed-Width Modified Booth

Multipliers for Lossy Applications. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems. 2011; 19(1):52–60.

13. Akkas A, Schulte MJ. Dual-mode floating-point multiplier architectures with parallel

operations. Journal of Systems Architecture. 2006; 52(10):549–62.

14. Park J, Kim S, Lee YS. A Low-Power Booth Multiplier Using Novel Data Partition

Method. Proceeding of the EEE Asia-Pacific Conference on Advanced System Integrated

Circuits (AP-AS1C2004). 2004. p. 54–57.

15. Elguibaly F. A fast parallel multiplier-accumulator using the modified Booth algorithm.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing.

2000; 47 (9):902–908.

16. Jeong YS. Parallel Processing Scheme for Minimizing Computational and

Communication Cost of Bioinformatics Data. Indian Journal of Science and Technology.

2015; 8(15):1–8.

31 30-23 22-0
Sign Exponent Mantissa
Figure 1. FP number format.

Y

Result

Calculati
on unit

Pre
Normali
-zation

Post
Normaliz
ation

X

number multiplication and the MSB bit of each block
acts like a sign bit. We found little complexity in booth
recoding because -1,-2 recoding needs 2’s complement of
multiplier and 2’s complement with ‘0’ adding as a LSB
respectively. Extra calculation needed and also booth
is suitable for sign multiplication not for unsigned FP
number multiplication. Recoding needs 8 different com-
bination (000.001,010,011,100,101,110,111) since each
group compose of 3 bits and five different way of recod-
ing needed with +1,-1,+2,-2,0. The term sign extension
usually used in signed magnitude multiplication. Table
2 gives the Booth encoding of radix-4 algorithm. Each
block is overlapped with previous block has a limita-
tion that we cannot split the operands and processing
it in parallel. All these recoding, 2 bit left shifting and
sign consideration must need in booth recoding. Our
proposed recoding only uses four different types of com-
bination (00,01,10,11) and no overlapping and no need
for sign consideration. Radix-4 booth recoding is best
suitable for fixed point multipliers with sign consider-
ation. Since the FP has separate sign bit and the mantissa
is an unsigned number, our proposed recoding method
is best suitable for FP multiplier.

Table 2. Radix-4 booth recoding

Block Partial product

000 0

001 1 * multiplicand

010 1 * multiplicand

011 2 * multiplicand

100 –2 * multiplicand

101 –1 * multiplicand

110 –1 * multiplicand

111 0

Table 3. Proposed Decoding

Possible combination Partial product
00 String of zeros equal to n+1 bit length

01 ‘0’ is concatenated as MSB with
multiplicand

10 ‘0’ is concatenated as LSB with
multiplicand

11(01+10) Sum of recoding 01 and recoding 10

An Efficient Single Precision Floating Point Multiplier Architecture based on Classical Recoding Algorithm

Indian Journal of Science and Technology4 Vol 9 (5) | February 2016 | www.indjst.org

+ A0B1, A2B0 + A1B1 +A0B2, A2B1 + A1B2 and the
 addition of overlapping bit corresponding to each blocks
as shown in Figure 5.

5.   Partial Product Compression, 
Overlapping Bit Separation and 
Final Adder

The partial products are added by using the combination
of 3:2 CSA and some Half Adder shown in Figure 6. From
the diagram 24x24 multiplication needs nine 8x8 mul-
tiplication in PP generation step15. Each 8x8 multiplier
performs multiplication in parallel. The results added and
overlapping bits are separated in next step. Each block
generates 4 PP and CSA’s and HA’s used to add PP’s. PPs
are added with multi-operand adder like CSA and final
adder is used to add two operands. Normally final adder is
known as two operands adder such as carry select adder.

Figure 3. Split operands and parallel processing
multiplication (SOPP).

Figure 2. Basic steps involved in FP multiplication.

Figure 3. Split operands and parallel processing multiplication (SOPP).

Figure 4.CRSOPP Architecture.

A0A2 A1
B2 B0B1

A0B1

A2B0

A1B1

A0B2

A2B1

A1B2

A1B0 A0B0

A2B2

splitte
r

A0

A1

A2

B2

B1

B0
Proposed
encoding

Proposed
encoding

Proposed
encoding

Partial product generation

Carry
Save
Adder
for PP
addition
(CSA’s)

Final
Adder

48 bit
result A

B

24

8

24

8

Figure 4. CRSOPP Architecture.

Figure 2. Basic steps involved in FP multiplication.

Figure 3. Split operands and parallel processing multiplication (SOPP).

Figure 4.CRSOPP Architecture.

A0A2 A1
B2 B0B1

A0B1

A2B0

A1B1

A0B2

A2B1

A1B2

A1B0 A0B0

A2B2

splitte
r

A0

A1

A2

B2

B1

B0
Proposed
encoding

Proposed
encoding

Proposed
encoding

Partial product generation

Carry
Save
Adder
for PP
addition
(CSA’s)

Final
Adder

48 bit
result A

B

24

8

24

8

CRSOPP method includes the following steps

Step 1: split the multiplier and multiplicand with equal bit
length (if necessary add ‘0’ in MSB position)

Step 2: encode the multiplicand
Step 3: do splitter block multiplication in parallel
Step 4: partial product addition
Step 5: find overlapping bits
Step 6: final adder for getting result

Figure 3 shows that block multiplication. Each block
consists of 8 bits. The mantissa 24 bit is splitted into three
8 bit block in the first step11,14. A0,A1,A2,B0,B1,B2 all
are 8 bit length. The next step we recode B0,B1,B2. The
next step we consider the partial product the block A0B0,
A1B0,A2B0, A0B1, A1B1, A2B1, A0B2, A1B2, A2B2.

As mentioned in Table 2 the recoded B0, B1, B2 are
multiple the A0, A1, A2 in parallel. The next step each
blocks multiplication generate 4 PP and 2 bit left shift
needs between two PP. Generated PP are added in next
step. Appropriate adder is used for PP addition explained
in following section. Overlapping bit from the adjacent
blocks is separated in this step. Final adder adds A1B0

Figure 5. Proposed Multiplier Architecture.Figure 5. Proposed Multiplier Architecture.

Figure 6. Basic block diagram of 4:2 carry save adder.

t 3:2 CSA

3:2 CSA

sum

c0

x y z

c1

4:2

w x y z

sum Carry

cout cin Figure 6. Basic block diagram of 4:2 carry save adder.

Figure 5. Proposed Multiplier Architecture.

Figure 6. Basic block diagram of 4:2 carry save adder.

t 3:2 CSA

3:2 CSA

sum

c0

x y z

c1

4:2

w x y z

sum Carry

cout cin

J. Jean Jenifer Nesam and Sivanantham Sathasivam

Indian Journal of Science and Technology 5Vol 9 (5) | February 2016 | www.indjst.org

The compressor or carry save adder produce sum and
their carry in parallel. The propagation of carry is prohib-
ited and passed this sum and carry bit separately to the next
level. Final adder have to add two operands such as sum
and their carry. Final adder normally a carry select adder
or carry skip adder. These adder guarantees for less delay.

The count of 4:2 CSA is only dependent on the inputs
w,x,y,z not on cin. Hence we do not wait for carry propaga-
tion, it will increase the speed. The 4:2 CSA adders has five
inputs and only two outputs (one sum bit, one carry bit).
Sometimes in addition carry may be a two bit. For exam-
ple adding five 1’s the sum is 1 and the carry is ‘10’. In this
paper we use two 3:2 CSAs instead of one 4:2 CSA. The
five 1’s input is given as Figure 7. One 3:2 CSA gives carry
as ‘1’ and another 3:2 CSA gives carry ‘1’. Actual carry ‘10’
propagate to next bit level as two ‘1’s (1 + 1= ‘10’).

Figure 8 shows in stage 1, carry save adder add all PP
and produce 16 bit output. In stage 2, splitted blocks PP

(16 bit) are added using carry propagate adder. That is
A0B1+A1B0, A2B0+A1B1+A0B2, A2B1+A1B2 blocks
added together and again produce 16 bit output. Next
step includes overlapping bit separation. Each block’s
upper 8 bits are overlapped with next adjacent blocks. The
final adder adds that overlapping bit with corresponding
blocks in stage 3. Proper concatenation of output gives 48
bit multiplier output.

6.  Sign and Exponent Calculation
In this paper, we put more concentration on mantissa
multiplication. Other calculation such as sign, exponent
and normalization and exception handling are done in
traditional manner1,2. The resultant sign is the logical
‘XOR’ of two sign bit of two operands

 Result_sign = sign_bit1 xor sign_bit2

The output of exponent is given by adding two expo-
nent values and adjusts it to its BASE value. The single
precision FP BASE value is 127.

 Result_exponent = (expn1 + expn2) – 127

7.  Normalization and Rounding
The next step composes of result normalization and
rounding. The result of mantissa multiplication has MSB
as 1 means we just left shift the result in one bit position
and add 1 to exponent to get the correct answer. If the
MSB is not ‘1’ we uses leading zero detector that detects
how many zeros present in front of first ‘1’ in the result
and again adjust the exponent equal to number of zero
detection2,16. This process is known as normalization.
48 bit normalized mantissa multiplied result gets back
to IEEE 754-2008 format of 24 bit mantissa by the help
of rounding. Five different rounding mode is available.
Rounding with rounding to nearest even method is fol-
lowed in this paper.

8.  Design Verification

8.1 Implementation Platform
Our design has been implemented on Altera Cyclone
II EP2C35F672C6 with speed grade 6 and 33216 logic
elements FPGA family. Implementation on Altera is
developed by Quartus II v9.1 version and power is

Figure 7. Two bit carry generating method.

Figure 5. Proposed Multiplier Architecture.

Figure 6. Basic block diagram of 4:2 carry save adder.

t 3:2 CSA

3:2 CSA

sum

c0

x y z

c1

4:2

w x y z

sum Carry

cout cin

Figure 8. Adder Stages.

Figure 7. Two bit carry generating method.

Figure 8. Adder Stages.

Table 1. Number type based on exponent and mantissa value

Number type Exponent
value

Mantissa
value

F(hidden
bit Number value

Zero 0 0 - ±0

Infinites 2 efp-1 0 - ±

Denormalized 0 0 0 As in
Equation (1)

Normalized 1 to 2efp-
2 - 1 As in

Equation (1)
NaN 2 efp-1 0 - Not number

Table 2. Radix-4 booth recoding

Block Partial product
000 0
001 1 * multiplicand

PP adder (CSA’s)

PP generating
block adder

CPA
(A0B1+A1B0)…

Overlapping
bit adder

(final adder)

Stage 1

Stage 3

Stage 2

An Efficient Single Precision Floating Point Multiplier Architecture based on Classical Recoding Algorithm

Indian Journal of Science and Technology6 Vol 9 (5) | February 2016 | www.indjst.org

Table 4. Analysis and synthesis report for logic
elements

Power Play Analyser
Status

Successful

Quartus II Version 9.1 Build 350

Revision Name Top1

Top-Level Top1

Family Cyclone II

Device EP2C35F672C6

Power Models Final

Total Thermal Power
Dissipation 121.49mW

Core Dynamic Thermal
Power Dissipation 0.00mW

Core Static Thermal
Power Dissipation 79.96mW

I/O Thermal Power
Dissipation 41.53mW

Total Logic Elements 1.571

Total Combinational
Functions 1.571

Dedicated Logic Registers 0

Table 5. Comparison of power with different designs

Design Total Power Consumption(mW)

Altera core (without DSP) 121.65

Altera core (with DSP) 121.63
X. Jiang(5 pipeline stage) 121.71

Proposed CRSOPP 121.49

Table 6. Comparison of Proposed Design

Design
Maximum Running

Frequency(MHz)
Logic elements

utilization
Gong’s design 130.01 1604

X.Jiang’s design 131.25 1581
Proposed design 140.02 1571

calculated by power play power analyzer. Results are
compared against with Altera IP core and some other
experiments. Comparison results show that our design
can performed with maximum running frequency, opti-
mized area and less power consumption. Our design is
synthesized, placed and routed by Quartus EDA tool
successfully. The power analysis synthesis result report
from Quartus II EDA tool. The total number of logic ele-
ments used for this design is synthesized and the report
is given in Table 4.

8.2 Performance Comparison
The power comparison made on Altera core and X. Jiang
et al. The results are tabulated below in Table 5. The com-
pared result shows that the power consumption reduced
slightly.

The synthesized logic elements and maximum run-
ning frequency is compared with X. Jiang‘s design and
Gong’s design. The comparison tabulated in Table 6.

9.  Conclusion
Parallel processing 32 bit binary FP multiplier with novel
recoding is investigated in this paper. The implementa-
tion results show that the performance can be improved
by doing parallel processing in proper way. Divide the
operands into blocks and each block can perform their
function in parallel. Gather the results from each block
and recombine them in proper way enhances the perfor-
mance. Multiplication mainly composed of two steps is
partial product generation and their accumulation. We
concentrate on both steps. Classical recoding algorithm
is used to reduce the partial product by half without any
consideration like Booth. Mixed combination of CSA and
carry select adder can increase the speed of addition. These
performances affect the total thermal power to reduce.

In the future, implementing this multiplier on any
multiplication oriented processor and also extend this
design to double precision floating point multiplier.

10.  References
1. Parhami B. Computer Arithmetic: Algorithms and

Hardware Designs, Oxford Univ. Press: New York, 1999.
2. Jiang X, Xiao P, Qiu M, Wang G. Performance effects of

pipeline architecture on an FPGA-based binary32 floating
point multiplier. Microprocessors and Microsystems. 2013;
37(8):1183–191.

3. Booth AD. Signed binary multiplication technique.
Quarterly Journal of Mechanical and Applied Mathematics.
1951; 4(2):236–40.

J. Jean Jenifer Nesam and Sivanantham Sathasivam

Indian Journal of Science and Technology 7Vol 9 (5) | February 2016 | www.indjst.org

4. Manjunath, Harikiran V, Manikanta K, Sivanantham S,
Sivasankaran K. Design and implementation of 16x16
modified booth multiplier. 2015 Online International
Conference on Green Engineering and Technologies. 2015.
p. 66–70.

5. Sivanantham S, Jagannadha Naidu K, Balamurugan S,
Bhuvana Phaneendra D. Low power floating point compu-
tation sharing multiplier for signal processing applications.
International Journal of Engineering and Technology. 2013;
5 (2):979–85.

6. Niharika S, SuhasSali A, Nithin V, Sivanantham S,
Sivasankaran K. Implementation of radix-4 butterfly
structure to prevent arithmetic overflow. 2015 Online
International Conference on Green Engineering and
Technologies. 2015. p. 16–20.

7. Rakesh Babu A, Saikiran R, Sivanantham S. Design of
floating point multiplier for signal processing applications.
International Journal of Applied Engineering Research.
2013; 8(6):715–22.

8. Sivanantham S. Design of low power floating point mul-
tiplier with reduced switching activity in deep submicron
technology. International Journal of Applied Engineering
Research. 2013; 8(7):851–59.

9. Jaiwal MK, Cheung RC. Area-efficient architectures for
double precision multiplier on FPGA, with run-time-recon-
figurable dual single precision support. Microelectronics
Journal. 2013; 44(5):421–30.

10. Even G, Mueller SM, Seidel PM. A dual precision IEEE
floating-point multiplier. Integration, the VLSI Journal.
2000; 29(2):167–80.

11. Jaiswal MK, Cheung RCC. VLSI implementation of dou-
ble precision floating-point multiplier using karatsuba
technique. Circuits, systems, and signal processing. 2013;
32(1):15–27.

12. Wang JP, Kuang SR, Liang SC. High-Accuracy Fixed-
Width Modified Booth Multipliers for Lossy Applications.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems. 2011; 19(1):52–60.

13. Akkas A, Schulte MJ. Dual-mode floating-point multiplier
architectures with parallel operations. Journal of Systems
Architecture. 2006; 52(10):549–62.

14. Park J, Kim S, Lee YS. A Low-Power Booth Multiplier Using
Novel Data Partition Method. Proceeding of the EEE Asia-
Pacific Conference on Advanced System Integrated Circuits
(AP-AS1C2004). 2004. p. 54–57.

15. Elguibaly F. A fast parallel multiplier-accumulator using the
modified Booth algorithm. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing. 2000;
47 (9):902–908.

16. Jeong YS. Parallel Processing Scheme for Minimizing
Computational and Communication Cost of Bioinformatics
Data. Indian Journal of Science and Technology. 2015;
8(15):1–8.

