
Abstract 
Background: Floating Point (FP) multiplication has found its importance in many microprocessors but it is very  difficult 
to implement on FPGA because of its complicated internal computation. Methods: We investigate partial product (PP) 
reduced FP multiplication based on Radix-4 Booth Encoded Algorithm (BEA). Radix-4 BEA reduces the number of PP 
generation by half. PP reduction performed in three steps such as Grouping bits (3-bit for each group), Encode the group 
and PP  calculation for each group. Findings: The investigation results show that Radix-4 BEA works perfectly on signed 
 multiplication and unsigned (FP mantissa) multiplication needs some extra consideration. Radix-4 BEA grouping  multiplier 
bits need overlapping one bit from both adjacent group that limits block and parallel processing. 2’s  complement  calculation 
and sign extension essential for PP generation that increases the resource utilization. In this paper, 32 bit improved FP 
multiplication based on classical recoding and parallel processing method is proposed. Classical recoding reduces PP 
 generation by half without overlapping, sign extension and 2’s complement. 24 bit mantissa split into blocks (8 bit each) 
and each block is recoded using classical recoding algorithm and all blocks are performed in parallel. Applications: The 
experimental results show that our proposed design runs with high frequency with less resource utilization and suitable 
for signal processing applications. 
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1. Introduction
Floating point arithmetic has been used in most of the 
DSP processor and scientific calculation because of 
its wide range and accuracy1. The implementation of 
Floating-Point (FP) on FPGA (Field Programmable 
Gate Array) has some limitation in terms of speed and 
area. Related works on FP multiplier based on Booth2-4 
and other architectures 5-8shows that lot of changes need 
algorithm itself for unsigned FP mantissa multiplication. 
Booth originally developed for fixed point signed multi-
plication. Booth performs recoding on multiplier based 
on 2’s complement form and also need sign extension for 
getting perfect ` result. FP does not need this consider-
ation because mantissa of any FP format is an unsigned 
number format.

Investigation works provide knowledge about Booth 
on FP multiplication2 which needs some consideration 
like unsigned to signed number format conversion. These 
changes need extra calculation makes FP multiplication 
more complex. Above all there is no guarantee for perfect 
result. 

The floating point multiplication actually has three 
different calculations

Sign calculation1. 
Exponent calculation2. 
Mantissa calculation3. 

The difficult part in above three is mantissa calcula-
tion. We consider single precision floating point number 
for both algorithms whereas mantissa has 24 bit (includ-
ing hidden bit). Since the FP number has separate bit 
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for sign, we do not worry about the signed mantissa 
 multiplication, because the mantissa of any FP number 
always an unsigned number. The modified Radix-4 Booth 
multiplication is suitable for signed number multiplica-
tion. It takes MSB as sign bit. We all know that MSB of ‘1’ 
always represent negative number. Since the MSB of any 
FP number (hidden bit) is always ‘1’, that not mean the 
mantissa is negative number. The mantissa of FP num-
ber is always a positive. Hence here itself the modified 
Radix-4 Booth encoding fails to provide perfect answer 
with their original behavior.

Booth encoding used for unsigned multiplication 
needs some extra added bit and calculation2. However 
that not matches for all FP number. The main focused 
thing on using booth encoding is to reduce the number of 
partial product to half of its actual strength. The new pro-
posed scheme also provide the same advantage whereas 
the booth encoding needs overlapping bit for proper 
encoding the proposed one does not need that.

In this paper, we have illustrated the novel  recoding 
suitable for unsigned FP multiplication without any need 
of modification. Instead of pipelined architecture we 
design architecture with divide the operands and paral-
lel processing method9. Our design performance shows 
better performance in terms of area, power and speed on 
FPGA family devices.

2.  General Floating Point 
Multiplier Architecture

2.1  Floating point (FP) Number format 
(IEEE 754 Standard)

The IEEE 754 standard FP number format is composed of 
a sign bit (1 bit length), exponent and mantissa3,10. They 
usually using 32 bit for single precision, 64 bit for double 
precision. Single precision FP word format is given in 
Figure 1.

Each word represented as,

 X = S × 2efp–bias × F.mfp (1)

F in the above equation is the hidden bit always 1 
for normalized number. The term biasing ensures the 

exponent always positive and the bias value is equal to 
(2 efp-1-1). Different types of representation used to indi-
cate FP number as zero, infinites, NaN (Not an Number) 
and normalized and de normalized number is tabulated 
in Table 1. This differentiation is based on exponent and 
mantissa values. FP operation includes the number type 
identification, Exception handling, Normalize the num-
ber if required. All above defined criteria is known as pre 
normalization11. After pre normalization, calculation unit 
performs FP multiplication that includes sign calculation, 
Exponent adder, and Mantissa multiplication. Obtaining 
all above the results is sent to post normalization unit.

The basic steps involved in floating point multiplication 
are shown in Figure 2. The post normalization handles the 
normalization the number if required, Rounding, Result 
exception handling, Format the result to fit the specified 
format. In this paper all the calculation except the man-
tissa multiplication is performed in regular manner. 

3.   Modified Radix-4 Booth 
Recoding

The technique used to reduce the partial product by 
half is radix-4 booth recoding. Instead of multiplying 
the multiplier by 1 or 0, booth recoding multiply it by 
±1,±2,±0 to obtain the same result. The booth recod-
ing considers three blocks of bits for recoding and each 
block is overlap with previous block with one bit. We 
add ‘0’ as LSB that include the block which is considered 
as first block. Booth recoding is mainly used for signed 

Figure 1. FP number format.
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Table 1. Number type based on exponent and 
mantissa value

Number type
Exponent 

value
Mantissa 

value
F(hidden 

bit
Number 

value

Zero 0 0 - ±0

Infinites 2 efp-1 0 - ±∞

Denormalized 0 ≠0 0
As in 

Equation 
(1)

Normalized 1 to 2efp-2 - 1
As in 

Equation 
(1)

NaN 2 efp-1 ≠0 - Not 
number
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4.  Integration of Topologies
CRSOPP stands for Classical Recoding Split Operand and 
Parallel Processing. The performance of CRSOPP algo-
rithm is explained in this section. Since the mantissa of 
FP number is always positive, there is no need for sign 
consideration. New Unsigned floating point multiplicand 
recoding method is perfect suit for FP number multiplica-
tion compared to Booth recoding. The proposed method 
takes two consecutive numbers for recoding. No overlap 
needed. This method also reduces the partial product by 
half. Proposed recoding explained in Table 3. If the mul-
tiplier and multiplicand is n bit length the recoding as 
 follows

It takes two consecutive numbers for recoding. No 
overlapping needed12. New recoding method reduces the 
partial product by the factor of two and also has some 
added advantage compare to booth recoding 

No sign extension needed•	
Neglecting overlapping in grouping recode bit reduces •	
the possible combination only by four (00, 01, 10, 11) 
No overlapping needed•	
No need for 2’s complement calculation•	

The 8x8 multiplier needs 8 partial products and addi-
tion of the PP’s produce more carry propagation delay. 
The proposed architecture reduces the PP by 4 and split 
the 8 bit operands into two 4 bit blocks and performs 
multiplication and addition in parallel13. In this paper 
we take single precision multiplication that uses 24x24 
bit multiplication. 24x24 multiplications generate 24 
PP and adding PP produce more carry propagation 
delay. However usage of booth recoding reduces the 
partial product by half (13 PP one PP extra needed for 
unsigned conversion) the adder have to add all PP gives 
more delay. Proposed CRSOPP method is explained in 
Figure 4.

Figure 2. Basic steps involved in FP multiplication.
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number  multiplication and the MSB bit of each block 
acts like a sign bit. We found little complexity in booth 
recoding because -1,-2 recoding needs 2’s complement of 
multiplier and 2’s complement with ‘0’ adding as a LSB 
respectively. Extra calculation needed and also booth 
is suitable for sign multiplication not for unsigned FP 
number multiplication. Recoding needs 8 different com-
bination (000.001,010,011,100,101,110,111) since each 
group compose of 3 bits and five different way of recod-
ing needed with +1,-1,+2,-2,0. The term sign extension 
usually used in signed magnitude multiplication. Table 
2 gives the Booth encoding of radix-4 algorithm. Each 
block is overlapped with previous block has a limita-
tion that we cannot split the operands and processing 
it in parallel. All these recoding, 2 bit left shifting and 
sign consideration must need in booth recoding. Our 
proposed recoding only uses four different types of com-
bination (00,01,10,11) and no overlapping and no need 
for sign consideration. Radix-4 booth recoding is best 
suitable for fixed point multipliers with sign consider-
ation. Since the FP has separate sign bit and the mantissa 
is an unsigned number, our proposed recoding method 
is best suitable for FP multiplier.

Table 2. Radix-4 booth recoding

Block Partial product

000 0

001 1 * multiplicand

010 1 * multiplicand

011 2 * multiplicand

100 –2 * multiplicand

101 –1 * multiplicand

110 –1 * multiplicand

111 0

Table 3. Proposed Decoding

Possible combination Partial product
00 String of zeros equal to n+1 bit length

01 ‘0’ is concatenated as MSB with 
multiplicand

10 ‘0’ is concatenated as LSB with 
multiplicand

11(01+10) Sum of recoding 01 and recoding 10
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+ A0B1, A2B0 + A1B1 +A0B2, A2B1 + A1B2 and the 
 addition of overlapping bit corresponding to each blocks 
as shown in Figure 5.

5.   Partial Product Compression, 
Overlapping Bit Separation and 
Final Adder

The partial products are added by using the combination 
of 3:2 CSA and some Half Adder shown in Figure 6. From 
the diagram 24x24 multiplication needs nine 8x8 mul-
tiplication in PP generation step15. Each 8x8 multiplier 
performs multiplication in parallel. The results added and 
overlapping bits are separated in next step. Each block 
generates 4 PP and CSA’s and HA’s used to add PP’s. PPs 
are added with multi-operand adder like CSA and final 
adder is used to add two operands. Normally final adder is 
known as two operands adder such as carry select adder.

Figure 3. Split operands and parallel processing 
multiplication (SOPP).

Figure 2. Basic steps involved in FP multiplication. 
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CRSOPP method includes the following steps

Step 1:  split the multiplier and multiplicand with equal bit 
length (if necessary add ‘0’ in MSB position)

Step 2: encode the multiplicand
Step 3: do splitter block multiplication in parallel
Step 4: partial product addition
Step 5: find overlapping bits
Step 6: final adder for getting result 

Figure 3 shows that block multiplication. Each block 
consists of 8 bits. The mantissa 24 bit is splitted into three 
8 bit block in the first step11,14. A0,A1,A2,B0,B1,B2 all 
are 8 bit length. The next step we recode B0,B1,B2. The 
next step we consider the partial product the block A0B0, 
A1B0,A2B0, A0B1, A1B1, A2B1, A0B2, A1B2, A2B2. 

As mentioned in Table 2 the recoded B0, B1, B2 are 
multiple the A0, A1, A2 in parallel. The next step each 
blocks multiplication generate 4 PP and 2 bit left shift 
needs between two PP. Generated PP are added in next 
step. Appropriate adder is used for PP addition explained 
in following section. Overlapping bit from the adjacent 
blocks is separated in this step. Final adder adds A1B0 

Figure 5. Proposed Multiplier Architecture.Figure 5. Proposed Multiplier Architecture. 
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The compressor or carry save adder produce sum and 
their carry in parallel. The propagation of carry is prohib-
ited and passed this sum and carry bit separately to the next 
level. Final adder have to add two operands such as sum 
and their carry. Final adder normally a carry select adder 
or carry skip adder. These adder guarantees for less delay. 

The count of 4:2 CSA is only dependent on the inputs 
w,x,y,z not on cin. Hence we do not wait for carry propaga-
tion, it will increase the speed. The 4:2 CSA adders has five 
inputs and only two outputs (one sum bit, one carry bit). 
Sometimes in addition carry may be a two bit. For exam-
ple adding five 1’s the sum is 1 and the carry is ‘10’. In this 
paper we use two 3:2 CSAs instead of one 4:2 CSA. The 
five 1’s input is given as Figure 7. One 3:2 CSA gives carry 
as ‘1’ and another 3:2 CSA gives carry ‘1’. Actual carry ‘10’ 
propagate to next bit level as two ‘1’s (1 + 1= ‘10’).

Figure 8 shows in stage 1, carry save adder add all PP 
and produce 16 bit output. In stage 2, splitted blocks PP 

(16 bit) are added using carry propagate adder. That is 
A0B1+A1B0, A2B0+A1B1+A0B2, A2B1+A1B2 blocks 
added together and again produce 16 bit output. Next 
step includes overlapping bit separation. Each block’s 
upper 8 bits are overlapped with next adjacent blocks. The 
final adder adds that overlapping bit with corresponding 
blocks in stage 3. Proper concatenation of output gives 48 
bit multiplier output.

6.  Sign and Exponent Calculation
In this paper, we put more concentration on mantissa 
multiplication. Other calculation such as sign, exponent 
and normalization and exception handling are done in 
traditional manner1,2. The resultant sign is the logical 
‘XOR’ of two sign bit of two operands

 Result_sign = sign_bit1 xor sign_bit2

The output of exponent is given by adding two expo-
nent values and adjusts it to its BASE value. The single 
precision FP BASE value is 127.

 Result_exponent = (expn1 + expn2) – 127

7.  Normalization and Rounding
The next step composes of result normalization and 
rounding. The result of mantissa multiplication has MSB 
as 1 means we just left shift the result in one bit position 
and add 1 to exponent to get the correct answer. If the 
MSB is not ‘1’ we uses leading zero detector that detects 
how many zeros present in front of first ‘1’ in the result 
and again adjust the exponent equal to number of zero 
detection2,16. This process is known as normalization. 
48 bit normalized mantissa multiplied result gets back 
to IEEE 754-2008 format of 24 bit mantissa by the help 
of rounding. Five different rounding mode is available. 
Rounding with rounding to nearest even method is fol-
lowed in this paper. 

8.  Design Verification

8.1 Implementation Platform
Our design has been implemented on Altera Cyclone 
II EP2C35F672C6 with speed grade 6 and 33216 logic 
elements FPGA family. Implementation on Altera is 
developed by Quartus II v9.1 version and power is 

Figure 7. Two bit carry generating method.
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Table 4. Analysis and synthesis report for logic 
elements

Power Play Analyser 
Status

Successful

Quartus II Version 9.1 Build 350

Revision Name Top1

Top-Level Top1

Family Cyclone II

Device EP2C35F672C6

Power Models Final

Total Thermal Power 
Dissipation 121.49mW

Core Dynamic Thermal 
Power Dissipation 0.00mW

Core Static Thermal 
Power Dissipation 79.96mW

I/O Thermal Power 
Dissipation 41.53mW

Total Logic Elements 1.571

Total Combinational 
Functions 1.571

Dedicated Logic Registers 0

Table 5. Comparison of power with different designs

Design Total Power Consumption(mW)

Altera core (without DSP) 121.65

Altera core (with DSP) 121.63
X. Jiang(5 pipeline stage) 121.71

Proposed CRSOPP 121.49

Table 6. Comparison of Proposed Design

Design
Maximum Running 

Frequency(MHz)
Logic elements 

utilization
Gong’s design 130.01 1604

X.Jiang’s design 131.25 1581
Proposed design 140.02 1571

calculated by power play power analyzer. Results are 
compared against with Altera IP core and some other 
experiments. Comparison results show that our design 
can performed with maximum running frequency, opti-
mized area and less power consumption. Our design is 
synthesized, placed and routed by Quartus EDA tool 
successfully. The power analysis synthesis result report 
from Quartus II EDA tool. The total number of logic ele-
ments used for this design is synthesized and the report 
is given in Table 4.

8.2 Performance Comparison
The power comparison made on Altera core and X. Jiang 
et al. The results are tabulated below in Table 5. The com-
pared result shows that the power consumption reduced 
slightly. 

The synthesized logic elements and maximum run-
ning frequency is compared with X. Jiang‘s design and 
Gong’s design. The comparison tabulated in Table 6.

9.  Conclusion
Parallel processing 32 bit binary FP multiplier with novel 
recoding is investigated in this paper. The implementa-
tion results show that the performance can be improved 
by doing parallel processing in proper way. Divide the 
operands into blocks and each block can perform their 
function in parallel. Gather the results from each block 
and recombine them in proper way enhances the perfor-
mance. Multiplication mainly composed of two steps is 
partial product generation and their accumulation. We 
concentrate on both steps. Classical recoding algorithm 
is used to reduce the partial product by half without any 
consideration like Booth. Mixed combination of CSA and 
carry select adder can increase the speed of addition. These 
performances affect the total thermal power to reduce.

In the future, implementing this multiplier on any 
multiplication oriented processor and also extend this 
design to double precision floating point multiplier.
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