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  This paper presents an order level inventory system with time 

dependent Weibull deterioration and ramp type demand rate where 

production and demand are time dependent. The proposed model of this 

paper considers economic order quantity under two different cases. The 

implementation of the proposed model is illustrated using some 

numerical examples. Sensitivity analysis is performed to show the 

effect of changes in the parameters on the optimum solution. 
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1. Introduction 
 

The control and maintenance of production inventories of deteriorating items with shortages have 

attracted much attention in inventory analysis. Deterioration plays an important role in developing 

inventory models since it is a natural process in many cases. Deterioration is normally identified as 

decay or damage in goods. Foods, drugs, pharmaceuticals, radioactive substances are examples of 

items in which sufficient deterioration can take place during the normal storage period and thus it 

plays an important role in analyzing the system. 

Shah and Jaiswal (1977), Roychowdhury and Chaudhuri (1983), Dave (1986),  Bahari-Kashani 

(1989), etc studied different types of order-level inventory models for deteriorating items where 

deterioration rate is considered to be constant. Whitin (1957) considered deterioration of fashion 

goods at the expiry of prescribed shortage period. Another deteriorating inventory model was 

developed where deterioration was considered in exponential form (Ghare & Schrader, 1963). Since 
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then, there have been tremendous works on deteriorating items (Chakrabarti et al., 1998;  Covert & 

Philip, 1973; Mishra, 1975; Goswami & Chaudhuri, 1991, 1992; Fujiwara, 1993; Hariga & 

Benkherouf, 1994; Wee, 1995; Jalan et al., 1996; Su et al., 1996). To know more work in this line one 

may consult the review articles written by Nahmias (1982) and Raafat (1991). Traditional inventory 

problems normally assume that demand is constant and given upfront. However, this simple 

assumption does not hold in many cases and it can be a function of price, time, etc. Donaldson (1977) 

is believed to be the first who introduced a linearly time-dependent demand function. There have 

been tremendous works on time-dependent demand inventory models (McDonald, 1979; Mitra et al., 

1984; Ritchie, 1984; Deb & Chaudhuri, 1987; Goyal, 1988; Murdeshwar, 1988; Mandal & Pal, 1998; 

Panda et al., 2008; Abdul & Murata, 2011). Deng et al. (2007) also presented a review of inventory 

models for deteriorating items with ramp type demand. 

In this paper, we develop economic order quantity (EOQ) models for deteriorating items which are 

time-dependent and the demand rate is a ramp type function of time. These types of problems are 

normally observed in the case of new brands of consumer goods. Demand rate for such items usually 

increases up to certain period and then it almost stabilizes. We assume that the unit production cost 

and the demand rate to be inversely proportionate. The first model discussed in this paper deals with 

model where shortage is prohibited and the second one is extended to cover the case of inventory 

allowing shortage. Two numerical examples are provided to illustrate the solution procedure of our 

models. Sensitivity analysis is carried out to show the effect of changes in the parameter on the 

optimum total average cost.  

2. Proposed model  

2.1. Model 1 

To develop the inventory model where shortage is not allowed, the following assumption and 

notation are used. 

a. The lead time is zero. 

b. 1c  is the inventory holding cost per unit per unit of time.  

c. 3c  is the deterioration cost per unit per unit of time.   

d. ),(tfR = the demand rate, is assumed to be a ramp type function of time, i.e. 

)]()([)( 0 μμ −−−= tHttDtf , 00 >D , here )( μ−tH is a Heaviside’s function which may be 

defined as follows:  

⎩
⎨
⎧

<
≥

=−
.0

,1
)(

μ
μ

μ
tif

tif
tH   

e. The production rate is )(tfK δ=  where 1>δ  is constant. 

f. 1)( −= βαβθ tt  is the deterioration rate; where 10 <<α  , 0≥t  and 0>β . Generally α  is called 

the scale parameter and  β  is the shape parameter. 

g. C  is the total average cost per production cycle. 

h. 1t  , the production time is greater than μ  in no shortage period. 



C. K. Tripathy and U. Mishra / International Journal of Industrial Engineering Computations 2 (2011) 
 

309

For 01 >α , 0>γ and 2≠γ , the unit production cost γα −= Rv 1  is positive. Thus  v  and R  are 

inversely related which implies that higher demands result in lower per unit production costs and γ  

remains positive. 

We have, 

0)1(

1 <−= +− γγα R
dR

dv
, .0)1( )2(

12

2

>+= +− γγγα R
dR

vd
 

Hence, we observe that the marginal unit cost of production is an increasing function of .R  Further 

and with the increase in demand rate, the unit cost of production decreases with an increasing rate 

resulting encouragement to the manufacturer to produce more as the demand for the item increases. 

The nature of the solution of the problem requires restriction 2≠γ . At initial time 0=t , the 

production starts with zero level stock. At time 1t , the production stops as the stock attains S  level. 

Market demand and deterioration of items gradually diminishes the inventory level during the time 

period 21 ttt ≤≤  which ultimately falls to zero at time 2tt = . At time 2tt = the cycle again repeats.  

Let )(tQ  be the inventory level at any time )0( 2ttt ≤≤ .  

Differential equations governing the instantaneous states of )(tQ  during the time interval 20 tt ≤≤  

are as follows, 

μθ ≤≤−=+ ttfKtQt
dt

tdQ
0,)()()(

)(
 (1)

satisfying the initial condition 0)0( =Q , 

1,)()()(
)(

tttfKtQt
dt

tdQ
≤≤−=+ μθ

(2)

satisfying the condition ,)( 1 StQ =  

21),()()(
)(

ttttftQt
dt

tdQ
≤≤−=+θ

(3)

satisfying the conditions StQ =)( 1 , 0)( 2 =tQ . 

Using 
1)( −= βαβθ tt  and ramp type function )(tf , Eq. (1) to Eq. (3) we have the following, 

μδαβ β ≤≤−=+ −
ttDtQt

dt

tdQ
0,)1()(

)(
0

1

 

(4)

satisfying the initial condition 0)0( =Q , 

10

1 ,)1()(
)(

ttDtQt
dt

tdQ
≤≤−=+ − μμδαβ β

(5)

satisfying the condition ,)( 1 StQ =  
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210

1 ,)(
)(

tttDtQt
dt

tdQ
≤≤−=+ − μαβ β

(6)

satisfying the conditions StQ =)( 1 , 0)( 2 =tQ . 

Solving the Eqs. (4)-(6) yields, 
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(7)

We neglect the second and higher powers of α  throughout the subsequent calculations as 10 <<α  . 

Since 0)( 2 =tQ , from Eq. (7), we get, 

0)()(
1

)1( 122

1

2

1

121012 =
⎭
⎬
⎫

⎩
⎨
⎧

−+−
+

+−++− ++
tttttttDttS

βββββ α
β
αμαα . 

Simplifying and taking the first order approximation overα yields, 
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The total inventory in 20 tt ≤≤  is as follows, 
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Total number of deteriorated items in 20 tt ≤≤  is given by 

).2(
2

1
)2(

2

1
20100
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μμμδμμμδδ
μμ
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(10)

The cost of production in ],[ duuu +  is du
R

Kvdu
1

1

−= γ

δα
. So the production cost in 10 tt ≤≤  is  
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Thus the total average cost is as follows, 
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We can find the optimum values of 1t  and 2t  for minimum average cost C  from the solutions of the 

following equations 
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From Eq. (13) we get 
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2.2. Model 2 

In this section, we develop a model for deteriorating items when shortage is permitted and completely 

backlogged and a finite rate of replenishment is assumed for planning horizon. Let 2c  be the shortage 

cost per unit per unit of time. We start with zero stock at the initial stage. At 0=t  , production starts 

and continues till 1tt = . At this time the stock reaches S  level and production is stopped at 1tt = . 

Accumulated inventory during 10 tt ≤≤ , after meeting the demands during 10 tt ≤≤ , is available for 

meeting the demand during 21 ttt ≤≤ . The stock is exhausted or reaches zero level at time 2t . Once 

demand is not satisfied, shortages start to develop and accumulates up to the level P  at 3tt = . Again, 

after time 3t  production starts and inventory reaches zero level at time 4t  satisfying the demand 

during the period 43 ttt ≤≤  along with the backlogged shortages during the period 32 ttt ≤≤ . At 

4tt = , the production cycle completes and new cycle starts. The purpose of the study is to determine 

the optimum values ofC , 1t , 2t , 3t  and 4t  subject to the assumptions stated earlier.  

Let )(tQ be the inventory level at any time )0( 4ttt ≤≤ . The flowing differential equations represent 

the instantaneous states of )(tQ during the time interval 40 tt ≤≤ . 

μδαβ β ≤≤−=+ −
ttDtQt

dt

tdQ
0,)1()(

)(
0

1 (16)

satisfying the initial condition 0)0( =Q , 

10

1 ,)1()(
)(

ttDtQt
dt

tdQ
≤≤−=+ − μμδαβ β (17)

satisfying the condition ,)( 1 StQ =  

210

1 ,)(
)(

tttDtQt
dt

tdQ
≤≤−=+ − μαβ β

 
                                         (18) 

satisfying the conditions StQ =)( 1 , 0)( 2 =tQ , 

320 ,
)(

tttD
dt

tdQ
≤≤−= μ  

                                   (19) 

satisfying the conditions 0)( 2 =tQ , ,)( 3 PtQ −=  

430 ,)1(
)(

tttD
dt

tdQ
≤≤−= μδ  

                                    (20) 

satisfying the conditions PtQ −=)( 3 , 0)( 4 =tQ . 

From Eq. (7), the solutions of the Eq. (16) to Eq. (18) can be obtained and the solutions of Eq. (19) 

and Eq. (20) are as follows, 
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During the time 42 ttt ≤≤ , there is no deterioration as the items produced are sent for meeting the 

demand, immediately. Hence, total number of deteriorated items during the time 40 tt ≤≤  will be the 

same as the one given in Eq. (10) i.e. 
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The total shortage during the time 42 ttt ≤≤  is as follows, 

,)()1(
2

1
)(

2

1
)]([)]([ 2

340

2

230

3

2

4

3

ttDttDdttQdttQ

t

t

t

t

−−+−=−+−∫ ∫ μδμ  

 and production cost during the time 43 ttt ≤≤  is as follows, 

).( 34

11

01

4

3

ttDKvdu

t

t

−= −−∫ γγ μδα  

Hence the cost of production during the time 40 tt ≤≤  is computed as, 

])1()()2[(
2

2

341

1

1

01 γγ
γ

μγμγ
γ

δα −−
−

−+−+−
−

ttt
D

.      2≠γ      

The total average cost of the system during the time 40 tt ≤≤  is as follows, 
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The required optimum values of 1t , 2t , 3t  and 4t which minimize the cost function C  can be obtained 

from the solution of the following equations, 

0
1

=
∂
∂

t

C
 , 0

2

=
∂
∂
t

C
,  0

3

=
∂
∂
t

C
 and  ,0

4

=
∂
∂
t

C
                   (23) 

subject to the conditions that these values of )4,3,2,1( =iti  satisfy the conditions )4,3,2,1(0 => iDi , 

where iD  is the Hessian determinant of order i  given by 
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3. Numerical Example 

Example 1. Consider 41 =c , 103 =c , 1000 =D , 12=μ , 005.0=α , 4.0=β , ,8=δ 181 =α  and 

2.1=γ  as appropriate units. Using the Mathematica-5.1, we obtain the optimum solution for 1t and 
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2t  of Eq. (14) and Eq. (15) of Model 1, as 90269.3
*

1 =t , 476.125
*

2 =t . Using 
*

1t and 
*

2t  in Eq. (12), 

we get the optimum average cost as 348354* =C . 

Example 2. Consider 41 =c , 62 =c , 103 =c , 1000 =D , 12=μ , 005.0=α , 4.0=β , ,8=δ and 

181 =α  and 2.1=γ  as appropriate units. Using the Mathematica-5.1, we obtain the optimum solution 

for 1t ,  2t , 3t  and 4t  of Eq. (24) to Eq. (27) of Model 2 as 61333.3
*

1 =t , 5721.32
*

2 =t , 7701.48
*

3 =t

and 0835.51
*

4 =t . Using 
*

1t , 
*

2t , 
*

3t  and 
*

4t  in Eq. (22), we get the optimum average cost as 

230578* =C . 

4. Sensitivity Analysis 

We have performed sensitivity analysis by changing one parameter at a time by 25% and 50%, and 

keeping the remaining parameters at their original values. Table 1 and Table 2 summarize the results. 

Table 1 

The summary of the sensitivity analysis when shortage is not permitted 
Parameter  % Change *

1t
*

2t
*

C  

  +25 4.59006 139.481 465698 

+50 5.06788 152.399 595873 

1c
 

-25 2.80482 110.01 244564 

-50 0.730086 93.8357 157066 

 +25 3.12905 126.696 353085 

+50 2.36735 128.278 358845 

3c
 

-25 4.68689 124.643 344734 

-50 5.4807 124.216 342291 

 +25 3.90296 125.476 435440 

+50 3.90313 125.475 522523 

0D
 

-25 3.90223 125.478 261271 

-50 3.90123 125.48 174186 

 +25 6.00256 175.036 409603 

+50 8.38117 230.391 464952 
μ

 -25 2.01897 82.7045 171456 

-50 0.31018 48.7833 67226.1 

 +25 4.34322 125.481 356959 

+50 4.1081 125.481 357752 
α  -25 3.50523 125.45 349443 

-50 3.6992 125.466 348934 

 +25 4.19859 125.659 348735 

+50 4.65648 126.016 349701 

β
 

-25 3.70784 125.384 348277 

-50 3.57803 125.338 348142 

 +25 3.97665 142.236 398470 

+50 4.02168 157.229 443445 

δ  
-25 3.76397 106.118 290806 

-50 3.42907 82.35687 221148 

 +25 3.90241 125.477 348358 

+50 3.90213 125.478 348362 

1α  
-25 3.90297 125.476 348352 

-50 3.90326 125.475 348348 

 +25 3.90369 125.474 348343 

 +50 3.9038 125.474 348342 
γ

 -25 3.84433 125.489 348740 

 -50 3.82411 125.564 349002 

 

Based on the results of Table 1, the following observations can be made. 
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(i) An increase on the values of the parameters 1c  , 3c , 0D , μ , α  , β  , δ  and 1α  will result 

to an increase on *
C . 

(ii) An increase in the values of the parameterγ  will result to an in decrease on *
C . 

Table 2 

The summary of the results when shortage is permitted                                                                   

Parameter % Change *

1t  
*

2t  
*

3t  
*

4t  
*

C  

 +25 4.24743 31.9366 51.2598 54.0196 274666 

+50 4.6725 31.2571 53.4892 56.6646 315624 

1c  
-25 2.5675 33.0203 45.8238 47.6521 182567 

-50 0.534307 32.8206 41.8616 43.1525 129182 

 +25 3.61533 33.637 47.1081 49.032 240066 

+50 3.61684 34.4247 45.9661 47.6144 247101 

2c  
-25 3.61053 31.0469 51.4186 54.3279 217035 

-50 3.60634 28.6613 56.3347 60.2866 195949 

 +25 2.82575 31.9063 48.1408 50.4594 231058 

+50 2.04748 31.2575 47.51 49.8311 231276 

3c
 

-25 4.40907 33.2565 49.4004 51.706 229846 

-50 5.21219 33.9619 50.0345 52.3299 228874 

 +25 3.6136 32.5716 48.7691 51.0825 288222 

+50 3.61377 32.5713 48.7685 51.082 345866 

0D
 

-25 3.61285 32.5728 48.7719 51.0851 172934 

-50 3.61184 32.5745 48.7757 51.0886 115289 

 +25 5.52904 47.9489 70.6475 73.8897 404061 

+50 7.65895 68.0917 97.7001 101.929 632877 
μ  -25 1.85692 20.3445 30.6531 32.1247 110021 

-50 0.2222 10.5044 15.6986 16.439 36937 

 +25 3.89446 34.1653 50.1718 52.4577 237949 

+50 3.74929 33.3127 49.4198 51.7201 239328 
α  -25 3.36473 31.3454 47.7009 50.0367 232736 

-50 3.48545 31.9216 48.2022 50.5274 231710 

 +25 3.69785 33.5693 49.6514 51.9481 228989 

+50 3.81357 35.285 51.1862 53.4571 226511 

β  -25 3.54929 31.9404 48.2157 50.5401 231636 

-50 3.50001 31.5206 47.8484 50.1803 232355 

 +25 3.70254 36.7164 55.3065 57.3714 265247 

+50 3.75928 40.4128 61.1422 63.026 296221 

δ  -25 3.4529 27.7493 41.1869 43.8737 190513 

-50 3.08072 21.702 31.7686 35.1234 141481 

 +25 3.61304 32.5725 48.7712 51.0845 230578 

+50 3.61275 32.573 48.7723 51.0854 230578 

1α  
-25 3.61631 32.5716 48.7691 51.0825 230578 

-50 3.6139 32.5711 48.768 51.0815 230577 

 +25 3.61433 32.5705 48.7665 51.0801 230578 

 +50 3.61446 32.5702 48.766 51.0796 230578 
γ  -25 3.60486 32.5841 48.7984 51.1093 230566 

 -50 3.53385 32.6777 49.027 51.3139 230407 
 

Based on the results of Table 2, the following observations can be made. 
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4.2.1. Any increase in the values of the parameters 1c  and μ  will result to an increase on *C . 

4.2.2. Any increase in the values of the parameters 2c  , 3c , 0D  , α  and δ  will result to an increase 

on the value of *
C . 

4.2.3. Any increase in the values of the parameters β  will result to a decrease in *
C . 

4.2.4. Any increase in the values of the parameters 1α   and γ  will result in slight change in *
C . 

As we can observe from the results of Table 1 and Table 2, the optimal average cost obtained in no 

shortage case is more than that of shortage case.  

5. Conclusion  

In this paper, we have presented a new economic order quantity model when the demand rate is a 

ramp type function of time. The ramp type demand is generally observed in new brand of consumer 

goods where demand increases for a certain period and then it stabilizes and becomes almost 

constant. The proposed model of this paper is considered for two different conditions where shortage 

is either prohibited for the first case and it is permitted for the second one. The proposed model was 

analyzed using two numerical examples and they were analyzed when parameters are set to different 

values.  
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