
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

An exact algorithm for k-cardinality degree
constrained clustered minimum spanning tree
problem
To cite this article: T Jayanth Kumar and S Purusotham 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263
042112

View the article online for updates and enhancements.

Related content
Efficient frequent pattern mining algorithm
based on node sets in cloud computing
environment
V N Vinay Kumar Billa, K Lakshmanna, K
Rajesh et al.

-

Quantum circuitsfor OR and AND of ORs
Howard Barnum, Herbert J Bernstein and
Lee Spector

-

A Firefly Algorithm Approach for Multirow
Facility Layout Problem
Akash P Lukose, Abyson Scaria and Babu
George

-

Recent citations
An Optimization Routing Algorithm for
Green Communication in Underground
Mines
Heng Xu et al

-

This content was downloaded from IP address 103.204.211.42 on 23/07/2020 at 13:43

https://doi.org/10.1088/1757-899X/263/4/042112
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042003
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042003
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042003
http://iopscience.iop.org/article/10.1088/0305-4470/33/45/304
http://iopscience.iop.org/article/10.1088/1757-899X/396/1/012072
http://iopscience.iop.org/article/10.1088/1757-899X/396/1/012072
http://dx.doi.org/10.3390/s18061950
http://dx.doi.org/10.3390/s18061950
http://dx.doi.org/10.3390/s18061950

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

An exact algorithm for k-cardinality degree constrained

clustered minimum spanning tree problem

T Jayanth Kumar and S Purusotham

Department of Mathematics, School of Advanced Sciences, VIT University, Vellore-

632014, Tamil Nadu, India

E-mail: drpurusotham.or@gmail.com

Abstract. The k-cardinality degree constrained clustered minimum spanning tree problem (k-

DCCMST) aims to determine a k-node (out of n nodes) spanning tree of minimum weight

defined on a complete weighted undirected graph, where the node set is partitioned into set of

clusters such that except the root node, the degree of other nodes in the resultant spanning tree

does not exceed the predefined degree limit. The k-DCCMST model has significant

applications in the context of designing of networks and is then formulated as a zero-one

integer linear program. To solve this problem optimally, an exact Lexi-search algorithm (LSA)

is developed. The developed LSA is subjected in Matlab, tested on some benchmark as well as

randomly generated test instances and computational results are reported. Numerical

experimental results demonstrate the efficiency of proposed LSA on dense graphs.

1. Introduction

The minimum spanning tree problem (MST) is an acyclic sub graph, which connects all the vertices

with minimum total weight for its edges. The classical MST is one of the significant fundamental

problems in network combinatorial optimization and it has wide variety of practical applications in

designing of networks including telecommunications, computer networks, transportation, water supply

networks, drain systems, and power grids [1]. Due to its wide applicability, it has gained much

attention over the past few decades and many efficient approaches have been emerged. The

polynomial time greedy algorithms were developed by [2-3]. The classical MST has been diversified

into many variants which were proved to be NP-hard [4].

Degree constrained minimum spanning tree problem (DCMST) was introduced by [5] and is one of

the problem that received a great consideration in the sense of solution procedures.An application of

this problem can be observed in the context of design of electrical grids, in which all the terminal

vertices are connected using least amount of wire, such that no vertex is incident to other vertices with

more than the given number of wires [5]. More recently, a learning based automata heuristic approach

[6] and a branch and cut algorithm [7]has been developed for solving DCMST. In addition to that,

some of the well-studied variants of classical MST such as Hop-constrained minimum spanning tree

problem [8], Leaf-constrained minimum spanning tree problem [9], Minimum diameter spanning tree

[10]. Clustering is the process of partitioning the vertex set into set of clusters. The classical MST has

been played a significant role and become a powerful tool for performing clustering analysis [11].

Several clustering algorithms based minimum spanning tree can be found in the literature [11-14].

The k-cardinality minimum spanning tree problem (k-MST) is a variant of the classic MST, first

introduced by[15] and was proven to be NP-hard [16]. The k-MST is formally defined as follows: Let

mailto:drpurusotham.or@gmail.com
http://creativecommons.org/licenses/by/3.0

2

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

(,)G N E be a weighted, connected and undirected graph having | |N vertices and | |E edges, the k-

MST aims to find the minimum weight spanning tree with exactly k (| |)k N vertices and 1k  edges.

Since the k-MST has potential applications in oil-field leasing, telecommunications, open pit mining

and image processing [16-18], it has received a great attention in the research community. The

constant factor approximation approach for solving the k-MST was first presented by[19].

Subsequently, k-MST problem has been studied by [17] and suggested an O(log k) approximation

algorithm. A 2.5-factor heuristic algorithm [20] has been developed for solving k-MST. Three meta-

heuristics algorithms namely Tabu Search (TS), Ant Colony Optimization (ACO) and Evolutionary

Computation (EC) have been proposed [21]fork-MST problem and showed that the ACO and TS

approach works better for lower and higher cardinalities respectively.

Recently, a new solution procedure using Tabu search [22] proposed for k-MST and shown that

this method performs better than the existing methods. An efficient hybrid approximation algorithm

using Tabu search and Ant colony optimization [23] for solving the k-MST problem has been

developed. A hybrid heuristic approach based on the memetic algorithm and Tabu search algorithm

[24] has been developed for the k-MST problem. Obviously, most of the above cited works on k-MST

problem concerns approximate solution procedures. However, these approximate solution methods

may not assure the exact solutions and developing exact solution methods is again a challenging

problem.

This paper considers an extension to the k-MST namely the k-cardinality degree constrained

clustered minimum spanning tree problem (k-DCCMST). We develop an exact Lexi-search algorithm

(LSA) for solving the k-DCCMST model optimally. The remainder of the paper is structured as

follows. Section 2 provides the problem description and its mathematical formulation as well. The

preliminaries and developed algorithm are presented in Section 3. Computational results are reported

in Section 4. Finally, conclusions are drawn in Section 5.

2. Mathematical formulation

The k-DCCMST is defined on the complete, undirected, connected and weighted graph (,),G V A

where {1,2,3,..., }V n be the vertex/node set and {(,) : , , }A i j i j V i j be the arc/edge set. With

each edge of A is associated with non-negative symmetric cost/distance ijc is equal to cost from thi node

to thj node. The node set V is partitioned into set of m clusters which must be satisfied

0

, ,
m

p i j

p

V V V V where , 0,1,..., ;i j m i j . Given the non-negative integers ,k d and size of

the clusters, the k-cardinality degree constrained clustered minimum spanning tree (k-DCCMST) aims

to find a (| |)k k V node spanning tree of optimal cost such that except the root node, no other vertex

in the resultant spanning tree has more than the degree limit d and subject to the cluster constraints.

Thek-DCCMST is formulated as a zero-one integer linear program. The notations which are used to

model the problem are given as follows:

Notation
V set of all nodes i.e. {1,2,3,..., }V n

| |V n number of nodes

P Set of clusters, {0,1,,..., }P m

m number of clusters
d degree threshold

ijc

associated symmetric distance/cost between thi node to thj node, ,i j N

pV

node set of
thp cluster

0V

root node cluster; its cardinality being one i.e.
0| | 1V

3

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112



root node, where
0V

k

cardinality on vertices

ijx

a binary variable, where {0,1}ijx

The zero-one linear integer programming model is given below

1 1

n n

ij ij

i j

MinimizeZ c x

(1)

Subject to

1 1

1
n n

ij

i j

x k

(2)

0

1

; , \{ }
n

ij

j

x d i j i N V

(3)

0| |, ,
p

j

j V

x P V p P 


  

(4)

01, ,
p

j

j V

x V p P 


  

(5)

0If 1 and , then , ,where \{0}ij px i j V i j V p P    (6)

+Subtoureliminationconstraints (7)

{0,1}, , andijx i j V i j (8)

The objective function is given in constraint (1) denotes the sum of the total associated cost of the

spanning tree. The constraint (2) implies that resultant spanning tree must have 1k edges. The

constraint (3) guarantees that except the root node, no other node in the resultant spanning tree is more

than a predefined degree limit. The constraints (4-5) ensure that satisfies the clustering requirements.

The constraint (6) imposes, if there is an edge from
thi node to

thj node, where
0,i j V then both the

nodes should be in the specific cluster. The constraint (7) eliminates sub tours. Finally, the constraint

(8) represents the binary variable.

3. Lexi-search algorithm

The word Lexicographic is observed from Lexicography, the science of effective storage and recovery

of data. The name Lexicographic itself propose that the search for an optimal solution brought about in

a systematized manner.A systematized branch and bound approach [25] called Lexi-search algorithm

was developed to tackle the loading problem. The approach is depending on following grounds [25]

a. It is possible to list all the solutions in a structural hierarchy which also reflects a hierarchical

ordering of the corresponding values of these configurations.

b. Effective bounds can be set to the values of the objective function, when structural combinatorial

restraints are placed on the allowable configurations.

3.1. Pattern

A symbolic representation of two dimensional array []ijX x that corresponds to the spanning tree is

called a pattern. If X has a feasible solution, then the pattern is said to be feasible. The value of the

pattern is measured using the formula given in (9).

4

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

1 1

()
n n

ij ij

i j

Vc X c x

(9)

The value ()Vc X gives the total associated cost of the spanning tree expressed by X .

3.2. Alphabet table

According to [26], for any two dimensional array, there exist M n n ordered pairs, which are

organized in increasing order corresponding of their costs and indexed from 1 to M . The set SN

constitutes M indices. Let
1 2(, ,...,),r r iL SN be an ordered sequence of r indices from SN . The

pattern represented by the ordered pairs whose indices are indicated by
rL , which is independent of the

order of i in the sequence. The indices in
rL can be arranged in non-decreasing order such that

1; 1,2,..., 1i i i r . If a word
rL satisfies all the constraints and if 1r k , then it is said to be

the partial feasible word.If 1r k , then the word
rL is said to be full length feasible word and it

provides the feasible solution. If the block of words involved at least one feasible word then the leader

rL is said to be feasible.

3.3. Bound settings

Initially, the upper bound ()UB of a partial word can be taken as infinity as a trial solution. The lower

bound ()LB for the values of the blocks of words denoted by
rL can be determined by using the formula

() () (1) ()r r r rLB L Vc L Cd k r Cd L      , where ()rVc L gives value of the partial word and is

determine using
1 0() () ()with () 0.r r rVc L Vc L c Vc L  

3.4. Proposed Lexi-search algorithm

The steps involved in Lexi-search algorithm towards the optimal solution are given as follows:

Step1 Initialization

 a. Cost matrix (C)

b. Number of nodes (n) and number of clusters (m)

c. Cardinality on vertices (k)

d. Degree limit (d), size of different clusters (q)

e. Set the upper bound 9999UB VT  as a trial value.

Step 2 Alphabet table

 Generate the alphabet table by sorting the elements of two dimensional cost matrix

[]ijC c as discussed in the Section (3.2) and go to Step 3.

Step 3 Bound settings
 a. Initially, the algorithm starts with a partial word () 1r rL   where r = 1.

b. Compute the lower bound ()LB of a partial word
rL as discussed in Section (3.3).

c. If ()RLB L VT then go to Step 4.

d. If ()RLB L VT , then discard the partial word
rL and reject the block of word with

rL

as leader, since it does not provide optimal solution and thus, dismiss all the partial

words of the order r that succeeds
rL and go to Step 6.

Step 4 Feasible checking
 a. If the partial word

rL satisfying the cardinality constraint, degree constraint, acyclic

and balancing the size of the clusters, then it is feasible otherwise infeasible.

b. If
rL is feasible, then we accept it and continue for next partial word of order 1r  and

go to Step 5.

5

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

c. If
rL is infeasible, consider the next partial word of order by taking another letter that

succeeds
r
in its

thr position and go to Step 3.

Step 5 Concatenation
 a. If

rL is a full length feasible word, then ()rVT LB L and for further improvement go to

Step 7.

b. If
rL is a partial word, then this can be concatenated by using  1 1 = *rr rL L   where

* represents the concatenation operation and go to Step 3.

Step 6 If all the words of order r are exhausted and length of the word
rL is 1, then go to Step 9,

otherwise, go toStep 7.

Step 7 Backtracking

 a. To explore the solution space, backtracking is performed; the current VT is taken as an

upper bound and continues the search with the next letter of the partial word of order

1r and go to Step 3.

b. On repeating the Steps 3 to 7 and eliminates the feasible/infeasible solutions which are

not included in the optimal solution.

c. Continue the process, until VT has no further improvement and go to Step 8.

Step 8 Output

 Record VT and
rL , go to Step 9.

Step 9 Stop

At the end of the search, VT provides an optimal solution and the word
rL gives the complete

schedule for minimum connectivity of the clustered nodes.

4. Computational analysis

The main objective of this section is to measure the efficiency of the developed LSA for k-DCCMST.

The developed LSA was implemented in Matlab 2016a and is tested on a PC with 2.0 GHz processor

Intel Core i3 and 4 GB of RAM running Microsoft Windows 2010 operating system. In order to assess

the LSA performance, the LSA experimented over benchmark as well as randomly generated data

instances. All the computational experiments were carried out on dense graphs (i.e. the maximum

number of possible edges for the dense graph is
1

(1)
2

n n).

The exact algorithm for k-DCCMST was tested over six benchmark data instances from TSPLIB

[27] by assuming vertex 1 as the root node. The benchmark instances include gr17, gr21, gr24, fri26,

bayg29, anddantzig42. For each instance, we have considered four cases with distinct values of

cardinality on vertices (k), degree threshold (d), number of clusters (m) and size of the clusters (q) and

each experiment was executed independently 10 runs. Overall, for 6 benchmark data instances, 24

cases were tested. The obtained results include best found solution using LSA, worst time as well as

best time to obtain the best solution are summarized in Table 1. From the results in Table 1, it is

observed that the LSA produces the best solutions in practically considerable CPU run times. It is

interesting to note that there are inconsistent CPU run times due to the dependence of the LSA in the

structure of the data instance.

6

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

Table 1. Results of the LSA for k-DCCMST over benchmark instances.
Instance |V| |A| k d m q Best

sol.

CPU Runtime

Worst time Best time

gr17 17 136 12 3 2 (7, 4) 788 0.1957 0.0848

11 3 2 (6, 4) 667 1.1708 0.1998

12 3 3 (5, 3, 3) 890 0.2902 0.0878

10 3 2 (5, 4) 534 0.4208 0.0939

gr21 21 210 16 3 3 (6, 5, 4) 1507 1.6868 0.1380

14 3 3 (6, 4, 3) 1222 0.9207 0.3852

11 3 2 (6, 4) 755 3.0234 1.2902

18 3 3 (8, 5, 4) 1810 1.7523 0.9223

gr24 24 276 14 4 2 (8, 5) 559 1.9220 0.8825

16 3 4 (5, 4, 3,3) 874 2.2050 1.0712

14 3 3 (6, 4, 3) 641 3.7142 1.0980

20 3 2 (12, 7) 907 6.1070 2.0654

fri26 26 325 13 3 3 (5, 4, 3) 494 1.1024 0.4269

16 3 3 (7, 5, 3) 587 0.7850 0.1932

18 3 3 (8, 6, 3) 640 1.6880 0.4135

20 4 3 (8, 6, 5) 725 14.1942 12.0510

bayg29 29 406 20 4 4 (8, 5, 3, 3) 902 8.1002 3.4560

23 4 4 (8, 6, 4, 4) 1097 7.2432 4.5622

18 3 4 (6, 4, 4, 3) 826 8.0541 4.7854

20 4 3 (10, 5, 4) 868 8.6366 5.9432

dantzig42 42 861 16 4 3 (6, 5, 4) 231 4.5462 3.0432

20 4 3 (8, 7, 4) 277 15.0720 12.1022

24 4 3 (10, 8, 5) 327 25.2280 19.0762

24 3 3 (8, 8, 7) 343 44.8234 37.0986

Instance − benchmark instances taken from TSPLIB [27]; |V| − cardinality of the node set in the

given graph; |A|− cardinality of the edge set in the given graph; k – cardinality of the resultant

spanning tree; d– degree limit on the vertices;m– number of clusters; q– size of the clusters(sum of

the sizes of all clusters and root node equals to k); Best sol. – the optimal solution by the proposed

LSA; Worst time – worst computational runtime (in CPU seconds) required to find the best solution;

Best time – best computational runtime (in CPU seconds) required to find the best solution.

Additionally, to measure the LSA performance, we extend the computational experiments by

testing the LSA on randomly generated test instances. A class of 10 randomly generated small and

medium size test instances ranging from 20 to 110 was considered for our computational experiments.

Each class included 10 instances and overall, a total of 100 test instances with symmetric edge weights

are generated and tested. The cost
ij

c takes the random values over the range [1, 300].

The numerical experimental results reported in Table 2 show the mean results of each size using

LSA. Table 2 also includes the standard deviation (SD) of CPU run times. In Table 2, the average

CPU run times for the problems of distinct sizes from 20 to 110 with distinct parametric values of k, d,

m, and q ranges from 0.4920 seconds to 48.9804 seconds. It is observed that average CPU run times

start increasing when the problems of size 60 or higher are tested. However, these computational

runtimes are fairly reasonable in the sense of finding exact solutions.

The overall results summarized in Table 1 and Table 2 shows that LSA can efficiently solve the k-

DCCMST for the small and medium size of instances within practically allowable CPU run times. For

higher dimensional instances, the CPU run times may also be higher.

7

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

Table 2. Mean results of the LSA for k-DCCMST over random instances.
SN |V| |A| k D m q NPT CPU Runtime SD

Min. Max. Avg.

1 20 190 15 3 2 (8, 6) 10 0.3416 0.5012 0.4920 0.0196

2 30 435 24 3 3 (10, 8, 5) 10 0.4510 0.5864 0.5266 0.0343

3 40 780 35 4 3 (15, 10, 9) 10 0.7008 0.9089 0.8920 0.0232

4 50 1225 40 4 3 (15, 15, 9) 10 0.1017 0.1290 0.1100 0.0075

5 60 1770 45 4 4 (15, 10, 10, 9) 10 3.1227 5.2169 4.1658 0.0336

6 70 2415 55 4 4 (18, 15, 13, 8) 10 4.0042 7.2644 6.5224 0.0750

7 80 3160 60 5 5 (18, 17, 10, 10, 4) 10 8.2102 10.4621 9.4234 0.0620

8 90 4005 70 6 5 (25, 15, 12, 10, 8) 10 14.0542 22.4468 16.7524 0.1556

9 100 4950 90 6 5 (30, 25, 20, 10, 4) 10 18.1790 31.0098 25.9806 0.0942

10 110 5995 90 6 5 (25, 25, 15, 14, 10) 10 33.0892 56.3402 48.9804 0.1964

SN – problem number; |V| − cardinality of the node set in the given graph; |A|− cardinality of the edge set in

the given graph; k – number of vertices in the resultant spanning tree; d– degree threshold on the nodes;m–

number of clusters; q– size of the clusters(sum of the sizes of all clusters and root node equals to k);NPT–

number of problems tested on each dimension; Min. – minimum CPU runtime (in seconds) to find best found

solution for the ten runs; Max. – maximum CPU runtime (in seconds) to find a best found solution for the ten

runs; Avg. – mean CPU runtime (in seconds) to find a best found solution for the ten runs; SD – standard

deviation of CPU run times.

5. Conclusion

In this study, we investigated an NP-hard k-DCCMST model and presented as a zero-one integer

linear program. To find exact solutions for k-DCCMST, an efficient exact Lexi-search algorithm

(LSA) was developed. The LSA performance has been shown through numerical experiments for

some benchmark test instances. Furthermore, the mean computational results obtained over the

randomly generated test instances with the LSA are quite promising with practically considerable CPU

run times. Although LSA is time consuming as the problem dimension increases, the quality of the

solutions produced by LSA is consistent. However, the LSA could be made more capable by enforcing

data guided strategy, as well as effective bound settings, would remain as future considerations.

References

[1] Krishnamoorthy M, Ernst AT and Sharaiha YM 2001 J. Heuristics 7 587– 611

[2] Kruskal JB 1956 Proceedings of the American Mathematical society748–50

[3] Prim RC 1957 Bell Labs Techn. J.361389–1401

[4] Karp RM 1972 In Complexity of computer computations pp. 85-103 Springer US

[5] Narula SC and Ho CA 1980 Comput. Oper. Res.7 239–249

[6] Torkestani JA 2013 J Supercomput.64 226–249

[7] Martinez LC and Da Cunha AS 2014 Discrete Appl. Math.164 210–224

[8] Gouveia L, Paias A and Sharma D 2011 J. Heuristics17 23–37

[9] Singh A 2009 Appl. Soft Comput.9 625–631

[10] ass n and am r Inform. Process. Lett.53 109–111

[11] Wang GW, Zhang CX and Zhuang J 2014 Appl. Math. Comput.247 521–534

[12] Paivinen N 2005 Pattern Recognit. Lett.26 921–930

[13] Zhong C, Miao D and Wang R 2010 Pattern Recognit.43 752–766

[14] Wang GW, Zhang CX, Zhuang J and Yu DH 2011 In Wavelet Analysis and Pattern Recognition

(ICWAPR) pp. 132–137 IEEE

[15] Hamacher HW, Jorsten K and Maffioli F 1991 Technical Report 91.023 Politecnico di Milano,

 Dipartimento di Elettronica, Italy.

[16] Ravi R, undaram arathe osen rant and av SIAM J. Discrete

Math.9 178–200

[17] Garg N and Hochbaum D 1997 Algorithmica18 111–121

8

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042112 doi:10.1088/1757-899X/263/4/042112

[18] Ma B, Hero A, Gorman J and Michel O 2000 In Image Processing, Vol.1 pp. 481-484 IEEE

[19] Blum A, Ravi R and Vempala S 1996 In Proc. of the twenty-eighth annual ACM Symp. on

Theory of computing pp. 442-448 ACM

[20] r a and amesh Inform. Process. Lett.65 117–118

[21] Blum C and Blesa MJ 2005 Comput. Oper. Res.32 1355–1377

[22] Katagiri H, Hayashida T, Nishizaki I and Ishimatsu J 2010 Int. J. Knowl. Eng. Soft Data

Paradig.2 263–274

[23] Katagiri H, Hayashida T, Nishizaki I and Guo Q 2012 Expert Syst. Appl.39 5681–5686

[24] Katagiri H and Guo Q 2013 In IAENG Transactions on Engineering Technologies pp. 167-180

Springer Netherlands

[25] Pandit SNN 1962 Oper. Res.10 639–646

[26] Sundaramurthy M 1979Ph.D Dissertation REC Warangal India

[27] TSPLIB:http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

