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Abstract. The k-cardinality degree constrained clustered minimum spanning tree problem (k-

DCCMST) aims to determine a k-node (out of n nodes) spanning tree of minimum weight 

defined on a complete weighted undirected graph, where the node set is partitioned into set of 

clusters such that except the root node, the degree of other nodes in the resultant spanning tree 

does not exceed the predefined degree limit. The k-DCCMST model has significant 

applications in the context of designing of networks and is then formulated as a zero-one 

integer linear program. To solve this problem optimally, an exact Lexi-search algorithm (LSA) 

is developed. The developed LSA is subjected in Matlab, tested on some benchmark as well as 

randomly generated test instances and computational results are reported. Numerical 

experimental results demonstrate the efficiency of proposed LSA on dense graphs. 

1.  Introduction 

The minimum spanning tree problem (MST) is an acyclic sub graph, which connects all the vertices 

with minimum total weight for its edges. The classical MST is one of the significant fundamental 

problems in network combinatorial optimization and it has wide variety of practical applications in 

designing of networks including telecommunications, computer networks, transportation, water supply 

networks, drain systems, and power grids [1]. Due to its wide applicability, it has gained much 

attention over the past few decades and many efficient approaches have been emerged.  The 

polynomial time greedy algorithms were developed by [2-3].  The classical MST has been diversified 

into many variants which were proved to be NP-hard [4]. 

Degree constrained minimum spanning tree problem (DCMST) was introduced by [5] and is one of 

the problem that received a great consideration in the sense of solution procedures.An application of 

this problem can be observed in the context of design of electrical grids, in which all the terminal 

vertices are connected using least amount of wire, such that no vertex is incident to other vertices with 

more than the given number of wires [5].  More recently, a learning based automata heuristic approach 

[6] and a branch and cut algorithm [7]has been developed for solving DCMST.  In addition to that, 

some of the well-studied variants of classical MST such as Hop-constrained minimum spanning tree 

problem [8], Leaf-constrained minimum spanning tree problem [9], Minimum diameter spanning tree 

[10]. Clustering is the process of partitioning the vertex set into set of clusters. The classical MST has 

been played a significant role and become a powerful tool for performing clustering analysis [11]. 

Several clustering algorithms based minimum spanning tree can be found in the literature [11-14]. 

The k-cardinality minimum spanning tree problem (k-MST) is a variant of the classic MST, first 

introduced by[15] and was proven to be NP-hard [16]. The k-MST is formally defined as follows: Let 
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( , )G N E be a weighted, connected and undirected graph having | |N  vertices and | |E  edges, the k-

MST aims to find the minimum weight spanning tree with exactly k ( | |)k N vertices and 1k  edges. 

Since the k-MST has potential applications in oil-field leasing, telecommunications, open pit mining 

and image processing [16-18], it has received a great attention in the research community. The 

constant factor approximation approach for solving the k-MST was first presented by[19]. 

Subsequently, k-MST problem has been studied by [17] and suggested an O(log k) approximation 

algorithm. A 2.5-factor heuristic algorithm [20] has been developed for solving k-MST. Three meta-

heuristics algorithms namely Tabu Search (TS), Ant Colony Optimization (ACO) and Evolutionary 

Computation (EC) have been proposed [21]fork-MST problem and showed that the ACO and TS 

approach works better for lower and higher cardinalities respectively. 

Recently, a new solution procedure using Tabu search [22] proposed for k-MST and shown that 

this method performs better than the existing methods. An efficient hybrid approximation algorithm 

using Tabu search and Ant colony optimization [23] for solving the k-MST problem has been 

developed. A hybrid heuristic approach based on the memetic algorithm and Tabu search algorithm 

[24] has been developed for the k-MST problem. Obviously, most of the above cited works on k-MST 

problem concerns approximate solution procedures. However, these approximate solution methods 

may not assure the exact solutions and developing exact solution methods is again a challenging 

problem. 

This paper considers an extension to the k-MST namely the k-cardinality degree constrained 

clustered minimum spanning tree problem (k-DCCMST). We develop an exact Lexi-search algorithm 

(LSA) for solving the k-DCCMST model optimally. The remainder of the paper is structured as 

follows. Section 2 provides the problem description and its mathematical formulation as well. The 

preliminaries and developed algorithm are presented in Section 3. Computational results are reported 

in Section 4. Finally, conclusions are drawn in Section 5. 

2.  Mathematical formulation 

The k-DCCMST is defined on the complete, undirected, connected and weighted graph ( , ),G V A

where {1,2,3,..., }V n be the vertex/node set and {( , ) : , , }A i j i j V i j  be the arc/edge set. With 

each edge of A is associated with non-negative symmetric cost/distance ijc is equal to cost from thi node 

to thj node. The node set V is partitioned into set of m clusters which must be satisfied 

0

, ,
m

p i j

p

V V V V where , 0,1,..., ;i j m i j . Given the non-negative integers ,k d and size of 

the clusters, the k-cardinality degree constrained clustered minimum spanning tree (k-DCCMST) aims 

to find a ( | |)k k V node spanning tree of optimal cost such that except the root node, no other vertex 

in the resultant  spanning tree has more than the degree limit d and subject to the cluster constraints. 

Thek-DCCMST is formulated as a zero-one integer linear program. The notations which are used to 

model the problem are given as follows: 

 

Notation 
V  set of all nodes i.e. {1,2,3,..., }V n  

| |V n  number of nodes  

P  Set of  clusters, {0,1,,..., }P m  

m  number of clusters 
d  degree threshold 

ijc

 

associated symmetric distance/cost between thi node to thj node, ,i j N  

pV

 

node  set of 
thp cluster 

0V

 

root node cluster; its cardinality being one i.e.
0| | 1V  
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
 

root node, where 
0V  

k

 

cardinality on vertices  

ijx

 

a binary variable, where {0,1}ijx  

 

The zero-one linear integer programming model is given below 

 

1 1

n n

ij ij

i j

MinimizeZ c x  
 

(1) 

Subject to  

1 1

1
n n

ij

i j

x k  
 

(2) 

0

1

; , \{ }
n

ij

j

x d i j i N V  
 

(3) 

0| |, ,
p

j

j V

x P V p P 


  
 

 

(4) 

01, ,
p

j

j V

x V p P 


  
 

 

(5) 

0If 1 and , then , ,where \{0}ij px i j V i j V p P     (6) 

+Subtoureliminationconstraints  (7) 

{0,1}, , andijx i j V i j  (8) 

 

The objective function is given in constraint (1) denotes the sum of the total associated cost of the 

spanning tree. The constraint (2) implies that resultant spanning tree must have 1k edges. The 

constraint (3) guarantees that except the root node, no other node in the resultant spanning tree is more 

than a predefined degree limit. The constraints (4-5) ensure that satisfies the clustering requirements.  

The constraint (6) imposes, if there is an edge from 
thi node to

thj node, where
0,i j V then both the 

nodes should be in the specific cluster. The constraint (7) eliminates sub tours. Finally, the constraint 

(8) represents the binary variable. 

3.  Lexi-search algorithm 

The word Lexicographic is observed from Lexicography, the science of effective storage and recovery 

of data. The name Lexicographic itself propose that the search for an optimal solution brought about in 

a systematized manner.A systematized branch and bound approach [25] called Lexi-search algorithm 

was developed to tackle the loading problem. The approach is depending on following grounds [25] 

a. It is possible to list all the solutions in a structural hierarchy which also reflects a hierarchical 

ordering of the corresponding values of these configurations. 

b. Effective bounds can be set to the values of the objective function, when structural combinatorial 

restraints are placed on the allowable configurations. 

3.1.  Pattern 

A symbolic representation of two dimensional array [ ]ijX x  that corresponds to the spanning tree is 

called a pattern.  If X has a feasible solution, then the pattern is said to be feasible. The value of the 

pattern is measured using the formula given in (9). 
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1 1

( )
n n

ij ij

i j

Vc X c x  
 

(9) 

The value ( )Vc X gives the total associated cost of the spanning tree expressed by X . 

3.2.  Alphabet table 

According to [26], for any two dimensional array, there exist M n n ordered pairs, which are 

organized in increasing order corresponding of their costs and indexed from 1 to M . The set SN

constitutes M indices. Let
1 2( , ,..., ),r r iL SN be an ordered sequence of r indices from SN . The 

pattern represented by the ordered pairs whose indices are indicated by
rL , which is independent of the 

order of i in the sequence.  The indices in 
rL can be arranged in non-decreasing order such that

1; 1,2,..., 1i i i r . If a word 
rL satisfies all the constraints and if 1r k , then it is said to be 

the partial feasible word.If 1r k , then the word 
rL is said to be full length feasible word and it 

provides the feasible solution. If the block of words involved at least one feasible word then the leader 

rL  is said to be feasible. 

3.3.  Bound settings 

Initially, the upper bound ( )UB of a partial word can be taken as infinity as a trial solution. The lower 

bound ( )LB for the values of the blocks of words denoted by
rL can be determined by using the formula

( ) ( ) ( 1 ) ( )r r r rLB L Vc L Cd k r Cd L      , where ( )rVc L gives value of the partial word and is 

determine using 
1 0( ) ( ) ( )with ( ) 0.r r rVc L Vc L c Vc L    

3.4.  Proposed Lexi-search algorithm 

The steps involved in Lexi-search algorithm towards the optimal solution are given as follows: 

 

Step1 Initialization 

 a. Cost matrix (C) 

b. Number of nodes ( n ) and number of clusters ( m ) 

c. Cardinality on vertices (k) 

d. Degree limit ( d ), size of different clusters (q) 

e. Set the upper bound 9999UB VT  as a trial value. 

Step 2 Alphabet table 

 Generate the alphabet table by sorting the elements of two dimensional cost matrix

[ ]ijC c as discussed in the Section (3.2) and go to Step 3. 

Step 3 Bound settings 
 a. Initially, the algorithm starts with a partial word  ( ) 1r rL    where r = 1. 

b. Compute the lower bound ( )LB of a partial word 
rL as discussed in Section (3.3). 

c. If ( )RLB L VT  then go to Step 4. 

d. If ( )RLB L VT , then discard the partial word 
rL and reject the block of word with

rL

as leader, since it does not provide optimal solution and thus, dismiss all the partial 

words of the order r that succeeds
rL and go to Step 6. 

Step 4 Feasible checking 
 a. If the partial word 

rL satisfying the cardinality constraint, degree constraint, acyclic 

and balancing the size of the clusters, then it is feasible otherwise infeasible. 

b. If 
rL  is feasible, then we accept it and continue for next partial word of order 1r   and 

go to Step 5. 
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c. If
rL is infeasible, consider the next partial word of order by taking another letter that 

succeeds
r
in its

thr  position and go to Step 3. 

Step 5 Concatenation 
 a. If

rL  is a full length feasible word, then ( )rVT LB L and for further improvement go to 

Step 7. 

b. If 
rL is a partial word, then this can be concatenated by using  1 1  = *rr rL L   where 

*   represents the concatenation operation and go to Step 3. 

Step 6 If all the words of order r are exhausted and length of the word 
rL  is 1, then go to Step 9, 

otherwise, go toStep 7. 

Step 7 Backtracking 

 a. To explore the solution space, backtracking is performed; the current VT is taken as an 

upper bound and continues the search with the next letter of the partial word of order 

1r and go to Step 3. 

b. On repeating the Steps 3 to 7 and eliminates the feasible/infeasible solutions which are 

not included in the optimal solution. 

c. Continue the process, until VT has no further improvement and go to Step 8. 

Step 8 Output 

 Record VT  and
rL , go to Step 9. 

Step 9 Stop 

 

At the end of the search, VT provides an optimal solution and the word 
rL  gives the complete 

schedule for minimum connectivity of the clustered nodes. 

4.  Computational analysis 

The main objective of this section is to measure the efficiency of the developed LSA for k-DCCMST. 

The developed LSA was implemented in Matlab 2016a and is tested on a PC with 2.0 GHz processor 

Intel Core i3 and 4 GB of RAM running Microsoft Windows 2010 operating system. In order to assess 

the LSA performance, the LSA experimented over benchmark as well as randomly generated data 

instances. All the computational experiments were carried out on dense graphs (i.e. the maximum 

number of possible edges for the dense graph is
1

( 1)
2

n n  ). 

The exact algorithm for k-DCCMST was tested over six benchmark data instances from TSPLIB 

[27] by assuming vertex 1 as the root node. The benchmark instances include gr17, gr21, gr24, fri26, 

bayg29, anddantzig42. For each instance, we have considered four cases with distinct values of 

cardinality on vertices (k), degree threshold (d), number of clusters (m) and size of the clusters (q) and 

each experiment was executed independently 10 runs. Overall, for 6 benchmark data instances, 24 

cases were tested. The obtained results include best found solution using LSA, worst time as well as 

best time to obtain the best solution are summarized in Table 1. From the results in Table 1, it is 

observed that the LSA produces the best solutions in practically considerable CPU run times. It is 

interesting to note that there are inconsistent CPU run times due to the dependence of the LSA in the 

structure of the data instance. 
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Table 1. Results of the LSA for k-DCCMST over benchmark instances. 
Instance |V| |A| k d m  q  Best 

sol. 

CPU Runtime  

Worst time Best time 

gr17 17 136 12 3 2 (7, 4) 788 0.1957 0.0848 

11 3 2 (6, 4) 667 1.1708 0.1998 

12 3 3 (5, 3, 3) 890 0.2902 0.0878 

10 3 2 (5, 4) 534 0.4208 0.0939 

gr21 21 210 16 3 3 (6, 5, 4) 1507 1.6868 0.1380 

14 3 3 (6, 4, 3) 1222 0.9207 0.3852 

11 3 2 (6, 4) 755 3.0234 1.2902 

18 3 3 (8, 5, 4) 1810 1.7523 0.9223 

gr24 24 276 14 4 2 (8, 5) 559 1.9220 0.8825 

16 3 4 (5, 4, 3,3) 874 2.2050 1.0712 

14 3 3 (6, 4, 3) 641 3.7142 1.0980 

20 3 2 (12, 7) 907 6.1070 2.0654 

fri26 26 325 13 3 3 (5, 4, 3) 494 1.1024 0.4269 

16 3 3 (7, 5, 3) 587 0.7850 0.1932 

18 3 3 (8, 6, 3) 640 1.6880 0.4135 

20 4 3 (8, 6, 5) 725 14.1942 12.0510 

bayg29 29 406 20 4 4 (8, 5, 3, 3) 902 8.1002 3.4560 

23 4 4 (8, 6, 4, 4) 1097 7.2432 4.5622 

18 3 4 (6, 4, 4, 3) 826 8.0541 4.7854 

20 4 3 (10, 5, 4) 868 8.6366 5.9432 

dantzig42 42 861 16 4 3 (6, 5, 4) 231 4.5462 3.0432 

20 4 3 (8, 7, 4) 277 15.0720 12.1022 

24 4 3 (10, 8, 5) 327 25.2280 19.0762 

24 3 3 (8, 8, 7) 343 44.8234 37.0986 

Instance − benchmark instances taken from TSPLIB [27]; |V| − cardinality of the node set in the 

given graph; |A|− cardinality of the edge set in the given graph; k – cardinality of the resultant 

spanning tree; d– degree limit on the vertices;m– number of clusters; q– size of the clusters(sum of 

the sizes of all clusters and root node equals to k); Best sol. – the optimal solution by the proposed 

LSA; Worst time – worst computational runtime (in CPU seconds) required to find the best solution; 

Best time – best computational runtime (in CPU seconds) required to find the best solution. 

 

Additionally, to measure the LSA performance, we extend the computational experiments by 

testing the LSA on randomly generated test instances. A class of 10 randomly generated small and 

medium size test instances ranging from 20 to 110 was considered for our computational experiments. 

Each class included 10 instances and overall, a total of 100 test instances with symmetric edge weights 

are generated and tested. The cost 
ij

c  takes the random values over the range [1, 300]. 

The numerical experimental results reported in Table 2 show the mean results of each size using 

LSA. Table 2 also includes the standard deviation (SD) of CPU run times. In Table 2, the average 

CPU run times for the problems of distinct sizes from 20 to 110 with distinct parametric values of k, d, 

m, and q ranges from 0.4920 seconds to 48.9804 seconds. It is observed that average CPU run times 

start increasing when the problems of size 60 or higher are tested. However, these computational 

runtimes are fairly reasonable in the sense of finding exact solutions. 

The overall results summarized in Table 1 and Table 2 shows that LSA can efficiently solve the k-

DCCMST for the small and medium size of instances within practically allowable CPU run times. For 

higher dimensional instances, the CPU run times may also be higher. 
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Table 2. Mean results of the LSA for k-DCCMST over random instances. 
SN |V| |A| k D m q NPT  CPU Runtime SD 

Min. Max. Avg. 

1 20 190 15 3 2 (8, 6) 10 0.3416 0.5012 0.4920 0.0196 

2 30 435 24 3 3 (10, 8, 5 ) 10 0.4510 0.5864 0.5266 0.0343 

3 40 780 35 4 3 (15, 10, 9 ) 10 0.7008 0.9089 0.8920 0.0232 

4 50 1225 40 4 3 (15, 15, 9) 10 0.1017 0.1290 0.1100 0.0075 

5 60 1770 45 4 4 (15, 10, 10, 9 ) 10 3.1227 5.2169 4.1658 0.0336 

6 70 2415 55 4 4 (18, 15, 13, 8 ) 10 4.0042 7.2644 6.5224 0.0750 

7 80 3160 60 5 5 (18, 17, 10, 10, 4) 10 8.2102 10.4621 9.4234 0.0620 

8 90 4005 70 6 5 (25, 15, 12, 10, 8) 10 14.0542 22.4468 16.7524 0.1556 

9 100 4950 90 6 5 (30, 25, 20, 10, 4) 10 18.1790 31.0098 25.9806 0.0942 

10 110 5995 90 6 5 (25, 25, 15, 14, 10) 10 33.0892 56.3402 48.9804 0.1964 

SN – problem number; |V| − cardinality of the node set in the given graph; |A|− cardinality of the edge set in 

the given graph; k – number of vertices in the resultant spanning tree; d– degree threshold on the nodes;m– 

number of clusters; q– size of the clusters(sum of the sizes of all clusters and root node equals to k);NPT– 

number of problems tested on each dimension;   Min. – minimum CPU runtime (in seconds) to find best found 

solution for the ten runs; Max. – maximum CPU runtime (in seconds) to find a best found solution for the ten 

runs; Avg. – mean CPU runtime (in seconds) to find a best found solution for the ten runs; SD – standard 

deviation of CPU run times.   

5.  Conclusion 

In this study, we investigated an NP-hard k-DCCMST model and presented as a zero-one integer 

linear program.  To find exact solutions for k-DCCMST, an efficient exact Lexi-search algorithm 

(LSA) was developed. The LSA performance has been shown through numerical experiments for 

some benchmark test instances. Furthermore, the mean computational results obtained over the 

randomly generated test instances with the LSA are quite promising with practically considerable CPU 

run times. Although LSA is time consuming as the problem dimension increases, the quality of the 

solutions produced by LSA is consistent. However, the LSA could be made more capable by enforcing 

data guided strategy, as well as effective bound settings, would remain as future considerations. 
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