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Abstract This paper deals with the singularly perturbed boundary value problem for a linear sec-
ond order differential-difference equation of convection-diffusion type. In the numerical treatment
of such type of problems, first we use Taylor’s approximation to tackle the term containing the
small shift. A fitting parameter has been introduced in a tridiagonal finite difference method and
is obtained from the theory of singular perturbations. Thomas algorithm is used to solve the tridi-
agonal system. The method is analysed for convergence. Several numerical examples are solved to

demonstrate the applicability of the method. Graphs are plotted for the solutions of these problems
to illustrate the effect of small shift on the boundary layer solution.
© 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction

In this paper we study a linear singularly perturbed differen-
tial-difference equation which contains a negative shift in the
convection term

& (x) + a(x)y' (x =) + b(x)y(x) =fix) on0< x <1, (1)
subject to the interval and boundary conditions
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y(x) = ¢(x), x <0,
(1) =B,

where ¢ is a small parameter, 0 < ¢ < 1 and ¢ is a shift param-
eter satisfying (¢ — da(x)) > 0 for all x € [0, 1],a(x) = M >0,
b(x),f(x) and ¢(x) are sufficiently smooth functions and f is a
constant. For a function y(x) to be a smooth solution to the
problem (1-2), it must satisfy (1) and (2), be continuous on
[0, 1] and be continuously differentiable on (0, 1). It is assumed
that h(x) < —60 < 0 where 6 is a positive constant. For small
values of ¢ the function y(x) has a boundary layer near x = 0.

Singular perturbation problems arise very frequently in
fluid mechanics, fluid dynamics, elasticity, aerodynamics,
plasma dynamics, magneto hydrodynamics, rarefied gas
dynamics, oceanography and other domains of the great world
of fluid motion. A few notable examples are boundary layer
problems, WKB problems, the modelling of steady and

)
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unsteady viscous flow problems with large Reynolds numbers,
convective heat transport problems with large Peclet numbers,
magneto-hydrodynamics duct problems at high Hartman
numbers, etc. These problems depend on a small positive
parameter in such a way that the solution varies rapidly in
some parts of the domain and varies slowly in some other parts
of the domain. So, typically there are thin transition layers
where the solution varies rapidly or jumps abruptly, while
away from the layers the solution behaves regularly and varies
slowly. An over view of some existence and uniqueness results
and applications of singularly perturbed equations may be
obtained in [1-4].

It is well known that for small values of ¢, standard numer-
ical methods for solving such problems are unstable and do not
give accurate results. Therefore, it is important to develop suit-
able numerical methods for solving these problems, whose
accuracy does not depend on the parameter value &, i.e., meth-
ods that are convergent e- uniformly. These include fitted finite
difference methods, finite element methods using special ele-
ments such as exponential elements, and methods which use a
priori refined or special non-uniform grids which condense in
the boundary layers in a special manner. Various approaches
to the design and analysis of approximate numerical methods for
singularly perturbed differential equations can be found in [5-8].

In recent years, there has been a growing interest in the
numerical study of singularly perturbed differential-difference
equations because of their applications in many scientific and
technical fields ([9] and references therein). BVPs involving dif-
ferential-difference equations are used to study signal trans-
mission with time delays in control theory [10], first exit
problems in neurobiology [11,12], the study of optically bista-
ble devices [13], in describing the human pupil-light reflex [14],
in variety of models for physiological processes or diseases
[15,16]. Lange and Miura [17,18] gave an asymptotic approach
to solve boundary value problems for second order singularly
perturbed differential-difference equations with small shifts.
Extensive numerical work had been initiated by M.K. Kad-
albajoo and K.K. Sharma in their papers [19-22]. Some
numerical aspects of this type of problems with small shifts
were considered in [23,24]. Recently, numerical integration
method has been developed by Phaneendra et al. [25] and by
Reddy et al. [26] for various classes of these problems.

The numerical method presented here comprises a fitted
finite difference scheme on a uniform mesh. Briefly, the outline
is as follows: In Section 2, we state some important properties
of the analytical solution. The finite difference discretization is
given in section 3 for boundary value problems with left end
boundary layer. Convergence analysis of numerical scheme is
discussed in Section 4. In Section 5, we discuss our method
for singularly perturbed differential-difference equations with
boundary layer on right end of the underlying interval. To
demonstrate the efficiency of the proposed method, numerical
experiments are carried out for several test problems and the
results are given in Section 6. Finally the conclusions are given
in the last section.

2. The continuous problem

Here we show some properties of the solution of (1) and (2).
We consider that the shift parameter (J) is smaller than
singular perturbation parameter (¢). Now, to tackle the term

containing delay, we use Taylor’s series as pointed out by
Cunningham ([27], pp. 222) and Tian [28] in his thesis work.
Taking the Taylor’s series expansion of the term )'(x — J),
we have

V(x—=0) =) (x) =y (x).

Thus we have from Eq. (1) the approximating equation

(6 — 8a(x))y" (x) + a(x)y/ (x) + b)y(x) = f(x), 0<x< 1,
(3)

¥(0) = $(0) = ¢o(say), »(1) = 4. (4)

Let L be the operator corresponding to Eq. (3), i.e.,

L = (e — da(x)) d—; + a(x) ddv + b(x)I.

The operator L satisfies the following continuous minimum
principle and stability estimate:

Lemma 1. Suppose n(x) be any sufficiently smooth function
satisfying n(0) = 0 and n(1) = 0. Then Ln(x) <0 for all
x € (0, 1) implies that n(x) = 0 for all x € [0, 1].

Proof. Let z € [0,1] be such that n(z) = min,p 7n(x) and
assume that n(z) < 0. Clearly z ¢ {0,1}, therefore 7'(z) =0
and 7”(z) > 0. Now we have

(e — da(z))n"(z) + a(x)7'(z) + b(x)n(z) > 0,
which contradicts our assumption, therefore we must have
n(z) = 0 and thus n(x) > 0 Vx € [0, 1].

Now we are able to show the stability of solutions of the
continuous problem (3-4). O

Ln(z) =

Lemma 2. Let y(x)be the solution of the problem (3-4), then we
have

[l < 07" 1A + max(Igsol, ).

where ||.|| is the I, norm given by ||y|| = max ¢,y (x)|.

Proof. Let us construct the two barrier functions * defined
by

Y (x) = 07 I + max(|ebo | B]) £ y(x).

Then we have

Y (0) = 07 £ + max (|, [B]) = »(0)
= 07'|If]| +max(|py, |B]) £ o since y(0) = ¢y > 0,
Y (1) = 07111+ max(lgbol, |B) + v(1)
= 07'|If]| +max (||, |B]) £ B, since y(1) =f > 0,
and we have
Ly (x) = (6 = da(x) (™ () + a(x) (* (x )) + b)Y (x)
= b(x)(07 /1l +max (I, 1)) £ Loy(x)
= b(x)(07" I/ +max (|, [B])) £ /().
We have b(x)0~"' < —1, since b(x) < —0 < 0.
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Using this inequality in the above inequality, we get

Loy (x) < (=l £4x)) + b(x) max(|¢y ], |5]) < 0
Vx € (0,1), since ||f]| = f(x).

Therefore by the minimum principle [5], we obtain ¥*(x) > 0
for all x € [0, 1], which gives the required estimate.

Lemma 1 implies that the solution is unique and since the
problem under consideration is linear, the existence of the
solution is implied by its uniqueness. Further, the boundedness
of the solution is implied by Lemma 2. [

Lemma 3. Let y(x) =y, + zo be the zeroth order approxima-
tion to the solution of (3) and (4), where y, represents the zer-
oth order approximate outer solution (i.e., the solution of the
reduced problem) and z, represents the zeroth order approxi-
mate solution in the boundary layer region. Then for a fixed posi-
tive integer i,

limy(ih) = y(0) + ($(0) ~ 0(0)) exp{~a(0)i p}

h

where p = m .

Proof. Let y,(x) be the solution of reduced problem

a(x)yp(x) +b(x)yo(x) =fx),  »o(1) = f and

zo(?) is the solution of the boundary value problem

z5(1) + a(0)z5(1) = 0,20(0) = ¢(0) — 4(0), 20(00) = 0
x
h =—.
where ¢ Y
From the theory of singular perturbations it is well known that

the zeroth order asymptotic approximation to the solution of
(3) and (4) is (cf. [4]; pp 22-26)

$(x) = o) + %w(m ~3(0)

con{- [ ()
As we are considering the differential equations on sufficiently

small sub intervals, the coefficients could be assumed to be
locally constant. Hence

$(3) % 70(x) + ($(0) — 75(0)) exp {— (%) }

So, at the nodal points we have,

) %00+ (800) -y exp{ = (250 Y b =012,
a(0

e (08) %308+ (800) -y exp { - (50 .

Therefore

limy(ih) ~ yy(0) + (¢(0) — 2,(0)) exp{—a(0)i p} for i
—0,1,2,....N

where p = Hf% (cf. [5], pp. 93-94). O

3. Exponentially fitted tri-diagonal finite difference method

Classical methods cannot be expected to perform uniformly
well over the full range of values of 4 (mesh parameter) and
¢ (perturbation parameter). Almost all uniformly convergent
schemes involve coefficients containing exponentials. In this
section, we describe an exponentially fitted tri-diagonal finite
difference method to obtain the approximate solution of the
boundary value problem (3-4 ). At present, the methods which
are accurate to O(/*) are in common use. The principal attrac-
tive feature of the second order methods is that the central dif-
ference approximations that are used ultimately lead to a
tridiagonal matrix problem which may be efficiently solved
using a direct elimination method. Methods having truncation
errors smaller than O(4?) traditionally have been developed by
the direct inclusion of higher order differences in the approxi-
mations at each mesh point. These type of methods produce a
system of equations which are not tridiagonal and hence are
more difficult to solve than O(h?) schemes. A balance must
be struck between the level of accuracy achieved and the com-
putational efficiency of the scheme.

We divide the interval [0, 1] into N equal parts with con-
stant mesh length 4. Let 0 = xg, x;, x2,...,x, = 1 be the mesh
points. Then we have x; = ih, i=0,1,2,..., N. Using central
difference formulae, the finite difference representation of
equation (3) may be written at a typical mesh point
x;, 1=0,1,2,..., N, according to

— Sy 1 , 1
M{az 64})/]4,&{”57_”53});14»171}'[

/e 12 h 6
=fi+ By, 1<i<N-1, 5
where
—(e—da)o [ 1
B— OO ) 50
W 90 +
a; (1 5 . 4
" %”5 +---p and B;is O(h") (6)

and a(x;) = a; b(x;) = bi; f(x;)) = f;9(x;)) =y, and d,u are
usual central difference operators, defined by Fox [29].
The boundary conditions become

Yo =¢(x0), yy =B ()

Here we have introduced a fitting parameter o(p) in a finite
difference scheme and it is required to find o(p), in such a
way that the solution of (5) converges uniformly in ¢ to the
solution of (3-4).

Eq. (5) provides the basis for a fourth order method,
however, at this stage, the left hand side of Eq. (5) is not
tridiagonal, because it involves the differences ud’y, and 8y,
Evidently tridiagonal estimates of ud’y, and &'y, correct to
O(K’) and O(h®), respectively, are required and these estimates
are obtained as follows: (cf. [30])

Differentiating (3) once with respect to x, then using central
difference formulae, gives a tridiagonal O(h*) approximation
for uéd’y, as follows:

" hod, ha;
3 _ t i 2,._ ! 2’,
”5y’7875a,-f"+875a,-5y’ 875a,-5y'
2 2 »
- 'udy, — ———b;udy, — ——b'y, + Ciy,, (8
o oa, OV = 5 bimdy, — b+ C, (8)
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where 0 Wi ah'f! oh*(28d, — a,)f, htaf,
1 hod ha: " (e—6a;)  12(e — da; 12(¢ — 8a;)? 6(c — da;)?
Cim g = s 8 oo e B ol o)
(& — das) (& — day) and the leading order error associated with Eq. (12) is
nd, s Wb, .
e — T g L (9) _(e—dajo s  hai 5
6(c — da;) 6(e — da;) I = 360 o + 120 no
and d'(x;) = al; b'(x;) = b f (x;) = [y (%) = Yl L (20a; — a;) (9a; — a;) 1 (! —2d,— b))
Similarly differentiating (3) twice, then using (3) and central 144 (e — day) i 0o
I(pliflference formulae, gives a O(h°) approximation for &'y, as . 2a;(ha; — 5d) F s 1 (o(d +b)(28d — a)
ollows : (e — da;) 72 (e — da;)
it nt 2a;(d; + by)
5ty = g 20d, — a;\f. ~di\d; T D) " / 3_ ...
A 5(1,-]: (e — da;) (20d; — a); - oa) + a(d! + 2b}) ¢ pd
e d—a)@od —a) (6d —2a b))
(e — 5ai)2 & — dq; Ji 3.1. Calculation of the fitting parameter
"+ b;)(20d], — a; "+ 2b) . . . .
-y ((a[ + )(5 alz @) + (a +6 ’>> uéy; We consider /& o< O(¢ — da;), i.e., 2 is finite.
— da: & — 0a; o
(6 = da) Now, taking limit as 2 — 0 in (12), using Lemma 3 and
i bf.(Z(Sa:. - czz,-) N b;" V. + Dy, simplifying, we get the constant fitting parameter as
(8 — 5(1,) &— éai 0
(10) Za(O)p[p(éa’(O) —a(0)) + 3Coth (#)]
o\p) = _ 2 / _ / _
here 2= 0) = a5 ) a0)
1 W ((20d—a)(da —a) (da! —2d—b)\ . where p === (13)
D=8 - —— 5
6 12 (g — 5ai)2 (8 — 561[)
R . , , , To obtain the solution of the original problem, we solve the tri-
+’L (20d; — a;) (“zj‘ bi) L (] +2b)) pod = (11) diagonal system (12) where ¢ is given by (13) subject to the
6 (e—0a;) (e—da;) boundary conditions (7). We used Thomas algorithm to solve

By substituting (8) and (10) in (5) and simplifying, we obtain a
finite difference scheme as follows:

Ey, ., —Fy;+Gy,,=H+Ty; i=12...,N-1, (12)
where
o’ (0d, — @) (20d, — a;)  ol*(3a! — 2d, — b))
E=0- 3 —
12(e — oa;) 12(¢ — da;)
ail (a; — 0d)  oh*(a,+ b)) (26, — a;) ol (a! + 2b))
6(c — da)’ 24(e — da;)’ 24(e — oay)
ha; Rai(a, +b;)
S 2(e—da)  12(c — da;)
F—20 - ol (5a; - a,-) (2();1{. —a) 3 ol (5[1;’ —2d}, — b,-)
6(e — da;) 6(e — da;)
Ha; (a; — éd)) 6h4b;(25a§ —a) ah*b!
3(e — da;)’ N 12(¢ — 6a;)° - 12(e - oay)
hta;b) b
C6(e—oa))’  (e—da)
B o’ (561; - a[) (2(50[2 — af) oh? ((3af.’ —2a, — b[)
T 12(c — oa;) T 12(e—oa)
ail’(a; — o)) oh*(d, + b;) (20d] — a;)
6(c — 0a;)’ B 24(e — da;)’
ol (a! + 2b)) ha Wa;(d; + b;)
 24(e—da;) | 2(e — oay) 12(¢ — da;)’

the tridiagonal system.

4. Convergence analysis

The Numerical scheme (12) can be rewritten as

(=0 +u)y; 1+ Q20+ vy (—o + Wy +g+ T =0,

(14)
where
o’
= (04, — ;) (204, — a;
u 12(8—5a,~)2(a' a;) (20d; — a;)
o’ Y , a,-hz ,
+ m (5(1,- —2da; — bi) - m ((1, 5ai)
+ Lﬁ (dl + b) (25&’ — a-) — G'h3 (d” 4 2b/)
24(e—da;)* P T4 (e = day) ;

(04 — @) (20d; — a)) W a(da] = 2d) — b)I

e 6(c — o)’ 6(c — oar)
ail’ (a; — 6d))  ob(20d, — a;)h* ob!h*
3(e — da;)’ 12(¢ — da;)° 12(e — o0a;)
abih’ bilt*
T 6(e—oa) (e—oay)’
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o(od, — ;) (20d, — a;) " o (da! — 2d; — b))’

R TR 12(z — oa))
a; (a,- — 5a§)h2 a(a; + b,—) (25(1; - a,—)h4 a(aj’ + 2b;)h3
6(c — da;)’ 24(z — da;)’ 24(c — oa)
aih a; (ll§ + bi)h3
2(e —da;)  12(e — da;)’
filt of'h*  o(28d,—a)fht  afit
o (& — da) " 12(e — éa;) 12(¢ — da;)’ 6(c — oa;)*

Incorporating the boundary conditions y, = ¢(x) = ¢(0),
Yy = f we obtain the system of equations in the matrix form as

(D+Py+M+Th)=0 (15)
where

200 —¢ 0 ... 0

-0 20 -0 ... 0

D=[-0,20,—0]=| 0

V1 Wi 0 0
175 1% wr 0

and P = [u;,vi,w;] =] 0 are tridiag-
0 - 0 Un_1 VN-1

onal matrices of order N-—1, and M=][g+

(—o+ ”1)¢(0)a6g27g37 s 8y-2,8n-1 + (=0 +Twal)lﬂT-
T(h)=O(h’) and y=[y,y,,....oya]", T(h)=I[T\, T,
...,TN,l]T,Oz[O,O,...,O]T are the associated vectors of

Eq. (15).
Let Y =[Yy, Ys,..., YN,l]T =~ y which satisfies the equation
(D+P)Y+ M =0. (16)

Lete; =Y, —y,i=1,2,...,N—1 be the discretization error
so that E = [317327,..3N,|]T: Y—y.

Subtracting Eq. (15) from Eq. (16) we get
(D+ P)E = T(h). (17)

Let |a;] < C1,|d] < Cs, |a]| < Cs, |bi] < Ky, |b)] < Ko, || < K
Let p;; be the (i,/)" element of the matrix P, then

(3G —C(20C—Ch | a(6C3=2Co—K)h | C1(C1—8Ca)h
eyt T ey T osesar T
|1’[,[+1‘ =|w|<h ) )
o(C2+K1)(26C,—C R + o(C3+2K)h? + C + C(Cy+K) )
24(s-6C))? 24(c—0Cy) 2(e=0Cy) 12(z—3C, )2
i=1,2,...,N=2,
(18a)
oBC=CLIRC = C)h | o(6Cs—2Cr—Kih 4 C1(C1-0C)h |
12(:—3C) )2 12(c—0Cy) 6(c—0C))°
Pl = | <h . i
(Cr+K))(26C,—CIP + a(C34+2K)h* + C C1(Cr+K))I
24(-6C))? 24(e—6Cy) 2(e—0Cy) 12(z—5Cy )
i=23,...,N—1.
(18b)
Thus for sufficiently small % (i.e., as & — 0), we have
_J+‘pi.i+l|<07i:1727"~7N_27 (193)
_0+‘pi,i—]|<07i:213a"~7N_1~ (19b)

Hence, the matrix (D + P) is irreducible [31].

Let S; be the sum of the elements of the i row of the matrix
(D +P), then

o(d, — a;) (20d, — a;)* ~ 0(0a] — 24} - b’

S,‘ =0 —
12(¢ — da;)’ 12(e — da;)
ai(a; — 5a;)h2 ob)(28d, — a,-)h4 ab!h’
6(e — 0a;)’ 12(¢ — da;)’ 12(e — oa;)
abh’ bk o(d+ b)) (26d, — a;)h*
6(e — oa;)* (e —da) 24(s — da;)’
o(a! + 20’ ah ai(d; + b)Y for i1
- - ori=1,
24(e —da;)  2(e—da;) 12(e — da;)’
o(d, + b;)(20d, — a;)h*  ob(20d, — a;) h* ab!h*
S,‘ == B - ) - ! o
12(e — da;) 12(¢ — day) 12(g — da;)
X 2
__abih - bl v i—23. N-2,
6(e — da;)’ (e —da)
0'((351; — a,-) (2(351; — a,-)h2 a(éaj’ —2a, — b,-)h2
S, =0 ; -
12(e — da;) 12(g — da;)
ai(a; — 5(1;)/12 ob)(26d, — a)h'
6(s — da;)’ 12(¢ — da;)’
o(d, + b;) (20d, — a;)h* ab!'h*
24(e — da;)’ 12(e — da;)
ol +26)1°  abi’ ah
24(6 — 561,') 6(3 — 541]-)2 2(8 — (361,)
e (a4 b))’
__bh +a(a,+ )2 fori=N-1.
(e —da;)  12(e — da;)
Let
Cy = min |a|, Cj= max |q|, Cr= min |d],
1<i<N—1 1<i<N—1 1<i<N—1
Cy= max |d|, Cy = min |d/|, C;= max |d|,
1<i<N=1 I<i<N-1 1<i<N=1
Ky = min |b], K= max |b|, Ky = min |bl],
I<i<N-1 I<i<N-1 1<i<N-1
K; = max |b)|, Ky = min |b/|, Kj= max ||
1<i<N—1 1<i<N—1 ‘ 1<i<N—1

Then

0<Cr <G, 0<Cr <G KC, 0<Cr <G,
0<K;» <K <Kj, 0<Ky <K<K, 0<K3y <K;<K;.

For sufficiently small 4, (D + P) is monotone [31,32]. Hence
(D + P)"" exists and (D + P)' > 0.
From the error Eq. (17) we have || E|| < ||[(D + P)"||.|| 7]
For sufficiently small 4, we have

h4
P> ———————[-20(20C, — C))K, — 2(e — 0Cy)aK:
2= ocyy P0G~ CD = 2le = 0Caks
—4C K> + (Cy + K1) (26C, — Cy)hY]
K
> ori=1, 20a
24z —oC,) 2 4 (20a)

where Ql = L*20’(25C2 — C])Kz — 2(8 7(3C1)0'K3 — 4C1K2+
a(Cy + K1) (26C; — C)h*|
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nt a(x) < M < 0,b(x) < 0 throughout the interval [0, 1], where
Si > 12(¢ — da;)’ [0(C2 + K1)(20C2 = C1) — 0(20C, M is some negative constant, the boundary value problem
3) and (4) displays a boundary I atx = 1.
— C)Ks — a6 — 6C1)Ks — 201 K] (3) and (4) displays a boundary layer at x
it Lemma 4. Let y(x) =y, + zo be the zeroth order approxima-
S i=2,3,...,N—2 20b : 0T 20 Ppro;
> 12(¢ — 6C1)2 Q, Jfori Ty ’ (20b) tion to the solution of (3) and (4), where y, represents the zeroth
order approximate outer solution (i.e., the solution of the
where 0, = [0(C, + K,)(20C;, = C1)  —0(20C, = C1)K> — 0 reduced problem) and zo represents the zeroth order
(&= 0CK: = 2C1 Ky approximate solution in the boundary layer region. Then for a
I . fixed positive integer i,
S,' >72[—20'K2(20C2 — Cl) +G(C2 + Kl)(25C2 — Cl)
24(e—da;) 1
4 . s _ ., _ s
vt stk o et e 0 =000+ (8o exp {a) (=g o)}
24(8 — ()C]) h
where  Q, = [~20K,(25C, — C)) + 0(C;  +K,)(25C, — Cy)— where p = 5
20'(8 — 5C|)K3 - 4C1K2]
-1 N -1
Let (D + P);; be the (i, k)™ element of (D + P)"" and we Proof. The proof is based on asymptotic analysis (cf. [4]; pp
define 22-26), and similar to the proof of Lemma 3. [
N-1 . . . .
||(D+P)71H — ma Z(D+P) /1 and | T(h)|| = max |T}. Applying the same procedure as in section 2 and using
I<ISN-14— H I<ISN~-1 Lemma 4, we will get the tridiagonal system (12) with fitting
parameter as
Since (D+P);; >0 and Y, /(D+P);;-Sc=1 for
i=1,2,... N1, 2a(0)p[p(5a (0) — a(0)) + 3cozh(“<‘>f')]
We have, ") = T a(0) — al0)) 20 (0) — a(0)
I 24(e—8C1)
(D+P ) S/( < hin for k=1, and it can be solved easily by Thomas Algorithm.
1 -oC
(D+P);, S, < %Q@ fork=N-1 6. Numerical results
1\ 2 1 12(6-6Cy )2
Further S(D+P), < min 5 S & for T4 demonstrate the applicability of the method we consider
i=1,2,...,N—1. 2<kaN=2 three boundary value problems of singularly perturbed linear
From the error Eq. (17), using Egs. (20a)-(20c) we get differential difference equations exhibiting boundary layer at
5C the left end of the interval [0,1], and two problems exhibiting
|E| = %@1 +20, + 0;] x 0(/1(‘) = (hz), boundary layer at the right end of the under lying interval.

This establishes the convergence of the finite difference scheme
(12).

5. Right end boundary layer problems

Finally, we discuss our method for singularly perturbed two
point boundary value problems with right-end boundary layer
of the wunderlying interval. When 0 < (¢—da(x)) <1,

These problems were widely discussed in the literature.
Since the exact solutions of the problems for different values
of 6 are not known, the maximum absolute errors for the
examples are calculated using the following double mesh
principle

Ey = (glzix|yl — 13N

The maximum absolute error is tabulated in the form of Tables
-5 for considered examples with & = (0.5)¢. The graphs of the

Table 1 The maximum absolute errors for example 1 when é = 0.5¢.
& N
100 200 300 400 500

27! 4.4909e—006 1.1368e—006 5.0729e—007 2.8592e—007 1.8319e—007
272 4.3667e—005 1.1008e—005 4.9055e—006 2.7630e—006 1.7698e—006
273 1.5708e—004 3.9549¢—005 1.7618e—005 9.9219¢—-006 6.3544e—006
274 4.0146e—004 1.0096e—004 4.4963e—005 2.5319e—005 1.6215e—005
273 9.1663e—004 2.2973e—004 1.0224e—004 5.7552e—005 3.6853e—005
276 2.0105e—003 4.9626e—004 2.2015e—004 1.2379e—004 7.9234e—005
277 4.5289e—003 1.0566e—003 4.6323e—004 2.5936e—004 1.6562e—004
278 1.0878e—002 2.3354e—003 9.8549e—004 5.4323e—004 3.4412e—004
20 2.6303e—002 5.5967¢—003 2.3168e—003 1.1895¢—003 7.3598e—004
2710 5.7290e—002 1.3587e—002 5.4773e—003 2.8384e—003 1.7066e—003
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Table 2 The maximum absolute errors for example 2 when 6 = 0.5¢.

€ N
100 200 300 400 500

27! 4.8349¢—006 1.2130e—006 5.3973e—007 3.0378e—007 1.9448e—007
272 1.1017e—005 2.7675e—006 1.2319e—006 6.9346e—007 4.4402e—007
273 2.3287e—005 5.8531e—006 2.6059e—006 1.4671e—006 9.3941e—007
24 4.7328e—005 1.1891e—005 5.2939¢—006 2.9804e—006 1.9085e—006
273 9.5223e—005 2.3852e—005 1.0614e—005 5.9743e—006 3.8253e—006
P 1.9381e—004 4.7941e—005 2.1278e—005 1.1966e—005 7.6586e—006
277 4.0513e—004 9.7643e—005 4.2924e—005 2.4052e—005 1.5367e—005
28 1.0492e—003 2.0427e—004 8.8473e—005 4.9008e—005 3.1117e—005
2~ 2.4101e—003 5.3064e—004 6.2934e—004 1.0256e—004 6.4726e—005
2710 5.3382e—003 1.2222e—003 6.2225¢—004 2.6683e—004 1.6907e—004

Table 3 The maximum absolute errors for example 3 when 6 = 0.5¢.

€ N
100 200 300 400 500

27! 1.9655e—006 4.9026e—007 2.1772e—007 1.2242¢—007 7.8321e—008
272 1.9179¢—006 4.7581e—007 2.1092e—007 1.1850e—007 7.5775e—008
2 8.3118e—007 2.1843e—007 9.8653e—008 5.5936e—008 3.5971e—008
24 1.0923e—005 2.7568e—006 1.2293e—006 6.9264e—007 4.4374¢—007
273 3.9166e—005 9.8357e—006 4.3813e—006 2.4672e—006 1.5801e—006
276 1.0907e—004 2.7250e—005 1.2118e—005 6.8177e—006 4.3662¢—006
277 2.6973e—004 6.6690e—005 2.9444e—005 1.6573e—005 1.0595e—005
P 6.7411e—004 1.5238e—004 6.6895e—005 3.7323e—005 2.3755e—005
270 2.0469e—003 3.5612e—004 1.5042e—004 8.1365e—005 5.1417e—005
210 6.7449¢—003 1.0583e—003 3.8111e—004 1.8324e—004 1.1370e—004

Table 4 The maximum absolute errors for example 4 when 6 = 0.5¢.

€ N
100 200 300 400 500

27! 7.6419¢—006 1.9149e—006 8.5173e—007 4.7929¢—007 3.0680e—007
272 1.9827¢—005 4.9725¢—006 2.2124e—006 1.2452e—006 7.9717¢—007
273 3.2339¢—005 8.1145¢—006 3.6108e—006 2.0324e—006 1.3013e—006
24 9.0164e—005 2.2669¢—005 1.0093e—005 5.6824e—006 3.6386e—006
273 2.6106e—004 6.5660e—005 2.9238e—005 1.6462e—005 1.0541e—005
276 6.0174e—004 1.5124e—004 6.7341e—005 3.7916e—005 2.4280e—005
277 1.3071e—003 3.2652e—004 1.4521e—004 8.1723e—005 5.2322e—005
P 2.8233e—003 6.8815¢—004 3.0442e—004 1.7099e—004 1.0938e—004
2~ 1.5352e—002 1.4658e—003 6.3557e—004 3.5429e—004 2.2579e—004
2~ 1.5922e—002 7.6345¢—003 1.3748e—003 7.4749e—004 4.7012e—004

Table 5 The maximum absolute errors for example 5 when 6 = 0.5¢.

€ N
100 200 300 400 500

27! 2.0941e—006 5.2369¢—007 2.3277e—007 1.3093e—007 8.3798e—008
272 7.5810e—006 1.8971e—006 8.4341e—007 4.7449¢—007 3.0369¢—007
2 2.3392e—005 5.8605e—006 2.6064e—006 1.4666e—006 9.3882e—007
24 6.0192e—005 1.5093e—005 6.7148e—006 3.7789e—006 2.4192e—006
273 1.3524e—004 3.3922e—005 1.5094e—005 8.4949e—006 5.4386e—006
26 2.8392e—004 7.1183e—005 3.1671e—005 1.7825e—005 1.1412e—005
277 5.8053e—004 1.4514e—004 6.4545e—005 3.6321e—005 2.3252e—005
278 1.1856e—003 2.9339e—004 1.3020e—004 7.3213e—005 4.6853e—005
PR 6.4097¢—003 5.9656e—004 2.6278e—004 1.4735e—004 9.4174e—005
P 5.3993e—003 3.3651e—003 5.3829¢—004 2.9911e—004 1.9027e—004
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solution of the considered examples for different values of shift
parameter are plotted in Figs. 1-10 to examine the effect of
small shift on the boundary layer behaviour of the solution.
Our results are compared with the results given in [17,20,21].
It has been observed that the proposed method gives high
accurate numerical results and higher order of convergence
than the upwind finite difference scheme.

The numerical rate of convergence for all the examples have
been calculated by the formula

—§=0.00
-=-8=0.5¢
""" 6=0.8¢
=}
2
E ]
=}
|75}
= ]
2
5 ]
E
=
Z J
1 . . . .
0 0.2 0.4 0.6 0.8 1
X
Figure 1  The numerical solution of example 1 with ¢ = 0.1.

3 : : : :
—3=0.00
-=-5=0.5¢
i
- 2.5_:' 5=0.8¢
.2 E
B
[}
]
= 2 1
5
o)
=]
=
Z 15 .
1 ‘ ‘ ‘ ‘
0 02 0.4 0.6 0.8 1

X

Figure 2 The numerical solution of example 1 with ¢ = 0.01.

0.8 —5=0.00
=}

e -=-8=0.5¢

_g N ™ < 8=0.8¢
0]
<
_Q

5 04 ]
g
=1
z

0.2 1

0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

X

Figure 3  The numerical solution of example 2 with ¢ = 0.1.

R — log |Ey/Ean|
= — 2N/ N
log2
and it has been observed that for all the examples cited below
Ry ~ 2.

Example 1 (17, pp. 254). &(x) + )y (x—90) +y(x) =0,
subject to the interval and boundary conditions y(x) =1
—-0<x<0,y(1)=1

’

1 T T T T
08 —38=0.00
- -=+8=0.5¢
R N < 5=0.8¢
=
S 06 1
%
=
-2
s 04 ]
g
E]
Z
02 1
0 . . . .
0 0.2 0.4 0.6 0.8 1
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Figure 4 The numerical solution of example 2 with ¢ = 0.01.
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Figure 5 The numerical solution of example 3 with ¢ = 0.1.

—8=0.00
-=-8=0.5¢
L 3=0.8¢
=
S
E
S 0.6 i
w
=
2
S 04 i
£
=
z.
0.2 i
0 - - -
0.4 0.6 0.8 1
X

Figure 6 The numerical solution of example 3 with ¢ = 0.01.
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Numerical Solution
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Figure 7 The numerical solution of example 4 with ¢ = 0.1.
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Figure 8 The numerical solution of example 4 with ¢ = 0.01.
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Figure 9 The numerical solution of example 5 with ¢ = 0.1.

Example 2. &)’ (x) + (1 +x)y/(x — ) —e¥y(x) =1, subject
to the interval and boundary conditions y(x) =0;—0 <
x<0,y(1)=1.

Example 3 (20, pp. 699). &”(x) + 0.25)'(x — ) — y(x) =0,
subject to the interval and boundary conditions y(x) = 1; -6
<x<0,p(1)=0.

Example 4 (20, pp. 707). &"(x) — y'(x — d) + y(x) = 0, sub-
ject to the interval and boundary conditions y(x) = 1; -0 <
X <0,y(1) = —1.

9
1
—8=0.00
09} -=-3=0.5¢
""" 8=0.8¢
§ osf
E
3 07t
3
‘= 06f
Q
- ;
Zz 05¢f ::-'r E
)
04 <) |
0 0.2 0.4 0.6 0.8 1
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Figure 10  The numerical solution of example 5 with ¢ = 0.01.

Example 5 (21, pp. 26). &"(x) — e*y'(x — ) — y(x) = 0, sub-
ject to the interval and boundary conditions y(x) = 1; -0 <
x<0,y(1)=1.

7. Conclusions

In this paper an exponentially fitted tridiagonal finite differ-
ence method is presented for solving boundary value problems
for singularly perturbed differential-difference equations
containing a small negative shift. The method is developed
for problems with shift parameter smaller than the perturba-
tion parameter. The method is shown to have almost second
order parameter uniform convergence. An extensive amount
of computational work has been carried out to demonstrate
the proposed method and to show the effect of shift parameter
on the boundary layer behaviour of the solution. The maxi-
mum absolute error is tabulated in the form of Tables 1-5
for the considered examples. The graphs of the solution of
the considered examples for different values of delay are plot-
ted in Figs. 1-10 to examine the effect of shift on the boundary
layer of the solution. From the figures, we observed that as the
shift parameter increases, thickness of the layer decreases in
the case when the solution exhibits layer behaviour on the left
side while it increases in the case when the solution exhibits
boundary layer behaviour on the right side of the interval.
On the basis of the numerical results of a variety of examples,
it is concluded that the present method offers significant
advantage for the linear singularly perturbed differential
difference equations.
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