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a b s t r a c t

Although significant research has gone into the field of electrical discharge machining (EDM), analysis

related to the machining efficiency of the process with different electrodes has not been adequately

made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential

electrode material due to its high melting point temperature and good electrical conductivity. In view of

this, the present work attempts to compare the machinability of copper, graphite and brass electrodes

while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect

data for the study and analyze effect of machining parameters on performance measures. The important

performance measures selected for this study are material removal rate, tool wear rate, surface roughness

and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge

current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental

analysis, it is observed that electrode material, discharge current and pulse-on-time are the important

parameters for all the performance measures. Utility concept has been implemented to transform a mul-

tiple performance characteristics into an equivalent performance characteristic. Non-linear regression

analysis is carried out to develop a model relating process parameters and overall utility index. Finally,

the quantum behaved particle swarm optimization (QPSO) and particle swarm optimization (PSO)

algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate

the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting

obtained through both the approaches is validated by conducting confirmation experiments.

� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nickel based super alloys such as Inconel 718 and Inconel 713

are the class of metallic materials with excellent characteristic of

toughness and resistance to high temperature, oxidization and cor-

rosion. The high strength-to-weight ratio and corrosion resistance

properties possessed by these alloys have led to a wide and diver-

sified range of successful applications in aerospace and other

industrial applications. Their capability to sustain mechanical

strength at elevated temperature causes difficulty in machining

with conventional machining processes. Due to these difficulties,

it is difficult to machine Inconel 718 by conventional machining

processes using conventional tool materials. However, machining

of composites, super alloys, and ceramics can be accomplished

with ease by the use of non-conventional machining process like

electrical discharge machining (EDM). In today’s manufacturing

scenario, EDM contributes a major share in manufacturing auto-

mobile parts, intricate part shapes, complex shaped dies and

moulds and other industrial usages. In EDM process, the material

removal takes place owing to a series of spark discharges through

enormous amount of heat generation between the electrodes. The

heat generated is enough to vaporize and melt material from both

the electrodes. The molten material is flushed by dielectric fluid

from the crater cavity in from of dirt and debris and the replica

of the tool is transferred onto the work surface. However, accuracy

and versatility of the process, economical machining and accurate

prediction of performance measures are the major concerns for

tool engineers and researchers till now.

Extensive literature review suggests that different studies on

EDM focus on improvement/modification of the process to
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enhance certain performance measures, control circuits, analysis

on the microstructure of the machined surface and effect of

machining parameters. Literature also reveals that only a few con-

trollable machining parameters viz., pulse-on-time, discharge cur-

rent and open circuit voltage mostly influence the performance

measures of the EDM process [1–3]. In EDM copper and brass are

frequently used electrode material. However, graphite can be used

as a potential electrode material due to its high melting point tem-

perature and good electrical conductivity. The temperature resis-

tance property makes graphite a suitable electrode material.

However, studies on analysis of machining efficiency of the process

with variety of electrodes are extremely scarce in literature [4–5].

Moreover, the studies are limited to application of commonly used

work-tool pairs, machines and shop conditions. Even though opti-

mization of multiple machining characterises is beneficial from

practical point of view, little efforts have been made in this direc-

tion. Few studies report application of evolutionary algorithm like

particle swarm optimization (PSO) to obtain the best process states

of EDM process [6–8]. Due to the simple concept, easy implemen-

tation, and rapid convergence, PSO has gained much attention and

been successfully applied to a wide range of applications such as

job scheduling, power and voltage control, fiber-reinforced lami-

nates problems [9–14]. Many studies report that QPSO with its glo-

bal search ability can perform better than PSO [15–18]. However,

past studies hardly provide any report to compare the effectiveness

of both the algorithms in terms of obtaining the optimal level of

machining parameters for multiple performance characteristics

of EDM process.

In view of this, the present work focuses on experimental inves-

tigation on machinability of Inconel 718 super alloy in EDM pro-

cess for the multiple performance characteristics viz. material

removal rate (MRR), tool wear rate (TWR), surface roughness

(SR), and radial overcut (RO) which are functions of process vari-

ables viz., open circuit voltage, discharge current, pulse-on-time,

duty factor, flushing pressure and electrode material. The experi-

mental architecture is planned as per Taguchi’s L27 orthogonal

array to extract maximum information from the study with limited

number of experimental runs. Utility concept is used to convert the

multiple performance measures into an equivalent single perfor-

mance measure by calculating the overall utility index. Non-

linear regression analysis is conducted to develop a valid empirical

model relating process parameters and overall utility index. The

model is further used as an objective function in quantum behaved

particle swarm optimization (QPSO) and particle swarm optimiza-

tion (PSO) algorithm to obtain optimal level of cutting parameters.

The optimal solutions so obtained are compared to justify good-

ness of the algorithm in solving such a machining problem. Finally,

the optimal levels of cutting parameters obtained in both the algo-

rithms are validated through confirmation test. This model will

help in selecting ideal process states during actual machining

and increasing productivity of the process for tool engineers.

2. Literature review

In the past two decades, electrical discharge machining has

emerged as a subject of extensive research among the non-

conventional machining process. To improve the machining effi-

ciency of the process various technological, statistical and numer-

ical studies have been reported. Lee and Li [4] have experimentally

analyzed the effect of process variables such as electrode material,

polarity, discharge current, open circuit voltage, pulse duration,

pulse interval and flushing pressure on material removal rate, rel-

ative wear ratio and surface roughness of tungsten carbide work

piece. Prabhu and Vinayagam [19] have proposed a grey relational

analysis and fuzzy logic approach for simultaneous optimization of

several performance characteristics of the process when dielectric

fluid is mixed with carbon nano-tube (CNT). Dewangan and Biswas

[20] have adopted Taguchi’s experimental design combined with

grey relational analysis for optimization of multiple responses such

as material removal rate and tool wear rate of EDM using AISI P20

tool steel as the work piece material and copper as electrode.

Meena et al. [21] have analyzed the effect of various flushing

conditions on the accuracy of deep holes drilled by micro-EDM.

Beri et al. [22] have concluded that improved performance charac-

teristics can be achieved with the use of copper-tungsten (CuW)

electrode produced through powder metallurgy route in compar-

ison with conventional copper electrode. Similarly, Senthilkumar

and Reddy [23] have demonstrated that copper composite with

40% boron carbide reinforcement developed through powder met-

allurgy route exhibits better metal removal rate (MRR) and tool

removal rate (TRR) compared to conventional copper electrode.

Wang and Han [24] have proposed a three-dimensional model of

flow field with liquid, gas and solid phases for the movement of

debris and bubbles within the machining gap in EDM. The model

is validated through experimentation with conclusion that bubble

expansion becomes strong with the increase of the discharge cur-

rent and pulse-on-time. Shen et al. [25] have investigated effect of

different machining parameters such as inter electrode distance,

pulse duration, polarity and electrode shape on energy distribution

using titanium alloy as work piece. The results show that energy

distribution characteristics are largely influenced by the power

density applied on the electrodes.

Tripathy and Tripathy [26] have used Taguchi experimental

design in combination with TOPSIS and Grey Relational Analysis

(GRA) to optimize the process variables such as powder concentra-

tion, peak current, pulse on time, duty cycle and gap voltage on

multiple responses such as MRR, TWR, EWR and SR. Talla et al.

[27] have used aluminum powder in kerosene dielectric to improve

the machining efficiency of the EDM process. The study showed an

increase in MRR and improvement in surface quality of the

machined surface compared to conventional EDM. Talla et al.

[28] have studied the effect process parameters powder concentra-

tion, peak current, pulse on time and duty cycle on two perfor-

mance measures viz. MRR and SR. The study revealed that the

powder concentration of 6 g/L gives the best result to maximize

MRR and minimize surface roughness. Many studies have recently

reported that controlled cryogenic treatment of electrode and work

piece materials improves the machining characteristics in EDM as

well as wire-EDM for various work-tool combinations [29–32].

Numerical models have been proposed to study the process

behavior to reduce the cost of experimentation and machining

time. In this direction, Paramashivan et al. [33] have proposed a

mathematical model which quantifies the aerosol generated from

the die sinking EDM process while machining steel work piece

with copper electrode. Joshi and Pande [34] have suggested a

numeral model for EDM for prediction of performance characteris-

tics such as material removal rate and tool wear rate using finite

element method. The proposed model is also validated through

experimentation by the same researchers [35]. Mohanty et al.

[36] have proposed a non-dominated sorting genetic algorithm

(NSGA-II) for multi-objective optimization of EDM parameters

using a thermo-structural model. Chen and Mahdivian [37] have

suggested a theoretical model to estimate the material removal

rate and surface quality considering process parameters like dis-

charge current and pulse duration. The theoretical results have

shown to be in good agreement with experimental data.

In recent times, artificial intelligence (AI) techniques are exten-

sively applied for process modelling and optimization of the pro-

cess [38–41]. Padhee et al. [42] have used non-dominated sorted

genetic algorithm (NSGA-II) to optimize MRR and surface rough-

ness for machining parameters such as concentration of silicon
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powder in the dielectric fluid, pulse-on-time, duty cycle and peak

current. Pradhan and Biswas [43] have proposed neuro-fuzzy and

neural network models for prediction of material removal rate, tool

wear rate and radial overcut when AISI D2 steel is machined with

copper electrode. Pradhan and Das [44] have proposed an Elman

network for the prediction of material removal rate for EDM pro-

cess. Yang et al. [45] have employed simulated annealing in con-

junction with artificial neural network for optimization of

materials removal rate and surface roughness.

Critical review of past studies suggests that a good amount of

work is devoted towards technological enhancement and statisti-

cal and numerical modelling to improve and analyse EDM process.

However, reports to analyse the machining efficiency of the pro-

cess with different electrode materials seems to be less. Further-

more, it is also observed that limited number of attempts have

been made to machine a relatively low conductive material like

Inconel 718 which has a diversified application in aerospace engi-

neering. Inconel 718, an aerospace material has abundant usage in

manufacturing of components for liquid fueled rockets, rings and

casings, sheet metal parts for aircraft, land-based gas turbine engi-

nes, cryogenic tank fasteners and instrumentation parts. Literature

review reveals that few studies have been reported to obtain the

optimal parametric setting for EDM process applying PSO algo-

rithm [6–8]. Numerous studies reported that QPSO with the global

search ability can achieve better results than PSO [15–18]. How-

ever, it is also observed that no attempt has been reported in appli-

cation of utility concept in combination with QPSO to obtain the

best parametric setting for EDM. Therefore, there exist a vital need

to compare and check the effectiveness of both the algorithms to

find the optimal level of machining parameters.

3. Utility concept

According to Walia et al. [46] the overall usefulness of a process

can be denoted by a unified index called as utility which is the sum

of the individual utilities of various quality characteristics of the

process. If Vr is the measure of effectiveness of an attribute (or

quality characteristic) r and there are n attributes estimating the

outcome space, then the joint utility function can be expressed

as [46–47].

UðV1;V2; :::::VnÞ ¼ fðU1ðV1Þ;U1ðV1Þ; . . . . . .UnðVnÞÞ ð1Þ

where Ur(Vr) is the utility of the rth attribute.

If the attributes are independent, the overall utility function is

the sum of individual utilities and can be calculated as

UðV1;V2; :::::VnÞ ¼
Xn

r¼1

UrðVrÞ ð2Þ

After assigning weights to the attributes, the overall utility

function can be calculated as

UðV1;V2; :::::VnÞ ¼
Xn

r¼1

WrUrðVrÞ ð3Þ

where Wr is the weight assigned to the attribute r.

In this work, there are four attributes and equal weight i.e. 0.25

has been assigned to each attributes. The utility value for each

quality characteristic is estimated by a preference scale. The

acceptable and the best value of the quality characteristic are

assigned two arbitrary numerical values 0 and 9 (preference num-

ber) respectively and the preference number Pr can be expressed

on a logarithmic scale as

Pr ¼ A� log
Xr

X0
r

ð4Þ

where Xr represents quality characteristic of any value and X0
r rep-

resents just an acceptable value of quality the characteristic r and A

has been used as a constant. Here, value of A can be calculated by

equation 5 and if Xr = X⁄, then preference number will be 9 where

X⁄ is the optimal or best value.

A ¼
9

log X�

X0
r

ð5Þ

The overall utility index can be calculated as

U ¼
Xn

r¼1

WrPr ð6Þ

Subject to condition that
Xn

r¼1

Wi ¼ 1 ð7Þ

In this work, overall utility index servers as the single perfor-

mance measure objective value for optimization which has been

accumulated from utility values of individual performance

characteristic.

4. Particle swarm optimization

Particle swarm optimization (PSO) algorithm, originally intro-

duced by Kennedy and Eberhart [9], is a population based evolu-

tionary computation method influenced by the behavior of

organisms such as bird flocking and fish schooling. In PSO, each

member is called particle and each particle moves around in the

search space with a velocity which is continuously updated by

the particle’s individual contribution and the contribution of the

particle’s neighbors or the contribution of the whole swarm. The

members of the whole population are maintained during the

search procedure so that information can be socially shared among

all individuals to direct the search towards the best position in the

search space. Each particle moves towards its best previous posi-

tion and towards the best particle in the whole swarm called the

gbest based on the global neighborhood. Each particle moves

towards its best previous position and towards the best particle

in its restricted neighbourhood based on the local variant so called

the pbest model. PSO is basically characterized as a simple heuristic

of well-balanced mechanism with flexibility to progress and adjust

to both global and local exploration capabilities. All the particles

tend to converge to the best solution rapidly even in the local ver-

sion in most cases as compared to genetic algorithm. Due to the

simple concept, easy implementation, and rapid convergence,

PSO has gained much attention and been successfully applied to

a wide range of applications viz. as job scheduling, power and volt-

age control problems [11–12].

In PSO, the initial population is generated randomly and param-

eters are initialized. After evaluation of the fitness function, the

PSO algorithm repeats the following steps iteratively:

� Personal best (best value of each individual so far) is updated if

a better value is discovered.

� Then, the velocities of all the particles are updated based on the

experiences of personal best and the global best in order to

update the position of each particle with the velocities currently

updated.

After finding the personal best and global best values, velocities

and positions of each particle are updated using Eqs. (8) and (9)

respectively.

vt
ij ¼ wt�1vt�1

ij þ c1r1ðp
t�1
ij � xt�1

ij Þ þ c2r2ðg
t�1
ij � xt�1

ij Þ ð8Þ
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xt
ij ¼ xt�1

ij þ vt
ij ð9Þ

where vt
ij represents velocity of particle i at iteration t with respect to

jth dimension (j = 1,2,......n). pt
ij represents the position value of the ith

personal bestwith respect to the jth dimension gt
ij represents the glo-

bal best (gbest) i.e. the best of pbest among all the particles. xt
ij is the

position value of the ith particle with respect to jth dimension. c1
and c2 are positive acceleration parameters which provide the cor-

rect balance between exploration and exploitation and are called

the cognitive parameter and the social parameter respectively. r1
and r2 are the random numbers provide a stochastic characteristic

for the particles velocities in order to simulate the real behavior of

the birds in a flock. The inertia weight parameter w is a control

parameter which is used to control the impact of the previous veloc-

ities on the current velocity of each particle. Hence, the parameter w

regulates the trade-off betweenglobal and local exploration ability of

the swarm. The recommended value of the inertiaweightw is to set it

to a large value for the initial stages in order to enhance the global

search of the search space and gradually decrease it to get more

refined solutions facilitating the local search in the last stages. In gen-

eral, the inertia weight is set according to the following Eq. (10) [48].

w ¼ wmax �
wmax �wmin

itermax

� iter ð10Þ

where wmin and wmax are initial and final weights and itermax is the

maximum number of iterations and iter is the current iteration

number.

4.1. Quantum behaved particle swarm optimization (QPSO)

The main drawback of the PSO algorithm is that it does not

assure global convergence because it is trapped into local optima

although it converges fast and loose its exploration–exploitation

ability. The reason being that the velocity vectors assume very

small values as iterations proceed. Clerc and Kennedy [49] have

presented that PSO is capable to find a reasonable quality solution

much faster than other evolutionary algorithms but it cannot

improve the quality of the solution as the number of generations

is increased. If pbest and gbest of a particle stay very close to each

other then it becomes inactive in the swarm. In other words, when

ðpt�1
ij � xt�1

ij Þ and ðgt�1
ij � xt�1

ij Þ are both small in Eq. (8) and at the

same time vt
ij has a small value then this particle loses its explo-

ration ability. This could happen at early stages for the gbest particle

and as a consequence the PSO is trapped in local minima. QPSO is

proposed and stimulated to avoid the drawbacks of original PSO. In

the quantum PSO, the state of a particle is described by wave func-

tion Wðx; tÞ instead of velocity. The difference between QPSO and

classical PSO is the dynamic behavior of the particle i.e. the exact

values of x and v cannot be determined simultaneously in QPSO.

The probability of the particle’s appearing in position x can be

learnt from probability density function jWðx; tÞj2. The probability

density function is used to estimate the probability distribution

function of the particle’s position.

Employing the Monte-Carlo method, the particle position is

updated according to the following equations,

Xj
i;ðtþ1Þ ¼ Pj

i;ðtþ1Þ � b � ðM
Best

j
t

� Xj
i;tÞ � lnð1=uÞ if kP 0:5 ð11Þ

Xj
i;ðtþ1Þ ¼ Pj

i;ðtþ1Þ þ b � ðM
Best

j
t

� Xj
i;tÞ � lnð1=uÞ if k < 0:5 ð12Þ

Pj
i;ðtþ1Þ ¼ h � p

Best
j

i;t

þ ð1� hÞ � g
Best

j
t

ð13Þ

M
Best

j
t

¼
1

N

XN

i¼1

P
Best

j

i;t

ð14Þ

where Pi is the local attractor, P
Best

j

i;t

is the best positions which the

of particle i at iteration t with respect to jth dimension has achieved

so far and g
Best

j
t

is the best position of all particles in current gener-

ation. M
best

j
t

is the mean best position which is defined as the mean

of all the best positions of the population in current generation,

k;u;h k;u;h are random numbers distributed uniformly on [0,1]. b

in Eqs. (11) and (12) is the tuning parameter to control the conver-

gence speed of the particle and is called as contraction expansion

(CE) coefficient. Value of b is tuned from 1 to 0.4 for initially accom-

modating a more global search with an objective to terminate the

QPSO algorithm with a better local search.

The b value is adaptively allocated as per the Eq. (15)

b ¼ bmax � ½fðbmax � bminÞ=iterationmaxg � iter� ð15Þ

where bmax is the initial contraction expansion factor value, bmin is

the final contraction expansion factor value, iter is the current iter-

ation number and iterationmax is the maximum number of itera-

tions. The termination criterion for the algorithm is the maximum

number of iterations. The pseudo code for the search procedure of

the QPSO given below. Fig. 1 shows the flow chart of the QPSO

algorithm.

The pseudo code of proposed QPSO

Initialize the population size, the current position and the

dimensions of the particles;

While (termination condition i.e. maximum Iteration)

Do

t=t+1;

Compute the mean best position MBest by Eq. (14);

Select a value of b by Eq. (15);

for i=1 to population size

for j=1 to dimensions of the particles

If kP 0:5

else

Xj
i;ðtþ1Þ

¼ Pj
i;ðtþ1Þ

þ b � ðM
Bestjt

� Xj
i;t
Þ � lnð1=uÞ;

end if

end for

Evaluate the fitness value of Xi;ðtþ1Þ, that is the objective

function

Update the pBesti;t
and gBesti;t

end for

end do

end

5. Experimental details

In this work, Taguchi method, a powerful tool for parametric

analysis of the performance characteristics is used to extract max-

imum information with least number of experimental runs. Com-

puter numerical control (CNC) die sinking EDM machine

(ECOWIN PS 50ZNC) with servo-head (constant gap) is used for

conducting the experiment. Paraffin oil of specific gravity of

0.820is used as dielectric fluid with positive polarity for electrode

with side flushing to conduct the experiments. Inconel alloy 718, a

nickel–chromium alloy characterized by high-strength, high

corrosion-resistant, good tensile and high creep rupture strength

has been used as the work material in this study. The chemical

composition of the materials is given in Table 1. Table 2 shows

the thermal property of the work material. The X-ray diffraction

plot of the Inconel 718 sample used in the present study is shown

in Fig. 2. It clearly shows that there are no peaks other than c-
phase (austenite) phase which corresponds to face-centred cubic
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Ni-based c-phase of Inconel 718 super alloy. The sharp peak of the

diffraction patterns reveals the crystalline nature of the alloy.

In EDM process, the tool has to deal with a series of spark dis-

charges. Hence, the tool must be of a good conductive material

with high melting temperature, ability to withstand against high

temperature and dissipate the heat. Therefore, commercially avail-

able brass, copper, and graphite are used as the electrode material.

The machining diameters of the three electrodes are in cylindrical

shape of diameter 13.5 mm. The EDM process is accomplished on

Inconel 718 alloy plate of 8 mm thickness and 10 � 11.5 cm2 cross

sectional area. Each experiment runs for 30 min. For weighing pur-

pose, the work piece and the electrodes are detached from the

machine after each observation and cleaned and dried out. A pre-

cision electronic balance (accuracy 0.01 g) is used for measuring

the weights of the work and tool materials before and after

machining. Surface roughness tester (Surftest SJ 210, Mitutoyo) is

used for measuring the surface quality. A tool maker’s microscope

(Carl Zeiss) is used for measuring the crater diameter on the

machined surface on the work material.

The weight loss due to machining of work material noted before

and after machining is used to calculate the material removal rate

(MRR) using Eq. (16).

MRR ¼
1000� DWw

qW � T
ð16Þ

where DWw is difference in weight of work material during

machining, qw is the density of work material and T is the machin-

ing time.

The weight loss due to machining of tool material noted before

and after machining is used to calculate tool wear rate (TWR) using

Eq. (17).

TWR ¼
1000� DWt

qt � T
ð17Þ

where DWt is difference in weight of tool material during

machining and qt is the density of tool material (qbrass=8565 kg/

m3, qcopper=8960 kg/m3 and qgraphite=2130 kg/m3).

Mitutoyo (Surftest SJ 210) is used to complete the surface

roughness (SR) measurements on the machined surface of the

work material. Five readings on the traverse direction of the

machined surface are taken and average of five readings of surface

roughness values are noted down.

The high temperature gradient developed due to series spark of

discharges causes dimensional irregularities on the machined

edges of the crater cavity. The deviation between the maximum

diameter of the cavity and electrode diameter is called radial over-

cut. Although sufficient compensations are being provided during

design of the tool and machining, radial overcut is quite common

in EDM process. Minimization of overcut is essential for precise

and accurate EDMed machining. Radial overcut is given by relation

RO ¼
dw � dt

2
ð18Þ

Here, dw is the maximum diameter of the crater cavity and dt is

the diameter of the tool.

Fig. 3 shows the wok material Inconel 718 after machining with

three electrodes. Table 3 shows process parameters and their

levels. Table 4 shows the L27 orthogonal array along with obtained

responses and overall utility index.

6. Result and discussion

Taguchi’s L27 orthogonal array (experimental design) along with

obtained performance measures and the overall utility index have

been depicted in Table 4. Analysis of variance (ANOVA) is carried

out on performance measures such as material removal rate, tool

wear rate, surface roughness and radial over cut with a view to

analyse the effect of important process parameters. Table 5 shows

the ANOVA table for MRR. For MRR, tool material is found to be the

Stop 

(gBest is the optimal 

solution)

Is iteration >=maximum 

iteration?

Update particle position by equations 11 and 12

Set best of pBest as gbest

If fitness value of particle i, is better than 

pBest then PBest = Finess value of particle i

For each particle i, evaluate fitness value using 

equation 19 

Initialize particles with random 

position vector

Start

Calculate the mean value of the best position MBest by 

equation 14 and generate the contraction expansion factor by 

equation 15

Yes

No

Fig. 1. Flow chart of QPSO algorithm.

Table 1

Chemical composition of Inconel 718 sample used in the study.

Chemical C% Si% Mn% S% P% Cr% Fe% Mo% Co% Nb% Cu% V% Al% Ti% W% Ni%

Amount 0.039 0.027 0.032 0.005 0.008 17.21 20.143 3.121 0.086 4.989 0.009 0.015 0.568 0.816 0.214 52.739
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most important process parameter with a percentage contribution

of 58.04% followed by discharge current, pulse-on-time, duty

factor, open circuit voltage and interactions terms discharge

current � tool and pulse-on-time � tool with percentage contribu-

tions of 22.7%, 12.33%, 2.63%, 2.27%, 0.90% and 0.79% respectively.

Flushing pressure is found to be an insignificant parameter for MRR

with a percentage contribution of 0.12%. Table 6 shows the ANOVA

for TWR. The table shows that tool material is again found to be the

most important process parameter with a percentage contribution

of 84.04%, followed by discharge current, pulse-on-time, and inter-

actions terms like discharge current � tool with percentage contri-

butions of 7.71%, 6.29% and 0.51% respectively. Flushing pressure,

duty factor and open circuit voltage are found to be an insignificant

parameter for TWR with a percentage contribution of 0.3%, 0.14%

and 0.05% respectively. Table 7 shows the ANOVA table for overall

utility index and it indicates that discharge current is the most

influential parameter with a percentage contribution of 51.20% fol-

lowed by tool material, pulse-on-time, open circuit voltage and

interaction terms such as discharge current � tool and pulse-on-

time � tool with percentage contribution of 18.98%, 15.09%,

4.82%, 2.31%, and 1.66% respectively. Flushing pressure and duty

factor are found to be insignificant parameters with percentage

contribution of 1.08%, and 0.77% respectively. Similarly, analysis

of variance for surface roughness reveals that tool material is the

most influential process parameter with percentage contribution

of 72.71% followed by discharge current, pulse-on-time, interac-

tion terms like discharge current � tool with percentage contribu-

tion of 36.38%, 3.16% and 0.42% respectively. Parameters such as

open circuit voltage, duty factor and flushing pressure have little

effect on surface roughness with a percentage of contribution of

0.26%, 0.08% and 0.04% respectively. Analysis of variance for radial

overcut reveals that tool material, discharge current, pulse-on-time

and interaction term discharge current � tool are the important

process parameters with percentage contribution of 83.09%,

10.36%, 2.21% and 1.03% respectively. Open circuit voltage, duty

factor and flushing pressure have little effect on radial overcut with

a percentage contribution of 0.45%, 0.39% and 0.16% respectively. A

scanning electron microscope (SEM) micrograph analysis is also

carried out to study the formation of recast layers on the machined

surface after machining. From the SEM micrographs, it is observed

that recast layer thickness increases with increase in spark energy

while machining with graphite and copper electrode. However,

brass electrode at smaller spark discharges produces thinner recast

layer in comparisons with graphite and copper electrodes.

Fig. 4 shows the main effect plot for MRR. The plot shows that

the MRR decreases with increase of open circuit voltage from

70 V to 90 V but the decreases is more pronounced between 70 V

and 80 V. Low values of open circuit voltage can lead to higher

MRR whereas higher values of open circuit voltage can cause rela-

tively lower material removal rates. However, the effect of open

circuit voltage on MRR is not significant in comparison with dis-

charge current. The figure indicates that material removal rate

increases rapidly with the increase of discharge current from 3A

to 7A. Increase in discharge current directly increases the spark

energy which in turn causes an increase in the crater dimension

resulting in higher removal of metal from the work surface. The fig-

ure shows that material removal rate decreases with increase in

pulse-on-time and the decrease is rapid when pulse-on time is

set beyond 200 ls. Increasing the pulse-on-time means applying

Table 2

Thermal properties of Inconel 718.

Properties Density Melting Temperature Thermal Conductivity Thermal expansion Possions ratio

Value 8190 kg/m3 1609 K 15 W/m.K 13.0 lm/m�C 0.27–0.3
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Fig. 2. X-ray diffraction plot of the Inconel 718 work material.

Graphite Copper Brass

Fig. 3. Work material Inconel 718 after machining with three electrodes.

Table 3

Process parameters and their levels.

Process Parameters Units Levels

1 2 3

Open circuit voltage (A) Voltage 70 80 90

Discharge current (B) Ampere 3 5 7

Pulse-on-time (C) Microsecond 100 200 300

Duty factor (D) Percentage 80 85 90

Flushing pressure (E) Bar 0.2 0.3 0.4

Tool material (F) Brass Copper Graphite
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the same heat flux for longer duration. The pressure inside the

plasma channel decreases due to continuous application of the

same heat flux for longer duration. Since the volume of molten

metal remains unaffected, further increase in pulse-on-time results

in decrease of MRR. MRR increases monotonically with increase of

duty factor. Increase in duty factor causes an increase in the spark

energy across the gap between the electrodes resulting in increase

of temperature which ultimately leads to increase in MRR. Similar

observations have been reported in experimental observation of

Pradhan and Biswas [43]. Material removal is higher while machin-

ing with graphite electrode followed by copper and brass respec-

tively. Copper and graphite electrodes have higher thermal

conductivity and higher melting point temperature whereas brass

electrode having smaller thermal conductivity and lower melting

point temperature. Subsequently, the spark energy across graphite

and copper electrodes are higher which in turn removes higher

material than brass electrode.

The machining cost of the EDM process is largely affected by

erosion rate of tool. Fig. 5 shows the main effect plot of TWR with

important process parameters. The plot shows that tool erodes

rapidly with increase in discharge current. Increase in discharge

current increases the spark energy and hence more heat is

Table 4

L27 orthogonal array along with responses.

Run order A B C D E F MRR in mm3/min TWR in mm3/min SR in lm RO in mm Overall utility index

1 70 3 100 80 0.2 Brass 11.5221 6.8540 8.4179 0.0282 5.8440

2 70 3 100 80 0.3 Copper 25.5444 4.5742 14.2626 0.1076 5.2514

3 70 3 100 80 0.4 Graphite 31.7515 3.5681 19.3699 0.2563 4.5499

4 70 5 200 85 0.2 Brass 12.1862 7.2991 11.1324 0.0780 4.5216

5 70 5 200 85 0.3 Copper 27.5620 4.8501 19.0233 0.2557 4.0588

6 70 5 200 85 0.4 Graphite 38.3034 3.2952 25.0787 0.4354 3.6527

7 70 7 300 90 0.2 Brass 22.5026 7.1806 18.3226 0.1818 3.5755

8 70 7 300 90 0.3 Copper 33.4826 5.2938 24.0778 0.2838 3.6078

9 70 7 300 90 0.4 Graphite 40.8613 3.0006 30.2353 0.4450 3.5734

10 80 3 200 90 0.2 Copper 23.9502 4.2463 14.0796 0.1464 5.0969

11 80 3 200 90 0.3 Graphite 32.5885 2.6482 20.3344 0.3364 4.4646

12 80 3 200 90 0.4 Brass 6.3664 7.0477 7.7977 0.0734 4.6651

13 80 5 300 80 0.2 Copper 14.8303 3.8907 20.4310 0.3056 3.6324

14 80 5 300 80 0.3 Graphite 26.2129 2.4188 25.6183 0.4877 3.0508

15 80 5 300 80 0.4 Brass 3.3944 6.9065 12.4431 0.0708 3.4151

16 80 7 100 85 0.2 Copper 37.7847 6.1202 21.0403 0.2659 3.7487

17 80 7 100 85 0.3 Graphite 47.6497 3.9141 27.4052 0.4790 3.4744

18 80 7 100 85 0.4 Brass 21.6813 8.9148 13.9793 0.1232 3.9462

19 90 3 300 85 0.2 Graphite 16.4502 2.2543 22.3897 0.3899 3.7696

20 90 3 300 85 0.3 Brass 4.4495 6.3105 9.1573 0.0315 4.9417

21 90 3 300 85 0.4 Copper 12.3846 3.4282 17.2583 0.2355 4.1719

22 90 5 100 90 0.2 Graphite 39.7088 3.7379 24.9953 0.4058 3.4782

23 90 5 100 90 0.3 Brass 15.2592 8.4282 9.5444 0.0736 4.7791

24 90 5 100 90 0.4 Copper 31.3547 5.5108 18.4393 0.2132 4.1549

25 90 7 200 80 0.2 Graphite 41.3635 3.7707 26.5567 0.4544 3.4088

26 90 7 200 80 0.3 Brass 14.4506 7.9370 15.0112 0.0929 3.8953

27 90 7 200 80 0.4 Copper 30.1753 5.4724 21.7047 0.2877 3.6264

Table 5

ANOVA for MRR.

Source DF Seq SS Adj SS Adj MS F P % Contribution

Open circuit voltage 2.0000 92.5100 92.5100 46.2600 30.5400 0.0010 2.270708

Discharge current 2.0000 927.7300 927.7300 463.8700 306.2500 0.0000 22.77163

Pulse-on-time 2.0000 498.4200 498.4200 249.2100 164.5300 0.0000 12.23399

Duty factor 2.0000 107.1900 107.1900 53.6000 35.3800 0.0000 2.631036

Flushing pressure 2.0000 5.1300 5.1300 2.5600 1.6900 0.2610 0.125919

Tool 2.0000 2364.5900 2364.5900 1182.3000 780.5700 0.0000 58.04014

Discharge current � Tool 4.0000 36.8300 36.8300 9.2100 6.0800 0.0260 0.904012

Pulse-on-time � Tool 4.0000 32.5700 32.5700 8.1400 5.3800 0.0350 0.799448

Residual error 6.0000 9.0900 9.0900 1.5100

Total 26.0000 4074.0600

Table 6

ANOVA for TWR.

Source DF Seq SS Adj SS Adj MS F P % Contribution

Open circuit voltage 2.0000 0.0523 0.0523 0.0261 0.2900 0.7570 0.053926

Discharge current 2.0000 7.4812 7.4812 3.7406 40.9700 0.0000 7.713858

Pulse-on-time 2.0000 6.1046 6.1046 3.0523 33.4300 0.0000 6.294447

Duty factor 2.0000 0.1359 0.1359 0.0679 0.7400 0.5000 0.140126

Flushing pressure 2.0000 0.2933 0.2933 0.1466 1.6100 0.2480 0.302421

Tool 2.0000 81.5084 81.5084 40.7542 446.3800 0.0000 84.04323

Discharge current � Tool 4.0000 0.4953 0.4953 0.1238 1.3600 0.3160 0.510703

Residual error 10.0000 0.9130 0.9130 0.09130

Total 26.0000 96.9839
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generated across the electrodes resulting in higher melting and

evaporation of the electrodes. The plot also shows that tool wear

rate varies inversely with pulse-on-time. As conductivity of tool

materials is higher than that of work material, the discharge of

heat at the time of machining from the tool material is quick in

comparison to work material. Therefore, tool wear decreases at

higher pulse-on-time. Attachment of carbon particles onto the sur-

face of tool is another reason of low tool wear rate at high pulse-

on-time. While machining Inconel 718, erosion of tool is faster

with the use of brass tool followed by copper and graphite tool.

Erosion of tool with graphite electrode is minimum due to its

extremely high melting point temperature. As graphite and copper

have reasonably high melting point temperature and good thermal

conductivity than brass tool, the erosion rate of brass tool is faster

in comparison to other electrodes. The figure also shows that open

circuit voltage, duty factor and flushing pressure do not contribute

much for the variation of TWR.

The machined surface quality and crater dimension mainly

depends up the discharge energy. Higher the discharge energy,

higher is the material removed which in turn produces poor sur-

face quality. Fig. 6 shows the main effect plot of surface roughness

through which analysis of the effect of various machining parame-

ters on surface quality has been made. It shows that surface quality

deteriorates with increases in discharge current. The discharge

energy is directly governed by discharge current. Hence, more heat

is produced between the electrodes resulting in larger size material

to be removed from the work surface. This degrades the surface

quality produced on the machined surface. The plot also indicates

surface roughness increases with increase in pulse-on-time gradu-

ally. Increase in pulse-on-time increases the spark energy across

electrodes which in turn cause larger size material to be removed

from work surface degrading the surface quality. Inconel 718 work

material machined with graphite electrode produces the poorest

performance with regard to the surface finish. Brass electrode at

smaller values of discharge energy produces an excellent surface

quality while machining Inconel 718. The work material while

Table 7

ANOVA for overall utility index.

Source DF Seq SS Adj SS Adj MS F P % contribution

Open circuit voltage 2.0000 2.3922 2.3922 1.1961 3.5900 0.0940 4.829654

Discharge current 2.0000 25.3644 25.3644 12.6822 38.0800 0.0000 51.20862

Pulse-on-time 2.0000 7.4792 7.4792 3.7396 11.2300 0.0090 15.09989

Duty factor 2.0000 0.3838 0.3838 0.1919 0.5800 0.5900 0.77486

Flushing pressure 2.0000 0.5398 0.5398 0.2699 0.8100 0.4880 1.089812

Tool 2.0000 9.4018 9.4018 4.7009 14.1200 0.0050 18.98146

Discharge current � Tool 4.0000 1.1486 1.1486 0.2871 0.8600 0.5360 2.318928

Pulse-on-time � Tool 4.0000 0.8235 0.8235 0.2059 0.6200 0.6660 1.662578

Residual error 6.0000 1.9982 1.9982 0.3330

Total 26.0000 49.5315

Fig. 4. Main effect plot of MRR.

Fig. 5. Main effect plot of TWR.

Fig. 6. Main effect plot of Surface roughness.
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machining with copper electrode produces surface quality

between those of brass and graphite. The size of material removed

by graphite and copper electrodes is larger on the machined sur-

face. It decreases the surface quality produced whereas brass elec-

trode at the smaller value of discharge energy produces finest

surface quality at the expense of more tool erosion. Hence, it can

be concluded that good surface quality can only be produced at

smaller value of spark energy with brass as the electrode material.

The effect of open circuit voltage, duty factor and flushing pressure

for variation of surface roughness is minimal. Yet, it is observed

that surface roughness increases slowly with increase in open cir-

cuit voltage.

In EDM, precise and accurate machining means reduction of

overcut. Fig. 7 shows the variation of radial overcut with important

process parameters. It shows that radial overcut varies directly

with increase in discharge current. Higher values discharge current

causes increase in spark energy resulting in increase of tempera-

ture between the tool and work material and thus producing wider

and larger craters on the machined surface. This, in turn, increases

the radial overcut. The plot also shows that radial overcut increases

gradually with increase of pulse-on-time. Increase of pulse-on-

time causes prolonged occurrence of sparks on the machined sur-

face. It results in increase of the radial overcut on the machined

surface due to increase in spark energy. However, it observed that

the effect of discharge current on radial overcut is higher as com-

pared to pulse-on-time. Radial overcut is higher while machining

with graphite electrode followed by copper and brass electrode

respectively. As craters produced in graphite and copper electrodes

are wider and larger, radial overcut on the machined surface is also

larger. Thus, it can be concluded that brass electrode at the smaller

value of spark energy can be used for producing precise and accu-

rate EDMed parts at the expense of more tool erosion. The other

factors such as open circuit voltage, duty factor and flushing pres-

sure hardly contribute to radial overcut in comparison to discharge

current, pulse-on-time and tool material.

In this work, utility concept has been used to convert the mul-

tiple performance measures into an equivalent single performance

measure by calculating the overall utility index. The single perfor-

mance measure is ranked between 0 to 9 with highest value of

overall utility index of 5.84. The process model relating overall util-

ity index with process parameters have been developed through

non-linear regression analysis using SYSTAT software has been

shown in Eq. (19). The coefficient of determination (R2) and

adjusted R2 values are found to be 98.9% and 99.1% respectively

which confirms the validation of the model.

Overall utility indexðUÞ ¼ �0:010þ 0:709�A� 0:310� B

� 0:015�C� 0:477�Dþ 8:499� E

� 1:637� Fþ 0:002�A2 � 0:011�B2

þ 0:009�D2 �15:592� E2 þ 0:114� F2

þ 0:073�B� Fþ 0:004� C� F

� 0:001�B�C� 0:012�A�D ð19Þ

Present work aims at maximizing MRR and minimizing TWR,

surface roughness and over cut which are functions of process

parameters viz. open circuit voltage, discharge current, pulse-on-

time, duty factor, flushing pressure and tool material. In this work,

PSO and QPSO algorithm have been proposed to obtain the optimal

parametric setting with an objective to maximize MRR and mini-

mize TWR, surface roughness and radial over cut. The QPSO and

PSO algorithms are coded in MATLAB 14 and run on a Pentium

IV desktop. The empirical relation between process parameters

and overall utility index obtained through non-linear regression

analysis is used as objective function (Eq. (19)) for solving the opti-

mization problem. Open circuit voltage, discharge current, pulse-

on-time, duty factor, flushing pressure are quantitative process

parameters whereas tool material is a qualitative process parame-

ter. The quantitative parameters are real values that lie within the

scope of experiment set up as shown in Table 1. The qualitative

parameters are coded in the algorithm as 1 as brass tool, 2 as cop-

per tool and 3 as graphite tool. For the qualitative parameter tool

material, the nearest integer part of the real numbers has been

considered. The range of qualitative parameter (tool material) are

considered in the manner if the values lie in the range [1–1.4], it

is treated as 1 or brass tool, [1.7–2.3] as 2 or copper tool and

[2.4–3] as 3 or graphite tool. Fig. 8 shows the convergence of QPSO

and PSO algorithms. The figure illustrates the performance of both

the algorithms. It is convincible to note that QPSO algorithm is

superior to PSO as it converges rapidly towards the best solution.

It can be observed that after end of 100 iterations, the value of

overall utility index is obtained as 6.91 for QPSO whereas the value

for PSO is 6.52. The overall utility index value obtained through

QPSO algorithm is higher than the overall utility index shown in

Table 3 and PSO algorithm. Once the optimal parametric settings

have been identified, it is mandatory to validate the same through

Fig. 7. Main effect plot of radial over cut. Fig. 8. Convergence curve for QPSO and PSO algorithm.
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confirmative tests. Table 8 shows the confirmative test results

obtained through both the approaches along with the optimal

parametric setting with obtained value of overall utility index.

The calculated values of the overall utility index for the confir-

matory test are found to be 6.21 and 5.89 with errors value of

10.1% and 9.6% for QPSO and PSO respectively. From the table, it

can be clearly noticed that the results obtained through QPSO algo-

rithm is more favorable to achieve improved machining efficiency.

7. Conclusions

Although Inconel 718 has wide-spread application, its machin-

ing both in conventional and non-conventional methods becomes

difficult due to low thermal conductivity. In this work, an extensive

experimental investigation has been carried out to analyse the

effect of various electrode materials on the machinability of

Inconel 718 super alloy in the EDM process. It is observed that

material removal rate can be improved through the use of graphite

tool but surface roughness and radial overcut are seriously affected

due to high discharge energy. Brass can be used as tool electrode

when better surface integrity is desired but the material removal

rare is rather less. As far as tool wear is concerned, graphite tool

performs superior to copper and brass tool. A hybrid approach of

utility concept embedded with QPSO and PSO algorithms have

been proposed and compared for obtaining best parametric setting

for EDM process. From the performance comparison curve of both

the algorithms, it is observed that QPSO provides better result than

PSO owing to inherent capability of avoiding premature conver-

gence. The optimal parametric setting obtained through both

approaches is validated by conducting confirmative tests. The test

results reveal that QPSO provides better solution in comparison to

PSO resulting in improved machining efficiency. This analysis helps

in identifying the important process parameters which can be

effectively controlled to reduce the cost of machining, experimen-

tation time and experimental error to increase productivity and

quality of the process.

In spite of several major findings obtained through this study,

analysis on recast layer formation, surface integrity and

microstructure of the machined surface can be considered as some

of the key limitations of the research. Numerical analysis can be

carried out on this experimental investigation. In this work, QPSO

has been applied without considering any constraints. In future,

process related constraints can be incorporated during formulation

of optimization problem.
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