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Abstract This paper deals with the steady state analysis of batch arrival retrial queueing system

with two types of service under modified vacation policy, where each type consists of an optional

re-service. An arriving batch may balk the system at some particular times. After the completion

of each types of service the customers may re-service of the same type without joining the orbit

or may leave the system. If the orbit is empty at the service completion of each types of service,

the server takes at most J vacations until at least one customer is received in the orbit when the

server returns from a vacation. Busy server may breakdown at any instance and the service channel

will fail for a short interval of time. The steady state probability generating function for system/

orbit size is obtained by using the supplementary variable method. Some system performance mea-

sures and numerical illustrations are discussed.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Recently there have been significant contributions to retrial
queueing system (or queues with repeated attempts) in which
arriving customer who finds the server busy upon arrival is

obliged to leave the service area and repeat his demand after
some time. Between trials, a blocked customer who remains

in a retrial group is said to be in orbit. In queues, the customers
are allowed to conduct retrials that have applications in tele-
phone switching systems, telecommunication networks and
computers are competing to gain service from a central pro-

cessing unit. Moreover, retrial queues are also used as mathe-
matical models of several computer systems: packet switching
networks, shared bus local area networks operating under the

carrier-sense multiple access protocol and collision avoidance
star local area networks, etc. There are plenty of literatures
available on the retrial queues. We referred the works of Falin

and Templeton [1], Aissani [2] and Artalejo [3], etc.
The concept of balking was first studied by Haight in 1957.

In our model we assume that an arriving batch may join to the

system for a service or leave the system. To the best of our
knowledge very few works have been done with the concept
of batch arrival retrial queueing system and balking. Such
e under
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Figure 1 Lq versus b.
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queueing models apply in many real world situations like web
access, including call centers and computer systems, etc. Ke [4]
studied the M[x]/G/1 queue with variant vacations and balking.

Some of the authors like Wang and Li [5,6] and Baruah et al.
[7] discussed about the concept balking.

In our model, a single server provides two types of service,

we assume that customers arrive in batch and they can choose
any one type of service. In retrial queueing literature, the con-
cept of feedback customers was discussed by many authors.

Many queueing situations have the feature that the customers
may be served repeatedly for a certain reason. After comple-
tion of service the customers have to join the queue and wait

for their service once again. In this aspect, the concept of
optional re-service can be considered as immediate feedback.
The customer completes his service as first step and if he finds
any defect in his service or wants service one more time, he will

immediately get his service once again without joining the
queue. Re-service have many real life application in situations
like bank counters, working ATM machines, super markets,

doctor clinics, etc. Authors like Madan and Baklizi [8], Madan
et al. [9] and Baruah et al. [7] have discussed the concept of re-
service.

In a vacation queueing system, the server may not be avail-
able for a period of time due to many reasons like, being
checked for maintenance, working at other queues, scanning
for new work (a typical aspect of many communication sys-

tems) or simply taking break. This period of time, when the
server is unavailable for primary customers is referred as a
vacation. Keilson and Servi [10] introduced the concept Ber-

noulli vacation, where the random decision whether to take
a vacation or not are allowed only at instances when the sys-
tem is not empty (and a service or vacation has just been com-

pleted). If the system is empty, the assumption for their model
is that the server must take another vacation. Doshi [11] pre-
sented a survey on queueing systems with vacations. Krish-

nakumar and Arivudainambi [12] have investigated a single
server retrial queue with Bernoulli schedule and general retrial
times. Xu et al. [13] studied the concept of bulk input queue
with working vacation. When the orbit becomes empty the ser-

ver begins working vacation period during that period server
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gives service at lower rate or completely stops the service. Very
recently Arivudainambi et al. [14] analyzed single server retrial
queue with working vacation. Chang and Ke [15] examined a

batch retrial model with J vacations in which if orbit becomes
empty, the server takes at most J vacations repeatedly until at
least one customer appears in the orbit upon returning from a

vacation. By applying the supplementary variable technique,
some important system characteristics are derived. This system
has potential applications in packet-switched networks. Later,

Ke and Chang [16] and Chen et al. [17] discussed a different J
vacation queueing models.

The service interruptions are unavoidable phenomenon in
many real life situations. In most of the studies, it is assumed

that the server is available in the service station on a perma-
nent basis and service station never fails. However, these
assumptions are practically unrealistic. In practice we often

meet the case where service stations may fail and can be
repaired. Applications of these models found in the area of
computer communication networks and flexible manufactur-

ing system, etc. Ke and Choudhury [18] discussed about the
batch arrival retrial queueing system with two phases of service
under the concept of breakdown and delaying repair. While

the server is working with any phase of service, it may break-
down at any instance and the service channel will fail for a
short interval of time. The repair process does not start imme-
diately after a breakdown and there is a delay time for repair

to start. Choudhury and Deka [19] considered a single server
queue with two phases of service and the server is subject to
breakdown while providing service to the customers. Further,

Choudhury and Deka [20] developed the previous model with
the concept of Bernoulli vacation. Chen et al. [17] studied a
retrial queueing system with modified vacation and random

breakdowns. Recently, Authors like Wang and Li [5,6], Cho-
udhury et al. [21] and Rajadurai et al. [22] discussed about
the retrial queueing systems with the concept of breakdown

and repair.
In this paper, we have extended the study of Madan et al.

[9] and Baruah et al. [7] by incorporating the concepts of retrial
queues, almost J vacations, breakdowns and delaying repair.

The rest of this paper is organized as follows. In Section 2,
the detailed description of the mathematical model and practi-
cal justification of the model are given. In Section 3, the system

stability condition, the governing equations of our model and
obtain the steady state solutions are obtained. Some perfor-
mance measures are derived in Section 4. In Section 5 stochas-

tic decomposition of the joint distribution of our model and
important special cases are obtained. In Section 6 the effects
of various parameters on the system performance are analyzed
numerically. Summary of the work is presented in section 7.

2. Model descriptions

In this paper, we consider a batch arrival retrial queueing sys-

tem with two types of service, balking under modified vacation
policy and service interruption where the server provides each
type consist of an optional re-service. The detailed description

of the model is given as follows:

� Arrival process: Customers arrive in batches according

to a compound Poisson process with rate k. Let Xk

denote the number of customers belonging to the kth
1,G2)/1 retrial queueing system with balking, optional re-service under
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arrival batch, where Xk, k = 1, 2, 3, . . . are with a com-

mon distribution Pr[Xk = n] = vn, n = 1, 2, 3 . . . and
X(z) denotes the probability generating function of X.
We denote X[k] as the kth factorial moment of X(z).

� Retrial process: We assume that there is no waiting
space and therefore if an arriving batch finds the server
free, one of the customers from the batch begins his ser-
vice and rest of them join into orbit. If an arriving

batch of customers find the server being busy, vacation
or breakdown, the arrivals either leave the service area
with probability 1 � b or join pool of blocked custom-

ers called an orbit with probability b. Inter-retrial times
have an arbitrary distribution R(x) with corresponding
Laplace-Stieltijes Transform (LST) R*(h).

� Service process: There is a single server which provides
two types of service and there is option for re-service. If
an arriving customer finds the server free, then he may
choose First Type of Service (FTS) with probability p1
or may choose Second Type of Service (STS) with
probability p2(p1 + p2 = 1). As soon as customer com-
pletes type i service, he may repeat type i service with

probability ri (i= 1, 2) or may leaves the system with
probability (1 � ri). It is further assumed that either
service may be repeated only once. The service times

Si have general distribution function (d.f) Si(x) and
Laplace- Stieltijes Transform S�i ðhÞ (for i= 1, 2) and
finite kth moment bðkÞi ði ¼ 1; 2 and k ¼ 1; 2Þ.

� Vacation process: Whenever the orbit is empty, the ser-
ver leaves for a vacation of random length V. If no cus-
tomer appears in the orbit when the server returns from
a vacation, it leaves again for another vacation with the

same length. Such pattern continues until it returns
from a vacation to find at least one customer found
in the orbit or it has already taken J vacations. If the

orbit is empty at the end of the Jth vacation, the server
remains idle for new arrivals in the system. At a vaca-
tion completion epoch the orbit is nonempty, the server

waits for the customers in the orbit. The vacation time
V has distribution function V(x) and LST V*(h) and
finite kth moment m(k)(k = 1, 2).

� Breakdown process: While the server is working with

any types of service or re-service, it may breakdown
at any time and the service channel will fail for a short
interval of time i.e. server is down for a short interval of

time. The breakdowns i.e. server’s life times are gener-
ated by exogenous Poisson processes with rates a1 for
FTS and a2 for STS, which we may call some sort of

disaster during FTS and STS periods respectively.
� Repair process: As soon as breakdown occurs the server

is sent for repair, during that time it stops providing

service to the arriving customer and waits for repair
to start, which we may refer to as waiting period of
the server. We define the waiting time as delay time.
The delay time Di of the server for ith type of service

follows with d.f. Di(y), LST D�i ðhÞ and finite kth
moment dðkÞi ði ¼ 1; 2 and k ¼ 1; 2Þ. The customer who
was just being served before server breakdown waits

for the remaining service to complete. The repair time
(denoted by G1 for FTS and G2 for STS) distributions
of the server for both types of service are assumed to be

arbitrarily distributed with d.f.Gi(y), LST G�i ðhÞ and
finite kth moment gðkÞi ði ¼ 1; 2 and k ¼ 1; 2Þ.
Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
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� Various stochastic processes involved in the system are

assumed to be independent of each other.

2.1. Practical justifications of the suggested model

The proposed model can be applied in Wired Networks for
selecting and maintaining routes in the routing table. Route
selection is still one of the major challenging tasks in wired net-

works. In wired networks, all the routes will be maintained in a
buffer alike, called Routing Table (orbit). The routing table
can be either accessed for two reasons: route update (Type 1

service) and route usage (Type 2 service). In the first scenario,
new routes would be added to the routing table, while the
existing routes are used to proceed with the transmission.

While updating the route, the re-service feature can check
the routing table size to avoid the routing table overhead if
required. When the size exceeds the limit, the server enters into
the break down state. While using the existing route, the re-ser-

vice feature can check whether the route is valid or not if
required. If valid, it proceeds with the transmission. When
not valid, the server enters into the break down state. When

there are no routes in the routing table, the server moves to
the sleep (vacation) state. The server system awakes up and
checks the routing table status periodically. After a finishing

these checking, the server moves itself from sleep to waiting
state (idle) again to select a route for arriving routes.

The suggested model has also potential application in the

transfer model of an email system. In Simple Mail Transfer
Protocol (SMTP) mail system uses to deliver the messages
between mail servers for relaying. When a mail transfer pro-
gram contacts a server on a remote machine, it forms a Trans-

mission Control Protocol (TCP) connection over which it
communicates. Once the connection is in place, the two pro-
grams follow SMTP that allows the sender to identify it, spec-

ify a recipient and transfer an e-mail message. For receiving a
group of messages, client applications usually use either the
Post Office Protocol (POP) or the Internet Message Access

Protocol (IMAP) to access their mail box accounts on a mail
server. Typically, contacting a group of messages arrive at
the mail server following the Poisson stream. When messages

arrive at the mail server, it will be free then one of the messages
from the group is selected to access (in POP or IMAP) and the
rests will join to the buffer. In the buffer, each message waits
and requires its service again after some time. The target server

is the same as sender’s mail server and the sending message will
be possibly retransmitted to the server to request the receiving
service immediately. The mail server may subject to electronic

fails during service period and receive repair immediately. To
keep the mail server functioning well, virus scan is an impor-
tant maintenance activity for the mail server. It can be

performed when the mail server is idle. This type of mainte-
nance can be programmed to perform on a regular basis. How-
ever, these maintenance activities do not repeat continuously.
When these activities are finished, mail server will enter the idle

state again and wait for the contact messages to arrive.
Because there is no mechanism to record how many contacting
messages from various senders currently, it is appropriate for

designing a program to collect information of contacting mes-
sages for the reason of efficiency. In this queueing scenario, the
buffer in the sender mail server, the receiver mail server, the
1,G2)/1 retrial queueing system with balking, optional re-service under
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POP and IMAP, the retransmission policy and the mainte-
nance activities correspond to the orbit, the server, the type1
and type2 service, the re-service discipline and the vacation

policy respectively.
The results of this paper finds other applications in LAN,

client-server communication, telephone systems, electronic

mail services on internet, network and software designs of
various computer communications systems, packet switched
networks, production lines, In the operational model of

WWW server for HTTP requests, call centers, inventory and
production, maintenance and quality control in industrial
organizations, etc.

3. System analysis

In this section, we develop the steady state difference-differen-

tial equations for the retrial system by treating the elapsed
retrial times, the elapsed service times, the elapsed vacation
times, the elapsed delay times and the elapsed repair times as
supplementary variables. Then we derive the probability gener-

ating function (PGF) for the server states, the PGF for number
of customers in the system and orbit.

In steady state, we assume that R(0) = 0, Ri(1) = 1,

Si(0) = 0, Si(1) = 1, Vj(0) = 0, Vj(1) = 1 (for i = 1, 2 and
j= 1, 2 . . . J) are continuous at x = 0 and Di(0) = 0,
Di(1) = 1, Ri (0) = 0, Ri(1) = 1 (for i = 1, 2) are continu-

ous at x= 0 and y= 0. So that the function h(x), li(x), c(x),
gi(y) and ni(y) are the conditional completion rates (hazard
rates) for repeated attempts, service on both types, on vaca-
tion, under delaying repair on both types and repair on both

types respectively (for i = 1, 2)

hðxÞdx ¼ dRðxÞ
1� RðxÞ ; liðxÞdx ¼

dSiðxÞ
1� SiðxÞ

;

cðxÞdx ¼ dVðxÞ
1� VðxÞ ; giðyÞdy ¼

dDiðyÞ
1�DiðyÞ

;

niðyÞdy ¼
dGiðyÞ

1� GiðyÞ
:

In addition, let R0ðtÞ; S0
i ðtÞ; V0

j ðtÞ; D0
i ðtÞ; and G0

i ðtÞ be

the elapsed retrial times, service times, vacation times, delay
times and repair times respectively at time t. Further, introduce
the random variables,

CðtÞ¼

0; if the server is idle at time t:

1; if the server is busy on both types of service at time t;

2; if the server is on re� service of both types at time t;

3; if the server is on delaying repair of both types at time t;

4; if the server is on repair of both types at time t;

5; if the server is on vacation with the 1st vacation at timet;

:

jþ4; if the server is on vacation with the jth vacation at time t;

:

Jþ4; if the server is on vacation with the Jth vacation at time t:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

We also note that the state of the system at time t can be
described by the bivariate Markov process {C(t), N(t); t P 0}
where C(t) denotes the server state (0, 1, 2, 3, 4, 5 . . . J + 4)

depending on the server is idle, busy on both types of service,
Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
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re-service on both types, delaying repair on both types, repair
on both types, 1st vacation,. . . and Jth vacation. N(t) denotes
the number of customers in the orbit.

If C(t) = 0 and N(t) > 0, then R0(t) represent the elapsed

retrial time. If C(t) = 1 and N(t) P 0 then S0
1ðtÞ and S0

2ðtÞ cor-
responding to the elapsed time of the customer being served on

both types. If C(t) = 2 and N(t) P 0 then S0
1ðtÞ and S0

2ðtÞ cor-
responding to the elapsed time of the customer being re-served

on both types. If C(t) = 3 and N(t) P 0, then D0
1ðtÞ and D0

2ðtÞ
corresponding to the elapsed time of the server being delayed

repair on both types. If C(t) = 4 and N(t) P 0, then G0
1ðtÞ

and G0
2ðtÞ corresponding to the elapsed time of the server being

repaired on both types. If C(t) = 5 and N(t) P 0, then V0
1ðtÞ

corresponding to the elapsed 1st vacation time. If

C(t) = j+ 4 and N(t) P 0, then V0
j ðtÞ corresponding to the

elapsed jth vacation time.
Let {tn; n= 1, 2, . . .} be the sequence of epochs at which

either a type 1 (or type 2) service period completion occurs,
a vacation period ends or a repair period ends. The sequence
of random vectors Zn = {C(tn+), N(tn+)} forms a Markov

chain which is embedded in the retrial queueing system. It fol-
lows from Appendix A that {Zn; n 2 N} is ergodic if and only if
q < 1, then the system will be stable, where q = X[1]

(1 � R*(k)) + - and

- ¼ kbX½1� p1b
ð1Þ
1 1þ a1 d

ð1Þ
1 þ g

ð1Þ
1

� �h in
þp2b

ð1Þ
2 1þ a2 d

ð1Þ
2 þ g

ð1Þ
2

� �h i
þr1p1b

ð1Þ
1 1þ a1 d

ð1Þ
1 þ g

ð1Þ
1

� �h i
þr2p2b

ð1Þ
2 1þ a2 d

ð1Þ
2 þ g

ð1Þ
2

� �h io
For the process {N(t), t P 0}, we define the probabilities P0-

(t) = P{C(t) = 0, N(t) = 0} and the probability densities

wnðx; tÞdx ¼ PfCðtÞ ¼ 0;NðtÞ ¼ n; x 6 R0ðtÞ < xþ dxg;
for t P 0; x P 0 and n P 1;

Pi;nðx; tÞdx ¼ PfCðtÞ ¼ 1;NðtÞ ¼ n; x 6 S0
i ðtÞ < xþ dxg;

for t P 0; x P 0; n P 0 and ði ¼ 1; 2Þ;

Pi;nðx; tÞdx ¼ PfCðtÞ ¼ 2; NðtÞ ¼ n; x 6 S0
i ðtÞ < xþ dxg;

for t P 0; x P 0; n P 0 and ði ¼ 1; 2Þ;

Qi;nðx; y; tÞdy ¼ PfCðtÞ ¼ 3; NðtÞ ¼ n; y 6 D0
i ðtÞ

< yþ dy=S0
i ðtÞ ¼ xg for t P 0; ðx; yÞ

P 0; n P 0 and ði ¼ 1; 2Þ;

Ri;nðx; y; tÞdy ¼ P CðtÞ ¼ 4; NðtÞ ¼ n; y 6 G0
i ðtÞ < y

�
þdy=S0

i ðtÞ ¼ x
�
; for t P 0; ðx; yÞP 0;

n P 0 and ði ¼ 1; 2Þ;

Xj;nðx; tÞdx¼P CðtÞ¼ jþ4; NðtÞ¼ n; x6V0
j ðtÞ< xþdx

n o
;

for tP 0; ðx;yÞP 0 and nP 0; ð16 j6 JÞ:

The following probabilities are used in sequent sections:
1,G2)/1 retrial queueing system with balking, optional re-service under
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P0(t) is the probability that the system is empty at time t.
wn(x, t) is the probability that at time t there are exactly n

customers in the orbit with the elapsed retrial time of the test

customer undergoing retrial is x.
Pi,n(x, t), (i= 1, 2) is the probability that at time t there are

exactly n customers in the orbit with the elapsed service time of

the test customer undergoing service is x in their respective
types.

Pi;nðx; tÞ; ði ¼ 1; 2Þ is the probability that at time t there are

exactly n customers in the orbit with the elapsed re-service time
of the test customer undergoing re-service is x in their respec-
tive types.

Xj,n(x, t), (j = 1, 2, . . . J) is the probability that at time t

there are exactly n customers in the orbit with the elapsed vaca-
tion time is x.

Qi,n(x,y, t) (i = 1, 2) is the probability that at time t there

are exactly n customers in the orbit with the elapsed service
time of the test customer undergoing service is x and the
elapsed delaying repair time of server is y in their respective

types.
Ri,n(x,y, t) (i= 1, 2) is the probability that at time t there

are exactly n customers in the orbit with the elapsed service

time of the test customer undergoing service is x and the
elapsed repair time of server is y in their respective types.

We assume that the stability condition is fulfilled in the
sequel and so that we can set limiting probabilities for x > 0

and n P 0 and (i = 1, 2)

P0 ¼ lim
t!1

P0ðtÞ; wnðxÞ ¼ lim
t!1

wnðx; tÞ for n P 1; Pi;nðxÞ

¼ lim
t!1

Pi;nðx; tÞ; Pi;nðxÞ ¼ lim
t!1

Pi;nðx; tÞ;

Qi;nðx; yÞ ¼ lim
t!1

Qi;nðx; y; tÞ;Ri;nðx; yÞ

¼ lim
t!1

Ri;nðx; y; tÞ; Xj;nðxÞ

¼ lim
t!1

Xj;nðx; tÞ; for ð1 6 j 6 JÞ:
3.1. The steady state equations

By the method of supplementary variable technique [23], we
obtain the following system of equations that govern the

dynamics of the system behavior.

kbP0 ¼
Z 1

0

XJ;0ðxÞcðxÞdx ð3:1Þ

dwnðxÞ
dx

þ ½kþ hðxÞ�wnðxÞ ¼ 0; n P 1 ð3:2Þ

dPi;0ðxÞ
dx

þ ½kþ ai þ liðxÞ�Pi;0ðxÞ ¼ kð1� bÞPi;0ðxÞ

þ
Z 1

0

niðyÞRi;0ðx; yÞdy; n ¼ 0; for ði ¼ 1; 2Þ ð3:3Þ

dPi;nðxÞ
dx

þ ½kþ ai þ liðxÞ�Pi;nðxÞ ¼ kð1� bÞPi;nðxÞ

þ kb
Xn
k¼1

vkPi;n�kðxÞ þ
Z 1

0

niðyÞRi;nðx; yÞdy; n P 1;

for ði ¼ 1; 2Þ ð3:4Þ
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dPi;0ðxÞ
dx

þ ½kþ ai þ liðxÞ�Pi;0ðxÞ ¼ kð1� bÞPi;0ðxÞ

þ
Z 1

0

niðyÞRi;0ðx; yÞdy; n ¼ 0; for ði ¼ 1; 2Þ ð3:5Þ

dPi;nðxÞ
dx

þ ½kþ ai þ liðxÞ�Pi;nðxÞ ¼ kð1� bÞPi;nðxÞ

þ kb
Xn
k¼1

vkPi;n�kðxÞ þ
Z 1

0

niðyÞRi;nðx; yÞdy; n P 1;

for ði ¼ 1; 2Þ ð3:6Þ

dXj;0ðxÞ
dx

þ ½kþ cðxÞ�Xj;0ðxÞ ¼ kð1� bÞXj;0ðxÞ;

n ¼ 0; for ðj ¼ 1; 2; . . . JÞ ð3:7Þ

dXj;nðxÞ
dx

þ ½kþ cðxÞ�Xj;nðxÞ ¼ kð1� bÞXj;nðxÞ

þ kb
Xn
k¼1

vkXj;n�kðxÞ;

n P 1; for ðj¼ 1;2; . . .JÞ ð3:8Þ

dQi;0ðx; yÞ
dy

þ ½kþ giðyÞ�Qi;0ðx; yÞ

¼ kð1� bÞQi;0ðx; yÞ; n ¼ 0; for ði ¼ 1; 2Þ ð3:9Þ

dQi;nðx; yÞ
dy

þ ½kþ giðyÞ�Qi;nðx; yÞ ¼ kð1� bÞQi;nðx; yÞ;

þ kb
Xn
k¼1

vkQi;n�kðx; yÞ; n P 1; for ði ¼ 1; 2Þ ð3:10Þ

dRi;0ðx; yÞ
dy

þ ½kþ niðyÞ�Ri;0ðx; yÞ

¼ kð1� bÞRi;0ðx; yÞ; n ¼ 0; for ði ¼ 1; 2Þ ð3:11Þ

dRi;nðx; yÞ
dy

þ ½kþ niðyÞ�Ri;nðx; yÞ ¼ kð1� bÞRi;nðx; yÞ;

þ kb
Xn
k¼1

vkRi;n�kðx; yÞ; n P 1; for ði ¼ 1; 2Þ ð3:12Þ

The steady state boundary conditions at x = 0 and y = 0 are

wnð0Þ ¼
XJ
j¼1

Z 1

0

Xj;nðxÞcðxÞdxþ ð1� r1Þ
Z 1

0

P1;nðxÞl1ðxÞdx

þ ð1� r2Þ
Z 1

0

P2;nðxÞl2ðxÞdxþ
Z 1

0

P1;nðxÞl1ðxÞdx

þ
Z 1

0

P2;nðxÞl2ðxÞdx; n P 1 ð3:13Þ

Pi;0ð0Þ ¼ pi

Z 1

0

w1ðxÞhðxÞdxþ kbv1P0

� �
;

n ¼ 0; for ði ¼ 1; 2Þ ð3:14Þ

Pi;nð0Þ ¼ pi

Z 1

0

wnþ1ðxÞhðxÞdxþ k
Xn
k¼1

vk

Z 1

0

wn�kþ1ðxÞdx
"

þkbvnþ1P0

�
; n P 1; for ði ¼ 1; 2Þ ð3:15Þ
1,G2)/1 retrial queueing system with balking, optional re-service under
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Y
i;n

ð0Þ¼ ri

Z 1

0

Pi;nðxÞliðxÞdx
	 


; nP 1; for ði¼ 1;2Þ ð3:16Þ

X1;nð0Þ¼

ð1� r1Þ
R1
0
P1;0ðxÞl1ðxÞdx

þð1� r2Þ
R1
0
P2;0ðxÞl2ðxÞdx

þ
R1
0

P1;0ðxÞl1ðxÞdxþ
R1
0

P2;0ðxÞl2ðxÞdx; n¼ 0

0; nP 1

8>>><
>>>:

ð3:17Þ

Xj;nð0Þ ¼
R1
0

Xj�1;0ðxÞcðxÞdx; n ¼ 0; j ¼ 2; 3 . . . J

0; n P 1; j ¼ 2; 3 . . . :J

�
ð3:18Þ

Qi;nðx;0Þ¼ ai Pi;nðxÞþPi;nðxÞð Þ; nP 1; for ði¼ 1;2Þ ð3:19Þ

Ri;nðx;0Þ¼
Z 1

0

Qi;nðx;yÞgiðyÞdy; nP 1; for ði¼ 1;2Þ ð3:20Þ

The normalizing condition is

P0 þ
X1
n¼1

Z 1

0

wnðxÞdxþ
X1
n¼0

X2
i¼1

Z 1

0

Pi;nðxÞdx
�"

þ
Z 1

0

Pi;nðxÞdxþ
Z 1

0

Z 1

0

Qi;nðx; yÞdxdy

þ
Z 1

0

Z 1

0

Ri;nðx; yÞdxdy
�

þ
XJ
j¼1

X1
n¼0

Xj;nðxÞdx ¼ 1 ð3:21Þ
3.2. The steady state solution

The probability generating function technique is used here to
obtain the steady state solution of the retrial queueing model.

To solve the above equations, we define the generating func-
tions for ŒzŒ 6 1, for (i= 1, 2 and j= 1, 2, . . . J) as follows:

wðx;zÞ¼
X1
n¼1

wnðxÞzn; wð0;zÞ¼
X1
n¼1

wnð0Þzn;

Piðx;zÞ¼
X1
n¼0

Pi;nðxÞzn; Pið0;zÞ¼
X1
n¼0

Pi;nð0Þzn; Piðx;zÞ¼
X1
n¼0

Pi;nðxÞzn;

Pið0; zÞ ¼
X1
n¼0

Pi;nð0Þzn; Xjðx; zÞ ¼
X1
n¼0

Xj;nðxÞzn; Xjð0; zÞ

¼
X1
n¼0

Xj;nð0Þzn; Qiðx; y; zÞ ¼
X1
n¼0

Qi;nðx; yÞzn;

Qiðx;0;zÞ¼
X1
n¼0

Qi;nðx;0Þzn; Riðx;y;zÞ¼
X1
n¼0

Ri;nðx;yÞzn; Riðx;0;zÞ

¼
X1
n¼0

Ri;nðx;0Þzn and XðzÞ¼
X1
n¼1

vnz
n

Now multiplying the steady state equation and steady state
boundary condition (3.1)–(3.20) by zn and summing over n,

(n = 0, 1, 2 . . .) for (i = 1, 2 and j= 1, 2 . . . J)

@wðx; zÞ
@x

þ ½kþ hðxÞ�wðx; zÞ ¼ 0 ð3:22Þ

@Piðx; zÞ
@x

þ ½kbð1� XðzÞÞ þ ai þ liðxÞ�Piðx; zÞ

¼
Z 1

0

niðyÞRiðx; y; zÞdy; for ði ¼ 1; 2Þ ð3:23Þ
Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
modified vacation policy and service interruption, Ain Shams Eng J (2014
@Piðx; zÞ
@x

þ ½kbð1� XðzÞÞ þ ai þ liðxÞ�Piðx; zÞ

¼
Z 1

0

niðyÞRiðx; y; zÞdy; for ði ¼ 1; 2Þ ð3:24Þ

@Xjðx; zÞ
@x

þ ½kbð1� XðzÞÞ þ cðxÞ�Xjðx; zÞ ¼ 0 ð3:25Þ

@Qiðx; y; zÞ
@y

þ ½kbð1� XðzÞÞ þ giðyÞ�Qiðx; y; zÞ ¼ 0 ð3:26Þ

@Riðx; y; zÞ
@y

þ ½kbð1� XðzÞÞ þ niðyÞ�Riðx; y; zÞ ¼ 0 ð3:27Þ

wð0;zÞ¼
XJ
j¼1

Z 1

0

Xjðx;zÞcðxÞdxþð1� r1Þ
Z 1

0

P1ðx;zÞl1ðxÞdx

þð1� r2Þ
Z 1

0

P2ðx;zÞl2ðxÞdxþ
Z 1

0

P1ðx;zÞl1ðxÞdx

þ
Z 1

0

P2ðx;zÞl2ðxÞdx�
XJ
j¼1

Xj;0ð0Þ�kbP0 ð3:28Þ

Pið0; zÞ ¼ pi
1

z

Z 1

0

wðx; zÞhðxÞdxþ kXðzÞ
z

Z 1

0

wðx; zÞdx
	

þ kbXðzÞ
z

P0



ð3:29Þ

Y
i

ð0; zÞ ¼ ri

Z 1

0

Piðx; zÞliðxÞdx ð3:30Þ

Qiðx; 0; zÞ ¼ ai Piðx; zÞ þPiðx; zÞð Þ ð3:31Þ

Riðx; 0; zÞ ¼
Z 1

0

Qiðx; y; zÞgiðyÞdy ð3:32Þ

Solving the partial differential Eqs. (3.1)–(3.12), it follows that

wðx; zÞ ¼ wð0; zÞ½1� RðxÞ�e�kx ð3:33Þ

Piðx; zÞ ¼ Pið0; zÞ½1� SiðxÞ�e�AiðzÞx; for ði ¼ 1; 2Þ ð3:34Þ

Piðx; zÞ ¼ Pið0; zÞ½1� SiðxÞ�e�AiðzÞx; for ði ¼ 1; 2Þ ð3:35Þ

Xjðx; zÞ ¼ Xjð0; zÞ½1� VðxÞ�e�bðzÞx; for ð1 6 j 6 JÞ ð3:36Þ

Qiðx; y; zÞ ¼ Qiðx; 0; zÞ½1�DiðyÞ�e�bðzÞy; for ði ¼ 1; 2Þð3:37Þ

Riðx; y; zÞ ¼ Riðx; 0; zÞ½1� GiðyÞ�e�bðzÞy; for ði ¼ 1; 2Þ ð3:38Þ

where AiðzÞ¼ bðzÞþai 1�D�i ðbðzÞÞG�i ðbðzÞÞ
� �

and bðzÞ¼ kbð1�XðzÞÞ
From (3.7) we obtain,

Xj;0ðxÞ ¼ Xj;0ð0Þ½1� VðxÞ�e�kbx; j ¼ 1; 2; . . . J ð3:39Þ

Multiplying with Eq. (3.39) by c(x) on both sides for j= J and
integrating with respect to x from 0 to 1, then from (3.1) we

have,

XJ;0ð0Þ ¼
kbP0

V�ðkbÞ ð3:40Þ

From Eq. (3.40) and solving (3.18) and (3.39) over the range
j= J � 1,J � 2, . . . 1, we get on simplification

Xj;0ð0Þ ¼
kbP0

½V�ðkbÞ�J�jþ1
; j ¼ 1; 2 . . . J� 1 ð3:41Þ

From (3.18), (3.40) and (3.41), we get
1,G2)/1 retrial queueing system with balking, optional re-service under
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Xjð0; zÞ ¼
kbP0

½V�ðkbÞ�J�jþ1
; j ¼ 1; 2 . . . J ð3:42Þ

Integrating Eq. (3.39) from 0 to1 and using (3.40) and (3.41)
again, we finally obtain

Xj;0ð0; zÞ ¼
P0ð1� V�ðkbÞÞ
½V�ðkbÞ�J�jþ1

; j ¼ 1; 2 . . . J ð3:43Þ

Note that, Xj,0 represents the steady-state probability that no
customers appear while the server is on the jth vacation. Let
us define X0 as the probability that no customers appear in
the system while the server is on vacation. Then,

X0 ¼
P0ð1� ½V�ðkÞ�JÞ

b½V�ðkÞ�J
; ð3:44Þ

Inserting Eqs. (3.34)–(3.36) and (3.42) in (3.43)

wð0; zÞ ¼ kbP0ðNðzÞ � 1Þ þ ð1� r1ÞP1ð0; zÞS�1ðA1ðzÞÞ
þ ð1� r2ÞP2ð0; zÞS�2ðA2ðzÞÞ
þP1ð0; zÞS�1ðA1ðzÞÞ þP2ð0; zÞS�2ðA2ðzÞÞ ð3:45Þ

where NðzÞ ¼ 1�½V�ðkbÞ�J

½V�ðkbÞ�Jð1�V�ðkbÞÞ ½V
�ðkbð1� XðzÞÞÞ � 1�

Inserting Eqs. (3.33) and (3.34) in (3.29) and make some
manipulation, finally we get,

P1ð0;zÞ¼ p1
½R�ðkÞþXðzÞð1�R�ðkÞÞ�

z

� �
wð0;zÞþkbXðzÞ

z
P0

� 

; ð3:46Þ

P2ð0;zÞ¼ p2
R�ðkÞþXðzÞð1�R�ðkÞÞ½ �

z

� �
wð0;zÞþkbXðzÞ

z
P0

� 

; ð3:47Þ

Inserting Eqs. (3.46) and (3.35) in (3.30) and make some
manipulation, finally we get,

P1ð0; zÞ ¼ r1P1ð0; zÞS�1ðA1ðzÞÞ ð3:48Þ

Using (3.47), (3.35) and (3.30) we get

P2ð0; zÞ ¼ r2P2ð0; zÞS�2ðA2ðzÞÞ ð3:49Þ

Using (3.46)–(3.49) in (3.45), we get

wð0; zÞ ¼ NrðzÞ
DrðzÞ ð3:50Þ

NrðzÞ ¼ kbP0 zðNðzÞ � 1Þ þ XðzÞ ð1� r1Þp1S�1ðA1ðzÞÞ
��

þð1� r2Þp2S�2 A2ðzÞð Þ þ r1p1 S�1ðA1ðzÞÞ
� �2

þr2p2 S�2ðA2ðzÞÞ
� �2�i

DrðzÞ ¼ fz� R�ðkÞ þ XðzÞð1� R�ðkÞÞð Þ ð1� r1Þp1S�1ðA1ðzÞÞ
�

þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ
� �2

þr2p2 S�2ðA2ðzÞÞ
� �2�o

Using Eqs. (3.50) and (3.46), we get,

P1ð0;zÞ¼ kbP0p1 NðzÞ�1ð Þ R�ðkÞþXðzÞð1�R�ðkÞÞð ÞþXðzÞ½ �=DrðzÞ; ð3:51Þ

Using Eqs. (3.50) and (3.47), we get,

P2ð0;zÞ¼ kbP0p2 ðNðzÞ�1Þ R�ðkÞþXðzÞð1�R�ðkÞÞð ÞþXðzÞ½ �=DrðzÞ;
ð3:52Þ

Using Eqs. (3.48) and (3.51), we get,

P1ð0; zÞ ¼ r1kbP0p1 NðzÞ � 1ð Þ R�ðkÞ þ XðzÞð1� R�ðkÞÞð Þ½
þXðzÞ�S�1ðA1ðzÞÞ=DrðzÞ; ð3:53Þ
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Using Eqs. (3.49) and (3.52), we get,

P2ð0; zÞ ¼ r2kbP0p2 NðzÞ � 1ð Þ R�ðkÞ þ XðzÞð1� R�ðkÞÞð Þ½
þXðzÞ�S�2ðA2ðzÞÞ=DrðzÞ; ð3:54Þ

Using Eqs. (3.51) and (3.53) in (3.31), we get,

Q1ðx;0;zÞ¼ a1 P1ð0;zÞ 1�S1ðxÞ½ �e�A1ðzÞxþP1ð0;zÞ 1�S1ðxÞ½ �e�A1ðzÞx
� �

ð3:55Þ

Using Eqs. (3.52) and (3.54) in (3.31), we get,

Q2ðx;0;zÞ¼ a2 P2ð0;zÞ 1�S2ðxÞ½ �e�A2ðzÞxþP2ð0;zÞ 1�S2ðxÞ½ �e�A2ðzÞx
� �

;

ð3:56Þ

Using Eqs. (3.37) and (3.32), we get,

R1ðx; 0; zÞ ¼ Q1ðx; 0; zÞD�1 bðzÞð Þ ð3:57Þ
R2ðx; 0; zÞ ¼ Q2ðx; 0; zÞD�2 bðzÞð Þ ð3:58Þ

Using (3.50)–(3.58) in (3.33)–(3.38), then the limiting probabil-
ity generating functions wðx; zÞ; P1ðx; zÞ; P2ðx; zÞ; P1ðx; zÞ;
P2ðx; zÞ; Xjðx; zÞ; Q1ðx; y; zÞ; Q2ðx; y; zÞ; R1ðx; y; zÞ and R2

ðx; y; zÞ. We summarize the above results in the following
Theorem 3.1.

Theorem 3.1. Under the stability condition q < 1, the
stationary distributions of the number of customers in the orbit
and the server’s state has the following PGF’s (for i = 1, 2 and
1 6 j 6 J)

wðx; zÞ ¼ NrðzÞ
DrðzÞ ð3:59Þ

NrðzÞ ¼kbP0 z NðzÞ � 1ð Þ þ XðzÞ ð1� r1Þp1S�1ðA1ðzÞÞ
��

þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ
� �2

þr2p2 S�2ðA2ðzÞÞ
� �2��

1� RðxÞð Þe�kx

DrðzÞ ¼ fz� R�ðkÞ þ XðzÞð1� R�ðkÞÞð Þ ð1� r1Þp1S�1ðA1ðzÞÞ
�

þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ
� �2 þ r2p2 S�2ðA2ðzÞÞ

� �2�o

Piðx;zÞ¼ kbP0pi NðzÞ�1ð Þ R�ðkÞþXðzÞð1�R�ðkÞÞð Þ½
þXðzÞ� 1�SiðxÞð Þe�AiðzÞx=DrðzÞ; for ði¼ 1;2Þ ð3:60Þ

Piðx;zÞ¼ rikbP0pi NðzÞ�1ð Þ R�ðkÞþXðzÞð1�R�ðkÞÞð Þ½f
þXðzÞ� S�i ðA1ðzÞÞ

� �
1�SiðxÞð Þe�AiðzÞx

�
=DrðzÞ; for ði¼1;2Þ ð3:61Þ

Qiðx;y;zÞ¼ kbP0piaif NðzÞ�1ð Þ R�ðkÞþXðzÞð1�R�ðkÞÞð Þf
þXðzÞg 1þ ri S

�
i ðA1ðzÞÞ

� �� �
1�SiðxÞð Þe�AiðzÞx

� 1�DiðyÞð Þe�bðzÞy
�
=DrðzÞ; for ði¼ 1;2Þ ð3:62Þ

Riðx;y;zÞ¼ kbP0piaif NðzÞ�1ð Þ R�ðkÞþXðzÞð1�R�ðkÞÞð Þf
þXðzÞg 1þ ri S

�
i ðA1ðzÞÞ

� �� �
D�i bðzÞð Þ 1�SiðxÞð Þe�AiðzÞx

� 1�GiðyÞð Þe�bðzÞy
�
=DrðzÞ; forði¼ 1;2Þ ð3:63Þ

Xjðx; zÞ ¼
kbP0 1� VðxÞð Þe�bðzÞx

½V�ðkbÞ�J�jþ1
; j ¼ 1; 2; . . . J ð3:64Þ

where AiðzÞ¼ bðzÞþai 1�D�i ðbðzÞÞG�i ðbðzÞÞ
� �

and bðzÞ¼ kb½1�XðzÞ�.
Next we are interested in investigating the marginal orbit size

distributions due to system state of the server.
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Theorem 3.2. Under the stability condition q < 1, the station-

ary distributions of the number of customers in the system when
server being idle, busy on both types, re-service on both types, on
vacation, under delaying repair on both types and under repair on

both types are given by

wðzÞ ¼ NrðzÞ
DrðzÞ ð3:65Þ

NrðzÞ¼ bP0 1�R�ðkÞð Þ zðNðzÞ�1ÞþXðzÞ ð1� r1Þp1S�1ðA1ðzÞÞ
��

þð1� r2Þp2S�2ðA2ðzÞÞþ r1p1 S�1ðA1ðzÞÞ
� �2þ r2p2 S�2ðA2ðzÞÞ

� �2��

DrðzÞ¼ fz�ðR�ðkÞþXðzÞð1�R�ðkÞÞÞ ð1� r1Þp1S�1ðA1ðzÞÞ
�

þð1� r2Þp2S�2ðA2ðzÞÞþ r1p1 S�1ðA1ðzÞÞ
� �2þ r2p2 S�2ðA2ðzÞÞ

� �2
PiðzÞ¼ fkbP0pi½ðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞ

þXðzÞ� 1�S�i ½AiðzÞ�
� �

g=AiðzÞDrðzÞ; for ði¼ 1;2Þ ð3:66Þ

PiðzÞ¼ rikbP0pi½ðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞf
þXðzÞ� S�i ðAiðzÞÞ

� �
1�S�i ðAiðzÞÞ
� ��

=AiðzÞDrðzÞ; for ði¼ 1;2Þ ð3:67Þ

QiðzÞ¼ kbP0piaifðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞf
þXðzÞg 1þ ri S

�
i ðAiðzÞÞ

� �� �
1�S�i ðAiðzÞÞ
� �

1�D�i ðbðzÞÞ
� ��

=AiðzÞbðzÞDrðzÞ; for ði¼ 1;2Þ ð3:68Þ

RiðzÞ¼ kbP0piaifðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞf
þXðzÞgD�i ðbðzÞÞ 1þ ri S

�
i ðAiðzÞÞ

� �� �
1�S�i ðAiðzÞÞ
� �

1�G�i ðbðzÞÞ
� ��

=AiðzÞbðzÞDrðzÞ; for ði¼ 1;2Þ ð3:69Þ

XjðzÞ ¼
P0ð½V�ðkbð1� XðzÞÞÞ� � 1Þ
ðXðzÞ � 1Þ½V�ðkbÞ�J�jþ1

; j ¼ 1; 2; . . . J ð3:70Þ

where

P0 ¼
ð1�X½1� ½1�R�ðkÞ��-Þ

N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

ð3:71Þ

N0ð1Þ ¼
1� ½V�ðkbÞ�J
� �

kbX½1�mð1Þ

½V�ðkbÞ�Jð1� V�ðkbÞÞ
;

AiðzÞ ¼ bðzÞ þ ai 1�D�i ðbðzÞÞG�i ðbðzÞÞ
� �

and bðzÞ ¼ kb½1� XðzÞ�:

Proof. Integrating the above (3.59)–(3.61) and (3.64) equa-
tions with respect to x and define the partial probability gener-
ating functions as, for (i= 1, 2 and 1 6 j 6 J)

wðzÞ ¼
Z 1

0

wðx; zÞdx; PiðzÞ ¼
Z 1

0

Piðx; zÞdx; PiðzÞ

¼
Z 1

0

Piðx; zÞdx; XjðzÞ ¼
Z 1

0

Xjðx; zÞdx:

Integrating the above (3.62) and (3.63) equations with respect

to x and y define the partial probability generating functions
as, for (i= 1, 2)

Qiðx; zÞ ¼
R1
0 Qiðx; y; zÞdy; QiðzÞ ¼

R1
0 Qiðx; zÞdx; Riðx; zÞ ¼R1

0 Riðx; y; zÞdy; RiðzÞ ¼
R1
0 Riðx; zÞdx. Since, the only unknown

is P0 the probability that the server is idle when no customer in the

orbit and it can be determined using the normalizing condition

(i= 1, 2 and 1 6 j 6 J). Thus, by setting z = 1 in (3.65)–(3.69)

and (3.70) and applying L-Hospitals rule whenever necessary and

we get
Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
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P0 þ wð1Þ þ P1ð1Þ þ P2ð1Þ þP1ð1Þ þP2ð1Þ þQ1ð1Þ þQ2ð1Þ

þ R1ð1Þ þ R2ð1Þ þ
XJ
j¼1

Xjð1Þ ¼ 1: �

Theorem 3.3. Under the stability condition q < 1, probability
generating function of number of customers in the system and
orbit size distribution at stationary point of time is

KðzÞ ¼ NrsðzÞ
DrðzÞ ð3:72Þ

NrðzÞ¼P0 z 1� ð1�r1Þp1S�1ðA1ðzÞÞþð1�r2Þp2S�2ðA2ðzÞÞ
���

þr1p1 S�1ðA1ðzÞÞ
� �2þr2p2 S�2ðA2ðzÞÞ

� �2�o
�fðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞþXðzÞg
�NðzÞ z�ðR�ðkÞþXðzÞð1�R�ðkÞÞÞf
ð1�r2Þp1S�1ðA1ðzÞÞþð1�r2Þp2S�2ðA2ðzÞÞ
�
þr1p1 S�2ðA1ðzÞÞ

� �2þr2p2 S�2ðA2ðzÞÞ
� �2�o

þ½1�XðzÞ� zðbð1�R�ðkÞÞðNðzÞ�1Þþ1Þf
�ðR�ðkÞþXðzÞð1�bÞð1�R�ðkÞÞÞ
ð1�r1Þp1S�1ðA1ðzÞÞþð1�r2Þp2S�2ðA2ðzÞÞ
�
þr1p1 S�1ðA2ðzÞÞ

� �2þr2p2 S�2ðA2ðzÞÞ
� �2�o�

DrðzÞ¼ ½1�XðzÞ� z�ðR�ðkÞþXðzÞð1�R�ðkÞÞÞ ð1� r1Þp1S�1ðA1ðzÞÞ
��

þð1� r2Þp2S�2ðA2ðzÞÞþ r1p1 S�1ðA1ðzÞÞ
� �2þ r2p2 S�2ðA2ðzÞÞ

� �2�o

HðzÞ ¼ NroðzÞ
DrðzÞ ð3:73Þ

NroðzÞ¼P0 1� ð1� r1Þp1S�1ðA1ðzÞÞþð1�r2Þp2S�2ðA2ðzÞÞ
���

þr1p1 S�1ðA1ðzÞÞ
� �2þr2p2 S�2ðA2ðzÞÞ

� �2�o
� ðNðzÞ�1ÞðR�ðkÞþXðzÞð1�R�ðkÞÞÞþXðzÞf g
�NðzÞ z�ðR�ðkÞþXðzÞð1�R�ðkÞÞÞf
ð1� r1Þp1S�1ðA1ðzÞÞþð1� r2Þp2S�2ðA2ðzÞÞ
�
þr1p1 S�1ðA1ðzÞÞ

� �2þr2p2 S�2ðA2ðzÞÞ
� �2�o

þ½1�XðzÞ� zðbð1�R�ðkÞÞðNðzÞ�1Þþ1Þf
�ðR�ðkÞþXðzÞð1�bÞð1�R�ðkÞÞÞ
ð1� r1Þp1S�1ðA1ðzÞÞþð1� r2Þp2S�2ðA2ðzÞÞ
�
þr1p1 S�1ðA1ðzÞÞ

� �2þr2p2 S�2ðA2ðzÞÞ
� �2�o�

where P0 is given in Eq. 3.71.

Proof. The probability generating function of the number of
customer in the system (K(z)) and the probability generating

function of the number of customer in the orbit (H(z)) is
obtained by using KðzÞ ¼ P0 þ wðzÞ þ

PJ
j¼1XjðzÞ þ z P1ðzÞþð

P2ðzÞ þP1ðzÞ þP2ðzÞ þQ1ðzÞ þQ2ðzÞ þ R1ðzÞ þ R2ðzÞÞHðzÞ
¼ P0 þ wðzÞ þ

PJ
j¼1XjðzÞ þ P1ðzÞ þ P2ðzÞþP1ðzÞ þP2ðzÞþ

Q1ðzÞ þQ2ðzÞ þ R1ðzÞ þ R2ðzÞ. Substituting Eqs. (3.65)–(3.71)
in the above results (3.72) and (3.73) can be obtained by direct

calculation. h
4. Performance measures

In this section, we obtain some interesting probabilities when
the system is in different states. We also derive system

performance measures the mean number of customers in the
1,G2)/1 retrial queueing system with balking, optional re-service under
), http://dx.doi.org/10.1016/j.asej.2014.02.003
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orbit (Lq) using L-Hospitals rule and the reaming measures
like the mean number of customers in the system (Ls), the aver-
age time a customer spends in the system (Ws) and the average

time a customer spends in the queue (Wq) using the Little’s for-
mula. Since our results are numerically treatable; the perfor-
mance measures give a hold for managerial implication.

Note that (3.71) gives the steady state probability that the ser-
ver is idle but available in the system. It follows from (3.65)–
(3.69) and (3.70) that the probabilities of the server sate are

as given in Theorem 4.1:

Theorem 4.1. If the system satisfies the stability condition
q < 1, then we get the following probabilities,

(i) Let w be the steady state probability that the server is idle
during the retrial time

w¼ bð1�R�ðkÞÞfN0ð1ÞþX½1� �1þ-g
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(ii) Let P1 be the steady-state probability that the server is
busy on first type service,

P1 ¼
kbp1b

ð1Þ
1 ½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(iii) Let P2 be the steady-state probability that the server is
busy on second type service,

P2 ¼
kbp2b

ð1Þ
2 ½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(iv) Let P1 be the steady-state probability that the server is re-
service on first type service,

P1 ¼
kbr1p1b

ð1Þ
1 ½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(v) Let P2 be the steady-state probability that the server is re-
service on second type service,

P2 ¼
kbr2p2b

ð1Þ
2 ½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(vi) Let X be the steady state probability that the server is on
vacation

X¼
N0 ð1Þ
X½1�
ð1�X½1�½1�R�ðkÞ��-Þ

N0 ð1Þ
X½1�
ðbX½1�ð1�R�ðkÞÞþ1Þ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-ÞÞþ1

8<
:

9=
;

(vii) Let Q1 be the steady state probability that the server is
under delaying repair time on first type service,

Q1 ¼
a1kb p1b

ð1Þ
1 d

ð1Þ
1 þ r1p1b

ð1Þ
1 d

ð1Þ
1

� �
½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(viii) Let Q2 be the steady state probability that the server is
under delaying repair time on second type service,

Q2 ¼
a2kb p2b

ð1Þ
2 d

ð1Þ
2 þ r2p2b

ð1Þ
2 d

ð1Þ
2

� �
½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(ix) Let R1 be the steady state probability that the server is
under repair time on first type service,
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R1¼
a1kb p1b

ð1Þ
1 g

ð1Þ
1 þr1p1b

ð1Þ
1 g

ð1Þ
1

� �
½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

(x) Let R2 be the steady state probability that the server is
under repair time on second type service,

R2 ¼
a2kb p2b

ð1Þ
2 g

ð1Þ
2 þ r2p2b

ð1Þ
2 g

ð1Þ
2

� �
½N0ð1ÞþX½1�R

�ðkÞÞ�
N0 ð1Þ
X½1�
ð1�X½1�ð1�bÞð1�R�ðkÞÞÞ�ð1�R�ðkÞÞðX½1�ð1�bÞþbð1�-Þþ-Þþ1

8<
:

9=
;

Proof. Noting that

w ¼ lim
z!1

wðzÞ; P1 ¼ lim
z!1

P1ðzÞ; P2 ¼ lim
z!1

P2ðzÞ;

P1 ¼ lim
z!1

P1ðzÞ; P2 ¼ lim
z!1

P2ðzÞ;

X ¼ lim
z!1

XJ
j¼1

XjðzÞ; Q1 ¼ lim
z!1

Q1ðzÞ;

Q2 ¼ lim
z!1

Q2ðzÞ; R1 ¼ lim
z!1

R1ðzÞ; R2 ¼ lim
z!1

R2ðzÞ:

The stated formula follows by direct calculation. h

Theorem 4.2. Let Ls, Lq, Ws and Wq be the mean number of
customers in the system, the mean number of customers in the

orbit, average time a customer spends in the system and average
time a customer spends in the orbit respectively, then under the
stability condition, we have

Lq ¼ P0

Nr000ð1ÞDr00ð1Þ �Dr000ð1ÞNr00ð1Þ
3ðDr00ð1ÞÞ2

" #

Nr00ð1Þ ¼ 2N0ð1Þ½X½1�ð1� bÞð1� R�ðkÞÞ � 1� � 2X½1�ð1� b½1� R�ðkÞ�
þ ð1� bÞ½1� R�ðkÞ�-Þ þ 2X2

½1�ð1� bÞ½1� R�ðkÞ�

Nr000ð1Þ ¼ 3N00ð1Þ½X½1�ð1� bÞð1� R�ðkÞÞ � 1� þ 3N0ð1Þ½X½2�ð1
� bÞ½1� R�ðkÞ� � 3X½1�b½1� R�ðkÞ�� � 3X½2�½1� b½1
� R�ðkÞ� � ðR�ðkÞ � b½1� R�ðkÞ�Þ-� � 3X½1�ð1
� R�ðkÞÞ½bsþ 2X½1�ð1� bÞ-�

Dr00ð1Þ ¼ �2X½1�½1� X½1�ð1� R�ðkÞÞ � -�

Dr000ð1Þ¼ 3X½1�½sþ2X½1�ð1�R�ðkÞÞ-�þ3X½2�½1�2X½1�ð1�R�ðkÞÞ�-�

Ls ¼ P0

Nr000ð1ÞDr00ð1Þ �Dr000ð1ÞNr00ð1Þ
3ðDr00ð1ÞÞ2

" #

Nr000ð1Þ¼ 3N00ð1Þ½X½1�ð1�bÞð1�R�ðkÞÞ�1�þ3N0ð1Þ½X½2�ð1�bÞ½1
�R�ðkÞ��3X½1�b½1�R�ðkÞ���3X½2�½1�b½1�R�ðkÞ�
�ðR�ðkÞ�b½1�R�ðkÞ�Þ-��6-½N0ð1ÞþX½1�R

�ðkÞ�

�3X½1�ð1�R�ðkÞÞ½bsþ2X½1�ð1�bÞ-�Ws¼
Ls

kEðXÞ and Wq¼
Lq

kEðXÞ

where

N00ð1Þ ¼
f1� ½V�ðkbÞ�JgðkbÞ kbX2

½1�m
ð2Þ þ X½2�mð1Þ

� �
½V�ðkbÞ�Jð1� V�ðkbÞÞ

;

s ¼ p1ð1� r1Þw1 þ p2ð1� r2Þw2 þ 2r1p1w3 þ 2r2p2w4
1,G2)/1 retrial queueing system with balking, optional re-service under
), http://dx.doi.org/10.1016/j.asej.2014.02.003
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w1¼ ðkbÞ2X2
½1�b
ð2Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i2	

þkbX½2�b
ð1Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i
þa1b

ð1Þ
1 ðkbÞ

2
X2
½1� d

ð2Þ
1 þ2d

ð1Þ
1 g

ð1Þ
1 þg

ð2Þ
1

� �i

w2¼ ðkbÞ2X2
½1�b
ð2Þ
2 1þa2 d

ð1Þ
2 þg

ð1Þ
2

� �h i2	

þkbX½2�b
ð1Þ
2 1þa2 d

ð1Þ
2 þg

ð1Þ
2

� �h i
þa2b

ð1Þ
2 ðkbÞ

2
X2
½1� d

ð2Þ
2 þ2d

ð1Þ
2 g

ð1Þ
2 þg

ð2Þ
2

� �i

w3¼ ðkbÞ2X2
½1�b
ð2Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i2	

þkbX½2�b
ð1Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i
þa1b

ð1Þ
1 ðkbÞ

2
X2
½1� d

ð2Þ
1 þ2d

ð1Þ
1 g

ð1Þ
1 þg

ð2Þ
1

� �
þkbX½1�b

ð1Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i2


w4¼ ðkbÞ2X2
½1�b
ð2Þ
2 1þa2 d

ð1Þ
2 þg

ð1Þ
2

� �h i2	

þkbX½2�b
ð1Þ
2 1þa2 d

ð1Þ
2 þg

ð1Þ
2

� �h i
þa2b

ð1Þ
2 ðkbÞ

2
X2
½1� d

ð2Þ
2 þ2d

ð1Þ
2 g

ð1Þ
2 þg

ð2Þ
2

� �
þkbX½1�b

ð1Þ
1 1þa1 d

ð1Þ
1 þg

ð1Þ
1

� �h i2


Proof. The mean number of customers in the orbit (Lq) under
steady state condition is obtained by differentiating (3.73) with
respect to z and evaluating at z = 1

Lq ¼
NrðzÞ
DrðzÞ ¼ H0ð1Þ ¼ lim

z!1

d

dz
HðzÞ:

The mean number of customers in the system (Ls) under steady
state condition is obtained by differentiating (3.72) with
respect to z and evaluating at z = 1

Ls ¼
NrðzÞ
DrðzÞ ¼ K0ð1Þ ¼ lim

z!1

d

dz
KðzÞ:

The average time a customer spends in the system (Ws) and
average time a customer spends in the orbit (Wq) is obtained
by using the Little’s formula. The stated formulas followed
by direct calculation. h
5. Stochastic decomposition and special cases

Stochastic decomposition has been widely observed among M/
G/1 type queueing models with server vacations by Fuhrman
vðzÞ ¼
ð1� -Þð1� zÞðð1� r1Þp1S�1ðA1ðzÞÞ þ ð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ

� �2 þ r2p2 S�2ðA2ðzÞÞ
� �2Þ

ð1� r1Þp1S�1ðA1ðzÞÞ þ ð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ
� �2 þ r2p2 S�2ðA2ðzÞÞ

� �2� �
� z

n o
and Cooper [24]. A key result in these analyses is that the num-
ber of customers in the system in steady-state at a random

point in time is distributed as the sum of two independent ran-
dom variables, one of which is the number of customers in the
corresponding standard queueing system (in steady-state) at a

random point in time, the other-random variable may have
different probabilistic interpretations in specific cases depend-
ing on how the vacations are scheduled. Stochastic decompo-

sition has also been observed to hold for some M/G/1 retrial
queueing models by Krishnakumar and Arivudainambi [12].
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Let K(z) be the stationary system size distribution of M[x]/
(G1,G2)/1 retrial queueing system with optional re-service,
balking, Modified vacation policy and server interruption is

the convolution of two independent random variables v(z)
and u(z).

The mathematical version of the stochastic decomposition

law is K(z) = v(z). u(z).

(i) The system size distribution of M[x]/(G1, G2)/1 queueing

system with optional re-service, balking and service
interruption. (represented in first term of K(z)),

(ii) The conditional distribution of the number of customers
in the vacation system at random point in time given the

server is idle (represented in second term of K(z)).

The number of arrivals in the variant vacation system at a

random point in time given that the server is on vacation or
idle. In fact the second term can be also obtained through
the vacation definition of our system, i.e., uðzÞ ¼
N2ðzÞ
D2ðzÞ ¼ P0 þ PðzÞ þ

PJ
j¼1XjðzÞ

�� .
P0 þ Pð1Þ þ

PJ
j¼1Xjð1Þ

� �
N2ðzÞ ¼ P0 z 1� ð1� r1Þp1S�1ðA1ðzÞÞ þ ð1� r2Þp2S�2ðA2ðzÞÞ

���
þr1p1 S�1ðA1ðzÞÞ

� �2 þ r2p2 S�2ðA2ðzÞÞ
� �2�o

�fðNðzÞ � 1ÞðR�ðkÞ þ XðzÞð1� R�ðkÞÞÞ þ XðzÞg
�NðzÞ z� ðR�ðkÞ þ XðzÞð1� R�ðkÞÞÞ ð1� r1Þp1S�1ðA1ðzÞÞ

��
þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ

� �2 þ r2p2 S�2ðA2ðzÞÞ
� �2�o

þ½1� XðzÞ� zðbð1� R�ðkÞÞðNðzÞ � 1Þ þ 1Þ � ðR�ðkÞf
þXðzÞð1� bÞð1� R�ðkÞÞÞ ð1� r1Þp1S�1ðA1ðzÞÞ

�
þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ

� �2
þr2p2½S�2ðA2ðzÞÞ�2

�o�
� ðð1� r1Þp1S�1ðA1ðzÞÞ
�

þð1� r2Þp2S�2ðA2ðzÞÞ þ r1p1 S�1ðA1ðzÞÞ
� �2

þr2p2 S�2ðA2ðzÞÞ
� �2Þ � z

o
D2ðzÞ

¼ ð1� -Þð1� zÞ ð1� r1Þp1S�1ðA1ðzÞÞ þ ð1� r2Þp2S�2ðA2ðzÞÞ
�

þr1p1 S�1ðA1ðzÞÞ
� �2 þ r2p2 S�2ðA2ðzÞÞ

� �2��DrðzÞ

The first term can be obtained through the without vacation
definition of our system.
From above stochastic decomposition law, we observe that
K(z) = v (z). u(z) which conform that the decomposition

result of Fuhrman and Cooper [24], also valid for this special
vacation system.
5.1. Special cases

In this section, we analyze briefly some special cases of our
model, which are consistent with the existing literature.
1,G2)/1 retrial queueing system with balking, optional re-service under
), http://dx.doi.org/10.1016/j.asej.2014.02.003

http://dx.doi.org/10.1016/j.asej.2014.02.003


Kð

Kð

Kð

Analysis of an M[X]/(G1,G2)/1 retrial queueing system with balking 11

Pl
mo
Case (i): No Retrial, No balking, No vacation and No break-

downLet b= 0; a1 = a2 = 0; Pr[V= 0] = 1 and R*

(k) fi1. Our model can be reduced to batch arrival queue-
ing system with two types of service with optional re-ser-

vice. In this case, K(z) can be simplified to the following
expressions are coincided with the result in Madan et al. [9].
zÞ ¼¼
P0 ð1� r1Þp1S�1ðk� kXðzÞÞ þ ð1� r2Þp2S�2ðk� kXðzÞÞ þ r1p1 S�1ðk� kXðzÞÞ

� �2 þ r2p2 S�1ðk� kXðzÞÞ
� �2� �

z� ð1� r1Þp1S�1ðk� kXðzÞÞ þ ð1� r2Þp2S�2ðk� kXðzÞÞ þ r1p1 S�1ðk� kXðzÞÞ
� �2 þ r2p2 S�1ðk� kXðzÞÞ

� �2� �
where P 0 ¼ 1� kbX ½1� ð1� r1Þp1b
ð1Þ
1 þ ð1� r2Þp2b

ð1Þ
2

n
þ2r1p1b

ð1Þ
1 þ 2r2p2b

ð1Þ
2 g

Case (ii): Single type, No re-service, No retrial and No
breakdownLet p2 = 0, Pr[S2 = 0] = 1, r1 = 1; b = 1, R*

(k) fi 1 and a1 = a2 = 0. Then we get a batch arrival
queueing system with balking and modified vacations.
zÞ ¼
ð1� qÞ ½z� 1�S�1½kbð1� XðzÞ�

� �
z� S�1½kbð1� XðzÞ�
� � � ð1� ½V

�ðkbÞ�JÞðV�½kbð1� XðzÞ� � 1Þ þ ðXðzÞ � 1Þð1� ½V�ðkbÞ�JÞðV�ðkbÞÞJ

kbmð1Þð1� ½V�ðkbÞ�JÞ þ ðV�ðkbÞÞJð1� V�ðkbÞÞ½XðzÞ � 1�
;

This results are coincide equivalent to the results by Ke [4].
Case (iii): Single type, No re-service, No balking, single vaca-
tion and No breakdownLet p2 = 0, Pr[S2 = 0] = 1, r1 = 0;
b= 1, J = 1 and a1 = a2 = 0. Our model can be reduced

to an M/G/1 retrial queue with general retrial time under
Bernoulli vacations.
zÞ ¼ ½R
�ðkÞ � kbð1Þ1 � ðzþ ð1� zÞR�ðkÞÞ½1� V�ðk� kzÞ� þ ð1� zÞV�ðkÞR�ðkÞf gS�1½k� kz�

½kmð1Þ þ V�ðkÞR�ðkÞ� ½R�ðkÞ þ zð1� R�ðkÞÞ�S�1½k� kz� � z
� �
Lq ¼ lim
z!1

H0ðzÞ ¼ 2kmð1Þð1� R�ðkÞÞ þ k2mð2Þ

2ðkmð1Þ þ V�ðkÞR�ðkÞÞ þ
2kbð1Þ1 ð1� R�ðkÞÞ þ k2bð2Þ1

2ðR�ðkÞ � kbð1Þ1 Þ
In this case, the probability generating function of the number
of customers in the system K(z), the expected number of cus-

tomers in the queue Lq can be simplified the following expres-
sion and which is equivalent the results obtained by
Krishnakumar and Arivudainambi [12].

Case (iv): Single type, No re-service, No balking and No
delaying repair.Let p2 = 0, Pr[S2 = 0] = 1, r1 = 0, b = 1
and g1 = g2 = 0. Our model can be reduced to an M/G/1

retrial queueing system with a modified vacations and ser-
ver breakdowns.

KðzÞ¼ R�ðkÞ�kbð1Þ1

N0ð1ÞþR�ðkÞ

( )

�ðNðzÞ ðR
�ðkÞþ zð1�R�ðkÞÞÞþR�ðkÞðz�1Þf gS�1½A1ðzÞ�Þ
z�S�1½A1ðzÞ�ðR�ðkÞþ zð1�R�ðkÞÞÞ
� �

In this case, K(z) can be simplified and the following expres-

sions are coincided with the result in Chen et al. [17].
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6. Numerical illustration

In this section, we present some numerical examples using
MATLAB in order to illustrate the effect of various parame-

ters in the system performance measures. We consider retrial
times, service times, vacation times, delay times and repair
times are exponentially, Erlangianly and hyper-exponentially

distributed. Further we assume that customers are arriving
one by one, so X[1] = 1 and X[2] = 0. The arbitrary values to
the parameters are so chosen such that they satisfy the stability

condition. The following tables give the computed values of
various characteristics of our model like, probability that the
server is idle P0, the mean orbit size Lq, probability that server

is idle during retrial rime (w), busy on both types (P1,P2), re-
service on both types (P1,P2), on vacation (X), under delaying
repair on both type (Q1,Q2) and repair on both types (R1,R2)

respectively.
Where the exponential distribution is f(x) = te�tx, x > 0,
Erlang-2 stage distribution is f(x) = t2xe�tx, x > 0 and
hyper-exponential distribution is fðxÞ ¼ cte�txþ
ð1� cÞt2e�t2x; x > 0.

Table 1 shows that when balking probability (1 � b)
increases, then the probability that server is idle P0 increases,

the mean orbit size Lq decreases and probability that server
is idle during retrial time w also decreases for the values of
k = 0.5, p1 = 0.5; r1 = 0.5; r2 = 0.5; h = 2; l1 = 8;
l2 = 10; g1 = 6; g2 = 8; n1 = 6; n2 = 8; a1 = 0.4; a2 = 0.6;

c = 5; J = 1; c = 0.7. Table 2 shows that when first type prob-
ability (p1) increases, then the mean orbit size Lq increases and
probability that server is busy on first type P1 increasing and

probability that server is busy on second type P2 decreasing
for the values of k = 0.5, r1 = 0.5; b= 0.5; r2 = 0.5; h = 2;
l1 = 8; l2 = 10; g1 = 6; g2 = 8; n1 = 6; n2 = 8; a1 = 0.4;

a2 = 0.6; c = 5; J = 1; c = 0.7. Table 3 shows that when
re-service probability on first type (r1) increases, then the prob-
ability that server is idle P0 decreases, then the mean orbit size
Lq increases and probability that server is re-service on first
1,G2)/1 retrial queueing system with balking, optional re-service under
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Table 1 The effect of balking probability (1 � b) on P0 and Lq.

Retrial distribution Exponential Erlang-2 stage Hyper-exponential

1 � b P0 Lq w P0 Lq w P0 Lq w

Balking probability

0.10 0.7781 0.0599 0.0339 0.4945 0.2544 0.1237 0.8378 0.0384 0.0219

0.20 0.8032 0.0513 0.0271 0.5423 0.2196 0.1023 0.8565 0.0328 0.0175

0.30 0.8283 0.0433 0.0211 0.5931 0.1865 0.0819 0.8752 0.0276 0.0135

0.40 0.8535 0.0357 0.0157 0.6466 0.1551 0.0628 0.8937 0.0227 0.0100

0.50 0.8786 0.0286 0.0110 0.7025 0.1253 0.0454 0.9121 0.0181 0.0070

Table 5 The effect of vacation rate (c) on on P0 and Lq.

Vacation distribution Exponential Erlang-2 stage Hyper-exponential

c P0 Lq X P0 Lq X P0 Lq X

Vacation rate

5.00 0.8888 0.0209 0.0467 0.7424 0.0875 0.0819 0.9195 0.0127 0.0363

6.00 0.8983 0.0195 0.0390 0.7621 0.0831 0.0689 0.9271 0.0117 0.0299

7.00 0.9052 0.0185 0.0335 0.7764 0.0801 0.0595 0.9325 0.0111 0.0254

8.00 0.9104 0.0179 0.0293 0.7872 0.0780 0.0523 0.9364 0.0106 0.0221

9.00 0.9144 0.0174 0.0261 0.7958 0.0765 0.0467 0.9395 0.0103 0.0195

Table 4 The effect of number of vacations (J) on P0 and Lq.

Vacation distribution Exponential Erlang-2 stage Hyper-exponential

J P0 Lq X P0 Lq X P0 Lq X

Number of vacations

1.00 0.8888 0.0209 0.0467 0.7424 0.0875 0.0819 09195 0.0127 0.0363

2.00 0.8350 0.0268 0.0899 0.6411 0.1046 0.1486 0.8785 0.0167 0.0706

3.00 0.7851 0.0324 0.1299 0.5573 0.1187 0.2039 0.8397 0.0205 0.1031

4.00 0.7387 0.0375 0.1672 0.4871 0.1305 0.2501 0.8029 0.0240 0.1340

5.00 0.6956 0.0423 0.2018 0.4276 0.1405 0.2893 0.7679 0.0274 0.1632

Table 2 The effect of probability on first type (p1) on P0 and Lq.

Service distribution Exponential Erlang-2 stage Hyper-exponential

p1 Lq P1 P2 Lq P1 P2 Lq P1 P2

Type1 probability

0.10 0.0265 0.0031 0.0223 0.1148 0.0060 0.0430 0.0167 0.0023 0.0163

0.20 0.0270 0.0062 0.0198 0.1174 0.0119 0.0382 0.0171 0.0046 0.0145

0.30 0.0275 0.0093 0.0173 0.1200 0.0179 0.0334 0.0174 0.0069 0.0127

0.40 0.0281 0.0124 0.0148 0.1227 0.0239 0.0287 0.0178 0.0092 0.0109

0.50 0.0286 0.0155 0.0124 0.1253 0.0298 0.0239 0.0181 0.0114 0.0091

Table 3 The effect of re-service probability on first type (r1) on P0 and Lq.

Service distribution Exponential Erlang-2 stage Hyper-exponential

r1 P0 Lq P1 P0 Lq P1 P0 Lq P1

reservice probability

0.30 0.8826 0.0268 0.0046 0.7119 0.1168 0.0090 0.9149 0.0170 0.0034

0.40 0.8806 0.0277 0.0062 0.7072 0.1211 0.0119 0.9135 0.0175 0.0046

0.50 0.8786 0.0286 0.0077 0.7025 0.1253 0.0149 0.9121 0.0181 0.0057

0.60 0.8766 0.0295 0.0093 0.6979 0.1296 0.0179 0.9106 0.0187 0.0069

0.70 0.8746 0.0304 0.0108 0.6932 0.1340 0.0209 0.9092 0.0192 0.0080
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Table 6 The effect of repair rate on first type FPS (n1) on P0 and Lq.

Repair distribution Exponential Erlang-2 stage Hyper-exponential

n1 P0 Lq R1 P0 Lq R1 P0 Lq R1

Repair rate

1.00 0.8968 0.0221 0.0093 0.7486 0.1092 0.0364 0.9263 0.0134 0.0069

2.00 0.8977 0.0202 0.0047 0.7567 0.0906 0.0182 0.9268 0.0121 0.0029

3.00 0.8980 0.0198 0.0031 0.7594 0.0864 0.0121 0.9270 0.0118 0.0018

4.00 0.8982 0.0196 0.0023 0.7607 0.0846 0.0091 0.9271 0.0118 0.0013

5.00 0.8983 0.0195 0.0019 0.7615 0.0837 0.0073 0.9271 0.0117 0.0010
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type P1 also increase for the values of k = 0.5, p1 = 0.5;
b = 0.5; r2 = 0.5; h = 2; l1 = 8; l2 = 10; g1 = 6; g2 = 8;
n1 = 6; n2 = 8; a1 = 0.4; a2 = 0.6; c = 5; J= 1; c= 0.7.

Table 4 shows that when number of vacations (J) increases,

then the probability that server is idle P0 decreases, the mean
orbit size Lq increases and probability that server is on
Figure 3 Lq versus p1.

Figure 2 Lq versus h.

Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
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vacation X also increases for the values of k = 0.5, p1 = 0.5;
r1 = 0.5; b= 0.5; r2 = 0.5; h = 2; l1 = 8; l2 = 10; g1 = 6;
g2 = 8; n1 = 6; n2 = 8; a1 = 0.4; a2 = 0.6; c = 5; c = 0.7.
Table 5 shows that when vacation rate (c) increases, then the

probability that server is idle P0 increases the mean orbit size
Lq decreases and probability that server is on vacation X also
Figure 5 Lq versus c.

Figure 4 P0 versus r1.
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decreases for the values of k = 0.5, p1 = 0.5; r1 = 0.5;
b= 0.5; r2 = 0.5; h = 2; l1 = 8; l2 = 10; g1 = 6; g2 = 8;
n1 = 6; n2 = 8; a1 = 0.4; a2 = 0.6; J = 1; c = 0.7;. Table 6

shows that when repair rate on first type (n1) increases, then
the probability that server is idle P0 increases, the mean orbit
size Lq decreases and probability that server is under repair

on First type (R1) also decrease for the values of k = 0.5,
p1 = 0.5; r1 = 0.5; c = 5 b = 0.5; r2 = 0.5; h = 2; l1 = 8;
l2 = 10; g1 = 6; g2 = 8; n2 = 8; a1 = 0.4; a2 = 0.6; J = 1;

c= 0.7.
For the effect of the parameters h, b, r1, p1, c, J, g1 and n1

on the system performance measures, two dimensional graphs
are drawn in Figs. 1–8. Fig. 1 shows that the mean orbit size Lq

increases for increasing value of the non-balking probability
(b). Fig. 2 shows that the mean orbit size Lq decreases for
increasing value of the retrial rate (h). Fig. 3 shows that the

mean orbit size Lq increases for increasing value of the first
type probability (p1). Fig. 4 shows that the idle probability
Figure 7 P0 versus g1.

Figure 6 Lq versus J.
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P0 decreasing for increasing value of the re-service probability
on first type (r1). Fig. 5 shows that the mean orbit size Lq

decreases for increasing value of the vacation rate (c). Fig. 6
shows the mean orbit size Lq increases for increasing value
of the number of vacations (J). Fig. 7 shows the idle probabil-
ity P0 increases for increasing value of the delay rate on first

type (g1). Fig. 8 shows mean orbit size Lq decreases for increas-
ing value of the repair rate on first type (n1).

Three dimensional graphs are illustrated in Figs. 9–12. In

Fig. 9, the surface displays an upward trend as expected for
increasing the value of the non-balking probability b and first
type probability p1 against the mean orbit size Lq. Fig. 10
shows that the surface displays sharp fall trend as expected

for increasing value of retrial rate h and repair rate on first type
n1 against the mean orbit size Lq. The mean orbit size Lq

increases for increasing value of the number of vacations (J)

and re-service probability on first type (r1) is shown in
Fig. 11. In Fig. 12, the surface displays downward trend as
expected for increasing value of vacation rate c and delaying

rate on first type g1 against the server idle probability P0.
Figure 9 Lq versus b and p1.

Figure 8 Lq versus n1.
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Figure 10 Lq versus h and n1.

Figure 11 Lq versus J and r1.

Figure 12 P0 versus c and g1.
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7. Conclusion

In this paper, we have studied a batch arrival retrial queueing

system with balking, modified vacations subject to server
breakdowns and delaying repair. Where the server provides
two types of service and each type consist an optional re-ser-

vice. The probability generating functions of the number of
customers in the system and orbit are found by using the sup-
plementary variable technique. The performance measures
Please cite this article in press as: Rajadurai P et al., Analysis of an M[X]/(G
modified vacation policy and service interruption, Ain Shams Eng J (2014
like, the mean number of customers in the system/orbit, the
average waiting time of customer in the system/orbit and some
system probabilities are obtained. Finally, the general decom-

position law is shown to hold good for this model. The analyt-
ical results are validated with the help of numerical
illustrations. This model finds potential application in Simple

Mail Transfer Protocol (SMTP) mail system to deliver the
messages between mail servers and Wired Networks for select-
ing routes from the routing table.
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Appendix A. The embedded Markov chain {Zn; n 2 N} is
ergodic if and only if q < 1, where q = X[1](1 � R*(k)) + -,
- ¼ kbX½1� p1b
ð1Þ
1 1þ a1 d

ð1Þ
1 þ g

ð1Þ
1

� �h in
þp2b

ð1Þ
2 1þ a2 d

ð1Þ
2 þ g

ð1Þ
2

� �h i
þr1p1b

ð1Þ
1 1þ a1 d

ð1Þ
1 þ g

ð1Þ
1

� �h i
þr2p2b

ð1Þ
2 1þ a2 d

ð1Þ
2 þ g

ð1Þ
2

� �h io
Proof From Gomez-Corral [25], it is not difficult to see that
{Zn; n 2 N} is an irreducible and aperiodic Markov chain.
To prove Ergodicity, we shall use the following Foster’s crite-

rion: an irreducible and aperiodic Markov chain is ergodic if
there exists a nonnegative function f(j), j 2 N and e > 0, such
that mean drift wj ¼ E½fðznþ1Þ � fðznÞ=zn ¼ j� is finite for all
j 2 N and wj 6 �e for all j 2 N, except perhaps for a finite

number j’s. In our case, we consider the function f(j) = j. then
we have

wj ¼
-� 1; j ¼ 0;

X½1�ð1� R�ðkÞÞ þ -� 1; j ¼ 1; 2 . . .

�

Clearly the inequality X[1](1 � R*(k)) + - < 1 is sufficient

condition for Ergodicity.
The same inequality is also necessary for Ergodicity. As

noted in Sennott et al. [26], we can guarantee non-Ergodicity,

if the Markov chain {Zn; n P 1} satisfies Kaplan’s condition,
namely, wj <1 for all j P 0 and there exits j0 2 N such that
wj P 0 for j P j0. Notice that, in our case, Kaplan’s condition

is satisfied because there is a k such that mij = 0 for j< i � k
and i> 0, where M = (mij) is the one step transition matrix of
{Zn; n 2 N}. Then X[1](1 � R*(k)) + - P 1 implies the non-
Ergodicity of the Markov chain.
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