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Abstract In this paper, we consider a single server retrial queueing system with working vacations.

Further vacation interruption is considering with the regular busy server is subjected to breakdown

due to the arrival of negative customers. When the orbit becomes empty at the time of service com-

pletion for a positive customer, the server goes for a working vacation. The server works at a lower

service rate during working vacation (WV) period. If there are customers in the system at the end of

each vacation, the server becomes idle and ready for serving new arrivals with probability p (single

WV) or it remains on vacation with probability q (multiple WVs). By using the supplementary vari-

able technique, we found out the steady state probability generating function for the system and its

orbit. System performance measures, reliability measures and stochastic decomposition law are dis-

cussed. Finally, some numerical examples and cost optimization analysis are presented.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In queueing theory, vacation queues and retrial queues are
active research topics for a long time. We can find general

models in vacation queues and retrial queues from Ke et al.
[1] and Artalejo and Gomez-Corral [2] respectively. In retrial
queueing system, queues with repeated attempts are character-
ized by an arriving customer who finds the server busy, leaves
the service area and repeats its demand after some time.

Between trials, the blocked customer joins a pool of unsatisfied
customers called orbit. An arbitrary customer in the orbit who
repeats the request for service is independent of the rest of the

customers in the orbit. Such a retrial queue plays a special role
in computers, telecommunication systems, communication
protocols and retail shopping queues, etc.

For the last two decades, many researchers studied queue-

ing networks with the concept of positive and negative cus-
tomers. Queues with negative customers (called G-queues)
have concerned huge interests due to their extensive applica-

tions in computers, communication networks, neural networks
and manufacturing systems [3,4]. The named G-queue has
been adopted for the queue with negative customers in the
lli sched-
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acknowledgment of Gelenbe, who first introduced this type of
queue in [5,6]. Harrison [7] has studied the idea of composi-
tional reversed Markov processes with applications to

G-networks. The positive customer arrives into the system
and gets service as ordinary queueing customers, but the
negative customers enter into the system only at the service

time of positive customers. This type of negative customers
removes the positive customers being in service from the sys-
tem and causes the server breakdown and the service channel

will fail for a short interval of time. When the server fails, it
will be sent to repair immediately. After completion of repair,
the server will treat as good as new. Do [8] has presented a
survey on queueing systems with G-networks, negative cus-

tomers and applications. Choudhury and Ke [9], Rajadurai
et al. [10,11] and Singh et al. [12] have discussed the retrial
queue with the concept of breakdown and repair. Recently,

Krishnakumar et al. [13], Gao and Wang [14], Peng et al.
[15] and Rajadurai et al. [16,17] have discussed different types
of queueing models operating with the simultaneous presence

of negative arrivals.
In working vacation period (WV), the server gives service to

customer at lower service rate, but the server stops the service

completely in the normal vacation period. This queueing sys-
tem has major applications in providing network service,
web service, file transfer service and mail service, etc. In
2002, Servi and Finn [18] have introduced an M/M/1 queueing

system with working vacations. Wu and Takagi [19] have
extended the M/M/1/WV queue to an M/G/1/WV queue. Very
recently, Arivudainambi et al. [20] have introduced M/G/1

retrial queue with single working vacation. Liu and Song [21]
have discussed a discrete time retrial queue with non-
persistent customers and working vacations. Furthermore if

there are customers in the system at the end of a lower speed
service, the server can stop the vacation and come back to
the normal busy state. This policy is called vacation interrup-

tion. Li and Tian [22] have presented an M/M/1 queueing
model with working vacations and vacation interruption.
Some of the authors such as, Zhang and Hou [23], Gao and
Liu [24], Gao et al. [25], Zhang and Liu [26], Rajadurai et al.

[27,28] have analyzed a single server retrial queue with working
vacations and vacation interruptions.

In this paper, we have extended the work of Gao et al. [25]

and Zhang and Liu [26] by incorporating the concept of nega-
tive customers (G-queues) in both single and multiple working
vacations with breakdowns and repair. To the author’s best of

knowledge, there is no work published in the queueing litera-
ture with the combination of retrial queueing system with gen-
eral retrial times, negative customers, single and multiple
working vacations, vacation interruption and breakdowns by

using the method of supplementary variable technique. The
mathematical results and theory of queues of this model pro-
vide to serve a specific and convincing application in the com-

puter processing system. Our model is helpful to managers
who can design a system with economic management.

The remainder of this work is given as follows. The detailed

mathematical description and practical applications of our
model are given in Section 2. The steady state joint distribution
of the server state and the number of customers in the system

and its orbit are obtained in Section 3. Some system perfor-
mance measures, the mean busy period, the mean busy cycle
and reliability measures are obtained in Section 4. In Section 5,
conditional stochastic decomposition is shown good for our
Please cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
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model. Important special cases of this model are given in Sec-
tion 6. Cost optimization analysis is discussed in Section 7. In
Section 8, the effects of various parameters on the system per-

formance are analyzed numerically. Conclusion and summary
of the work are presented in Section 9.
2. Description of the model

In this section, we consider a single server retrial queueing sys-
tem with both single and multiple working vacations and vaca-
tion interruption, where the regular busy server is subjected to

breakdown due to the arrival of negative customers. The
detailed description of our model is given as follows:

� The arrival process: Customers arrive at the system accord-
ing to a Poisson process with rate k.

� The retrial process: If an arriving positive customer finds

that the server is free, the customer begins his service imme-
diately. Otherwise, the server is busy or working vacation or
breakdown, the arrivals join pool of blocked customers
called an orbit in accordance with FCFS discipline, which

means that only one customer at the head of the orbit queue
is allowed to access the server. We assume that inter-retrial
times follow a general random variable R with an arbitrary

distribution RðtÞ having corresponding Laplace Stieltjes
Transform (LST) R�ð#Þ.

� The Bernoulli working vacation process: The server begins a

working vacation each time when the orbit becomes empty
and the vacation time follows an exponential distribution
with parameter h. During a vacation period if any customer

arrives, the server gives service at a lower speed service rate.
If any customers in the orbit at a lower speed service com-
pletion instant in the vacation period then the server will
stop the vacation and come back to the normal busy period

which means that vacation interruption happens. If no cus-
tomers are in the system at the end of the vacation, the ser-
ver either remains idle to serve a new customer with

probability p (single working vacation) in regular mode or
leaves for another working vacation with probability
q= 1 � p (multiple working vacation). When a vacation

ends and if there are customers in the orbit then the server
switches to the normal working level. During the
working vacation period, the service time follows a
general random variable Sv with distribution function

SvðtÞ having LST S�
vð#Þ and the first moment is given by

S�0
v ðhÞ ¼

R1
0

xe�hxdSvðxÞ.
� The regular service process: Whenever a new positive cus-

tomer or retry positive customer arrives at the server idle
state then the server immediately starts normal service for
the arrivals. The service time follows a general distribution

and it is denoted by the random variable Sb with distribu-
tion function SbðtÞ having LST S�

bð#Þ and the first moment

is given by S�0
b ðdÞ ¼

R1
0

xe�dxdSbðxÞ.
� The removal rule and the repair process: The negative cus-
tomers arrive from outside the system according to a Pois-
son arrival rate d. These negative customers arrive only at

the regular service time of the positive customers. Negative
customers cannot accumulate in a queue and do not receive
service, will remove the positive customers being in service

from the system. These types of negative customer’s cause
the server breakdown and the service channel will fail for
-queue with working vacations and vacation interruption under Bernoulli sched-
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a short interval of time. When the server fails, it will be sent

to repair immediately. After completion of repair, the server
will treat as good as new. The repair time (denoted by G) of
the server is assumed to be arbitrarily distributed with dis-

tribution function GðtÞ having LST G�ð#Þ and the first and

second moments are denoted by gð1Þ and gð2Þ.
� We assume that all the random variables (inter-arrival
times, retrial times, service times, working vacation times

and repair times) defined above are independent of each
other.

2.1. Practical application of the proposed model

The potential practical application of this model is in the oper-
ational model of stochastic production and inventory systems

with a multipurpose production facility. The production facil-
ity performs other additional tasks using the time between suc-
ceeding productions. We consider a practical problem related

to a production to order system. In production order system,
the customer orders for the product (positive customers) and
some customers cancel orders (negative customers) due to
financial crisis or disaster, etc. Let us assume that order system

follows the Poisson processes. At the time of arriving customer
orders the production facility is busy with other order, and a
new arriving order will form a waiting line which corresponds

to the retrial queue. Otherwise, the order is processed immedi-
ately. After the completion of order, the management policy
sets up the facility and begins product to the next order on

the list; otherwise, another external order arrives before the
order is made. The order time is assumed to be generally dis-
tributed (general retrial time). During the service time of order-

ing, if any canceling order exists then the major production will
be stopped (i.e. server breakdown). To enhance the production
facility performance, the management policy is to set up the
optional job facility (working vacation). After completion of

service for last order and there is no order in system (system
empty), the facility stops the major production and is available
to perform optional jobs (single working vacation) with lower

production rate (lower speed service rate). After the result of
disaster or an optional job completion, if there are no orders,
the production facility will continue to perform the optional

jobs at lower production rate (multiple working vacations).
Otherwise, it performs the major production. If there are
orders at the instant of the optional jobs completion, the pro-

duction facility will perform the major production (vacation
interruption). This type of system is very useful to increase
the performance of the production facility and to stop the pro-
duction facility from becoming overloaded.

Another practical application of this model is in the area of
computer processing system. In a computer processing system,
the buffer size (orbit) used to store messages is finite and the
XðtÞ ¼

0; if the server is free and in working vacation period;

1; if the server is free and in regular service period;

2; if the server is busy and in regular service period at

3; if the server is busy and in working vacation period

4; if the server is under repair period at time t:

8>>>>>><
>>>>>>:
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messages (customers) arrive into the system one by one, and
the processor (server) is in charge of processing messages.
The working mail server may be affected by virus (negative

customers), and the system may be subjected to electronic fails
(breakdowns) during service period and receive repair immedi-
ately. If the processor is available indicating that it is not cur-

rently working on a task and then a message is processed. The
messages are temporarily stored in a buffer to be served some
time later (retrial time) according to FCFS if the processor is

unavailable. To enhance the computer performance, whenever
all messages are processed and no new messages arrive, the
processor will perform a sequence of maintenance jobs, such
as virus scan (working vacations). During the maintenance

period, the processor can deal with the messages at the slower
rate to economize the cost (working vacation period). Upon
completion of the each maintenance, the processor checks

the messages and decides whether or not to resume the normal
service rate (single working vacation). At this moment, if no
message is in the system then the processor may decide to go

for another maintenance activity (multiple working vacations).
This type of working vacation discipline is a good approxima-
tion of such computer processing system.
3. Steady state analysis

In this section, we develop the steady state difference–differen-
tial equations for the retrial queueing system by treating the

elapsed retrial times, the elapsed service times, the elapsed
working vacation times and the elapsed repair times as supple-
mentary variables. Then we derive the probability generating

function (PGF) for the server states and for the number of cus-
tomers in the system and orbit.

3.1. The steady state equations

In steady state, we assume that R(0) = 0, Rð1Þ = 1,
Sbð0Þ= 0, Sbð1Þ = 1, Svð0Þ= 0, Svð1Þ = 1, G(0) = 0,
Gð1Þ = 1 are continuous at x = 0. So that the function

aðxÞ, lbðxÞ, lvðxÞ and nðxÞ are the conditional completion
rates (hazard rate) for retrial, normal service, lower rate service
and repair respectively.

i:e:; aðxÞdx ¼ dRðxÞ
1� RðxÞ ; lbðxÞdx ¼ dSbðxÞ

1� SbðxÞ ;

lvðxÞdx ¼ dSvðxÞ
1� SvðxÞ ; nðxÞdx ¼ dGðxÞ

1� GðxÞ :

In addition, let R0ðtÞ, S0
bðtÞ, S0

vðtÞ and G0ðtÞ be the elapsed

retrial time, elapsed normal service time, elapsed working

vacation time and elapsed repair time respectively at time t.
Further, we introduce the random variable,
time t;

at time t;

-queue with working vacations and vacation interruption under Bernoulli sched-
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Thus the supplementary variables R0ðtÞ, S0
bðtÞ, S0

vðtÞ and

G0ðtÞ are introduced in order to obtain a bivariate Markov
process XðtÞ;NðtÞ; t P 0f g, where XðtÞ denotes the server state
(0,1,2,3,4) depending on the server is free on both regular
busy period and working vacation period, regular busy, on
working vacation and under repair. If XðtÞ = 1 and

NðtÞ > 0, then R0ðtÞ represent the elapsed retrial time, if

XðtÞ = 2 and NðtÞ P 0 then S0
bðtÞ corresponding to the elapsed

time of the customer being served in regular busy period. If

XðtÞ = 3 and NðtÞ P 0, then S0
vðtÞ corresponding to the

elapsed time of the customer being served in lower rate service

period. If XðtÞ = 4 and NðtÞ P 0, then G0ðtÞ corresponding to

the elapsed time of the server being repaired.
We analyze the ergodicity of the embedded Markov chain

at departure, vacation or repair epochs. Let {tn;
n= 1, 2, . . .} be the sequence of epochs of either normal ser-

vice completion times or working vacation completion times
or repair period ends. The sequence of random vectors
Zn ¼ X tnþð Þ;N tnþð Þf g forms a Markov chain which is embed-

ded in the retrial queueing system.

Theorem 3.1. The embedded Markov chain Zn; n 2 Nf g is
ergodic if and only if q < R�ðkÞ for our system to be stable,

where q ¼ k=dð Þ 1� S�
bðdÞ

� �
1þ dgð1Þ
� �

Proof. To prove the sufficient condition of ergodicity, it is very
convenient to use Foster’s criterion (see Pakes [29]), which

states that the chain Zn; n 2 Nf g is an irreducible and aperi-
odic Markov chain is ergodic if there exists a non-negative
function fðjÞ; j 2 N and e > 0, such that mean drift

wj ¼ E fðznþ1Þ � fðznÞ=zn ¼ j½ � is finite for all j 2 N and

wj 6 �e for all j 2 N, except perhaps for a finite number j’s.

In our case, we consider the function fðjÞ ¼ j. then we have

wj ¼
q� 1; if j ¼ 0;

q� R�ðkÞ; if j ¼ 1; 2; . . .

�

Clearly the inequality q < R�ðkÞ is sufficient condition for
Ergodicity.

To prove the necessary condition, as noted in Sennott et al.
[30], if the Markov chain Zn; n P 1f g satisfies Kaplan’s
condition, namely, wj < 1 for all j P 0 and there exits

j0 2 N such that wj P 0 for j P j0. Notice that, in our case,

Kaplan’s condition is satisfied because there is a k such that

mij ¼ 0 for j < i� k and i > 0, where M ¼ ðmijÞ is the one step
transition matrix of Zn; n 2 Nf g. Then q P R�ðkÞ implies the
non-Ergodicity of the Markov chain. �

Let us define the limiting probabilities Q0ðtÞ ¼ P XðtÞ ¼ 0;f
NðtÞ ¼ 0g; P0ðtÞ ¼ P XðtÞ ¼ 1;NðtÞ ¼ 0f g and the probability
densities are

Pnðx; tÞdx ¼ P XðtÞ ¼ 1;NðtÞ ¼ n; x 6 R0ðtÞ < xþ dx
� �

;

for t P 0; x P 0 and n P 1:

Pb;nðx; tÞdx ¼ P XðtÞ ¼ 2;NðtÞ ¼ n; x 6 S0
bðtÞ < xþ dx

� �
;

for t P 0; x P 0; n P 0:

Qv;nðx; tÞdx ¼ P XðtÞ ¼ 3;NðtÞ ¼ n; x 6 S0
vðtÞ < xþ dx

� �
;

for t P 0; x P 0 and n P 0:

Rnðx; tÞdx ¼ P XðtÞ ¼ 4;NðtÞ ¼ n; x 6 G0ðtÞ < xþ dx
� �

;

for t P 0; x P 0 and n P 0:
Please cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
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We assume that the stability condition is fulfilled in the
sequel and so that we can set Q0 ¼ limt!1Q0ðtÞ;
P0 ¼ limt!1P0ðtÞ and limiting densities for t P 0, x P 0 and

n P 1.

PnðxÞ ¼ lim
t!1

Pnðx; tÞ; Pb;nðxÞ ¼ lim
t!1

Pb;nðx; tÞ;
Qv;nðxÞ ¼ lim

t!1
Qv;nðx; tÞ and RnðxÞ ¼ lim

t!1
Rnðx; tÞ:

By using the method of supplementary variable technique,
we formulate the system of governing equations of this model

as follows:

kP0 ¼ hpQ0 ð3:1Þ

kþ hð ÞQ0 ¼ hqQ0 þ
Z 1

0

Pb;0ðxÞlbðxÞdx

þ
Z 1

0

Qv;0ðxÞlvðxÞdxþ
Z 1

0

R0ðxÞnðxÞdx ð3:2Þ

dPnðxÞ
dx

þ kþ aðxÞð ÞPnðxÞ ¼ 0; n P 1 ð3:3Þ

dPb;0ðxÞ
dx

þ kþ dþ lbðxÞð ÞPb;0ðxÞ ¼ 0; n ¼ 0; ð3:4Þ

dPb;nðxÞ
dx

þ kþ dþ lbðxÞð ÞPb;nðxÞ ¼ kPb;n�1ðxÞ; n P 1;

ð3:5Þ

dQv;0ðxÞ
dx

þ kþ hþ lvðxÞð ÞQv;0ðxÞ ¼ 0; n ¼ 0 ð3:6Þ

dQv;nðxÞ
dx

þ kþ hþ lvðxÞð ÞQv;nðxÞ ¼ kQv;n�1ðxÞ; n P 1 ð3:7Þ

dR0ðxÞ
dx

þ kþ nðxÞð ÞR0ðxÞ ¼ 0; n ¼ 0: ð3:8Þ

dRnðxÞ
dx

þ kþ nðxÞð ÞRnðxÞ ¼ kRn�1ðxÞ; n P 1: ð3:9Þ

To solve the Eqs. (3.2)–(3.9), the steady state boundary
conditions at x = 0 are followed,

Pnð0Þ ¼
Z 1

0

Pb;nðxÞlbðxÞdxþ
Z 1

0

RnðxÞnðxÞdx

þ
Z 1

0

Qv;nðxÞlvðxÞdx; n P 1 ð3:10Þ

Pb;0ð0Þ ¼
Z 1

0

P1ðxÞaðxÞdxþ h
Z 1

0

Qv;0ðxÞdxþ kP0

� �
; n¼ 0;

ð3:11Þ

Pb;nð0Þ ¼
Z 1

0

Pnþ1ðxÞaðxÞdxþ k
Z 1

0

PnðxÞdx
�

þ h
Z 1

0

Qv;nðxÞdx
�
; n P 1; ð3:12Þ

Qv;nð0Þ ¼
kQ0; n ¼ 0

0; n P 1

�
ð3:13Þ
-queue with working vacations and vacation interruption under Bernoulli sched-
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Rnð0Þ ¼ d
Z 1

0

Pb;nðxÞdx; n P 0 ð3:14Þ
The normalizing condition is

P0 þQ0 þ
X1
n¼1

Z 1

0

PnðxÞdxþ
X1
n¼0

Z 1

0

Pb;nðxÞdx
�

þ
Z 1

0

Qv;nðxÞdxþ
Z 1

0

RnðxÞdx
�

¼ 1 ð3:15Þ
3.2. The steady state solution

The steady state solution of the retrial queueing model is
obtained by using the probability generating function tech-
nique. To solve the above equations, the PGFs are defined

for jzj 6 1 as follows:

Pðx; zÞ ¼
X1
n¼1

PnðxÞzn; Pð0; zÞ ¼
X1
n¼1

Pnð0Þzn;

Pbðx; zÞ ¼
X1
n¼0

Pb;nðxÞzn; Pbð0; zÞ ¼
X1
n¼0

Pb;nð0Þzn;

Qvðx; zÞ ¼
X1
n¼0

Qv;nðxÞzn; Qvð0; zÞ ¼
X1
n¼0

Qv;nð0Þzn;

Rðx; zÞ ¼
X1
n¼0

RnðxÞzn and Rð0; zÞ ¼
X1
n¼0

Rnð0Þzn

On multiplying the Eqs. (3.2)–(3.14) by zn and summing over n,
(n= 0, 1, 2, . . .), we get

@Pðx; zÞ
@x

þ kþ aðxÞð ÞPðx; zÞ ¼ 0 ð3:16Þ

@Pbðx; zÞ
@x

þ kð1� zÞ þ dþ lbðxÞð ÞPbðx; zÞ ¼ 0; ð3:17Þ

@Qvðx; zÞ
@x

þ kð1� zÞ þ hþ lvðxÞð ÞQvðx; zÞ ¼ 0 ð3:18Þ

@Rðx; zÞ
@x

þ kð1� zÞ þ nðxÞð ÞRðx; zÞ ¼ 0 ð3:19Þ

Pð0; zÞ ¼
Z 1

0

Pbðx; zÞlbðxÞdxþ
Z 1

0

Qvðx; zÞlvðxÞdx

þ
Z 1

0

Rðx; zÞnðxÞdx� kþ hð ÞQ0 � hqP0ð Þ ð3:20Þ

Pbð0; zÞ ¼ 1

z

Z 1

0

Pðx; zÞaðxÞdxþ k
Z 1

0

Pðx; zÞdx

þ h
Z 1

0

Qvðx; zÞdx; ð3:21Þ

Qvð0; zÞ ¼ kQ0 ð3:22Þ

Rð0; zÞ ¼ d
Z 1

0

Pbðx; zÞdx ð3:23Þ
Solving the partial differential Eqs. (3.20)–(3.23), it follows that

Pðx; zÞ ¼ Pð0; zÞ½1� RðxÞ�e�kx ð3:24Þ

Pbðx; zÞ ¼ Pbð0; zÞ½1� SbðxÞ�e�AbðzÞx; ð3:25Þ

Qvðx; zÞ ¼ Qvð0; zÞ½1� SvðxÞ�e�AvðzÞx; ð3:26Þ
Please cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
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Rðx; zÞ ¼ Rð0; zÞ½1� GðxÞ�e�bðzÞx; ð3:27Þ
where AbðzÞ ¼ dþ kð1� zÞð Þ;AvðzÞ ¼ hþ kð1� zÞð Þ and
bðzÞ ¼ kbð1� zÞ.

Inserting Eqs. (3.24)–(3.27) in (3.21) and make some manip-

ulation, finally we get,

Pbð0; zÞ ¼ Pð0; zÞ
z

R�ðkÞ þ z 1� R�ðkÞð Þ½ � þ kP0 þ kQ0VðzÞ
ð3:28Þ

where VðzÞ ¼ h
hþkð1�zÞ 1� S�

v AvðzÞð Þ	 

.

Using Eqs. (3.25)–(3.27) in (3.20), we get

Pð0; zÞ ¼ Pbð0; zÞS�
b AbðzÞð Þ þQvð0; zÞS�

v AvðzÞð Þ
þ Rð0; zÞG� bðzÞð Þ � kþ phð ÞQ0 ð3:29Þ

Using Eqs. (3.25)–(3.27) in (3.23), we get

Rð0; zÞ ¼ dPbð0; zÞ 1� S�
b AbðzÞð Þ

AbðzÞ
� �

; ð3:30Þ

Using Eqs. (3.22), (3.28), and (3.30) in (3.29), we get

Pð0; zÞ ¼ NrðzÞ
DrðzÞ ð3:31Þ

NrðzÞ ¼ zQ0

�
k S�

v AvðzÞð Þ � 1
� �� hp

� �þ kVðzÞ þ hpð Þ

� S�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �
AbðzÞ

� ��

DrðzÞ ¼
�
z� R�ðkÞ þ zð1� R�ðkÞÞð Þ

S�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �
AbðzÞ

� ��

Using Eq. (3.21) in (3.28), we get

Pbð0; zÞ ¼ Q0 k S�
v AvðzÞð Þ � 1

� �� hp
� �

R�ðkÞ þ zð1� R�ðkÞÞð Þ�
þ z kVðzÞ þ hpð Þg=DrðzÞ ð3:32Þ

Using Eq. (3.32) in (3.30), we get

Rð0; zÞ ¼ dQ0 1�S�
b AbðzÞð Þ� �

k S�
v AvðzÞð Þ � 1

� �� hp
� �

R�ðkÞð�
þ zð1�R�ðkÞÞÞ þ z kVðzÞ þ hpð Þg=AbðzÞ �DrðzÞ; ð3:33Þ

Using the Eqs. (3.22) and (3.31)–(3.33) in (3.24)–(3.27), then we
get the results for the following PGFs Pðx; zÞ, Pbðx; zÞ, Qvðx; zÞ
and Rðx; zÞ. Next we are interested in investigating the marginal
orbit size distributions due to system state of the server.

Theorem 3.2. The marginal probability distributions of the
number of customers in the orbit when server being idle, busy, on

working vacation and under repair are given by

PðzÞ¼NrðzÞ
DrðzÞ

NrðzÞ¼ zQ0

1�R�ðkÞ
k

� ��
k S�

v AvðzÞð Þ�1
� ��hp

� �
þ kVðzÞþhpð Þ S�

b AbðzÞð ÞþdG� bðzÞð Þ 1�S�
b AbðzÞð Þ� �

AbðzÞ
� ��

DrðzÞ¼
�
z� R�ðkÞþzð1�R�ðkÞÞð Þ S�

b AbðzÞð Þ�
þdG� bðzÞð Þ 1�S�

b AbðzÞð Þ� �
AbðzÞ

��
ð3:34Þ
-queue with working vacations and vacation interruption under Bernoulli sched-
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PbðzÞ ¼ Q0 1� S�
b AbðzÞð Þ� �

k S�
v AvðzÞð Þ � 1

� �� hp
� �

R�ðkÞð�
þzð1� R�ðkÞÞÞ þ z kVðzÞ þ hpð Þg=AbðzÞ �DrðzÞ ð3:35Þ

QvðzÞ ¼ kQ0VðzÞ=hf g ð3:36Þ
RðzÞ ¼ dQ0

k S�
v AvðzÞð Þ � 1

� �� hp
� �

R�ðkÞ þ zð1� R�ðkÞÞð Þ þ z kVðzÞ þ hpð Þ� �
� 1� S�

b AbðzÞð Þ� �
1� G� bðzÞð Þð Þ

( ),
bðzÞ � AbðzÞ �DrðzÞ; ð3:37Þ
where

Q0 ¼
R�ðkÞ�q

k=hð Þ 1�S�
vðhÞ

� �þR�ðkÞ 1þ hp=kð Þð Þ�qS�
vðhÞ

� � ð3:38Þ

P0 ¼ hp R�ðkÞ � qð Þ
k k=hð Þ 1� S�

vðhÞ
� �þ R�ðkÞ 1þ hp=kð Þð Þ � qS�

vðhÞ
� �

ð3:39Þ

q ¼ k=dð Þ 1� S�
bðdÞ

� �
1þ dgð1Þ
� �

; AbðzÞ ¼ dþ kð1� zÞð Þ;
AvðzÞ ¼ hþ kð1� zÞð Þ and bðzÞ ¼ kbð1� zÞ

Proof. Integrating the Eqs. (3.24)–(3.27) with respect to x, we

define the PGFs as, PðzÞ ¼ R1
0

Pðx; zÞdx, PbðzÞ ¼R1
0

Pbðx; zÞdx, QvðzÞ ¼
R1
0

Qvðx; zÞdx, RðzÞ ¼ R1
0

Rðx; zÞdx.
By using the normalized condition, we can determine the

probability that the server is idle (P0). Thus, by setting z= 1 in
(3.34)–(3.37) and applying de l’Hôpital’s rule whenever necessary
and we get P0 þQ0 þ Pð1Þ þPbð1Þ þQvð1Þ þ Rð1Þ ¼ 1. h
Theorem 3.3. The probability generating function of number of
customers in the system and orbit size distribution at stationary
point of time is
KsðzÞ ¼ NrsðzÞ
DrsðzÞ ¼ P0 þQ0 þ PðzÞ þ z PbðzÞ þQvðzÞð Þ þ RðzÞ ð3:40Þ

NrsðzÞ¼Q0

1� zð Þ
k=hð Þ hþkzVðzÞð Þþhpð Þ zAbðzÞ� R�ðkÞþ zð1�R�ðkÞÞð Þ AbðzÞS�

b AbðzÞð ÞþdG� bðzÞð Þ 1�S�
b AbðzÞð Þ� �� �� �

þz 1�R�ðkÞð Þ kVðzÞþhpð Þ AbðzÞS�
b AbðzÞð ÞþdG� bðzÞð Þ 1�S�

b AbðzÞð Þ� �� �
þAbðzÞ k S�

v AvðzÞð Þ�1
� ��hp

� �
( )

2
664

3
775

þ 1�S�
b AbðzÞð Þ� �

zbðzÞþd 1�G� bðzÞð Þð Þð Þ k S�
v AvðzÞð Þ�1

� ��hp
� �

R�ðkÞþ zð1�R�ðkÞÞð Þþ z kVðzÞþhpð Þ� �

8>>>><
>>>>:

9>>>>=
>>>>;

DrsðzÞ ¼ bðzÞ � zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �

KoðzÞ ¼ NroðzÞ
DrsðzÞ ¼ P0 þQ0 þ PðzÞ þPbðzÞ þQvðzÞ þ RðzÞ: ð3:41Þ

Nr0ðzÞ¼Q0

1� zð Þ
k=hð Þ hþkVðzÞð Þþhpð Þ zAbðzÞ� R�ðkÞþ zð1�R�ðkÞÞð Þ AbðzÞS�

b AbðzÞð ÞþdG� bðzÞð Þ 1�S�
b AbðzÞð Þ� �� �� �

þz 1�R�ðkÞð Þ kVðzÞþhpð Þ AbðzÞS�
b AbðzÞð ÞþdG� bðzÞð Þ 1�S�

b AbðzÞð Þ� �� �
þAbðzÞ k S�

v AvðzÞð Þ�1
� ��hp

� �
( )

2
664

3
775

þ 1�S�
b AbðzÞð Þ� �

bðzÞþd 1�G� bðzÞð Þð Þð Þ k S�
v AvðzÞð Þ�1

� ��hp
� �

R�ðkÞþ zð1�R�ðkÞÞð Þþ z kVðzÞþhpð Þ� �

8>>>><
>>>>:

9>>>>=
>>>>;
where Q0 is given in Eq. (3.38).
Please cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
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Proof. The PGF of the number of customer in the system

(KsðzÞ) and orbit (KoðzÞ) are obtained by using
KsðzÞ ¼ P0 þQ0 þ PðzÞ þ z PbðzÞ þQvðzÞð Þ þ RðzÞ and
KoðzÞ ¼ P0 þQ0 þ PðzÞ þPbðzÞ þQvðzÞ þ RðzÞ. Substituting
the Eqs. (3.34)–(3.39) in the above results, then the Eqs.

(3.40) and (3.41) can be obtained by direct calculation. h
4. System performance measures

In this section, we derive some system probabilities, mean

number of customers in the system and its orbit, reliability
analysis, mean busy period and mean busy cycle of this model.

4.1. System state probabilities

From Eqs. (3.34)–(3.37), by setting z ! 1 and applying l’Hôpi-
tal’s rule whenever necessary, then we get the following results,

(i) The probability that the server is idle during the retrial

P¼Q0 1�R�ðkÞð Þ

� k=hð Þ 1�S�
vðhÞ

� �þ k 1�S�
vðhÞ

� �þhp
� �

1�S�
bðdÞ

� �
1þdgð1Þ
� �

=d
� �

R�ðkÞ� k 1�S�
bðdÞ

� �
1þdgð1Þð Þ=d� �

( )

(ii) The probability that the server is regular busy,

Pb ¼Q0 1�S�
bðdÞ

� �
=d

� � k2=h
� �

1�S�
vðhÞ

� �þR�ðkÞ k 1�S�
vðhÞ

� �þhp
� �

R�ðkÞ� k 1�S�
bðdÞ

� �
1þdgð1Þð Þ=d� �

( )
-queue w
ith working vacations and vacation interruption under Bernoulli sched-
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(iii) The probability that the server is on working vacation

Qv ¼ kQ0 1� S�
vðhÞ

� �
=h

� �
(iv) The probability that the server is under repair,

R¼Q0g
ð1Þ 1�S�

bðdÞ
� � k2=h

� �
1�S�

vðhÞ
� �þR�ðkÞ k 1�S�

vðhÞ
� �þ hp

� �
R�ðkÞ � k 1�S�

bðdÞ
� �

1þ dgð1Þð Þ=d� �
( )
Please
ule, Ai
4.2. Mean system size and orbit size

If the system is in steady state condition,

(i) The expected number of customers in the orbit (Lq) is

obtained by differentiating (3.41) with respect to z and
evaluating at z = 1

Lq ¼ K0
oð1Þ ¼ lim

z!1

d

dz
KoðzÞ ¼Q0

Nr000q ð1ÞDr00qð1Þ �Dr000q ð1ÞNr00qð1Þ
3 Dr00qð1Þ
� 
2

2
64

3
75

Nr00qð1Þ ¼ �2k 1� S�
bðdÞ

� �
1þ dgð1Þ
� �

h� kð Þp� kS�
vðhÞ

� �
� 2 dk2=h

� �
1� R�ðkÞð Þ 1� S�

vðhÞ
� �

Nr000q ð1Þ¼ 3ksS�
vðhÞ�2 k3=h

� �
1þdgð1Þ
� �

1�S�
vðhÞ

�
þhR�ðkÞS�0

v ðhÞ
�

k=hð Þ 1�S�
vðhÞ

� �þ1
� �

�6 dkgð1Þ 1�S�
bðdÞ

� ��kS�
bðdÞ

� �
kV00ð1Þð Þf

� 1�R�ðkÞð Þ k=hð Þ hþk 1�S�
vðhÞ

� �� �þhp
� ��

�6k 1�S�
bðdÞ

� �
1�R�ðkÞð Þ 1þdgð1Þ

� �
hpð

þk 1�S�
vðhÞ

� ��þ6k k=hð Þ hþk 1�S�
vðhÞ

� �� �þhp
� �

�6k2 d=hð Þ V0ð1Þþ 1�R�ðkÞð Þ 1�S�
vðhÞ

� �� �þkS�0
v ðhÞ

� �
Dr00qð1Þ ¼ �2k R�ðkÞ � qð Þ

Dr000q ð1Þ ¼ 3k sþ 2kdqð Þ � 6kR�ðkÞ dkgð1Þ 1� S�
bðdÞ

� �� kS�
bðdÞ

� �

where V0ð1Þ ¼ k

h 1� S�
vðhÞ þ hS�0

v ðhÞ
� �

; q ¼ k=dð Þ
1� S�

bðdÞ
� �

1þ dgð1Þ
� �

; S�0
v ðhÞ¼

R1
0
xe�hxdSvðxÞ; S�0

b ðdÞ¼R1
0
xe�dxdSbðxÞ.
s ¼ k2 2S�0
b ðdÞ 1þ dgð1Þ

� �þ dgð2Þ 1� S�
bðdÞ

� �� �
(ii) The expected number of customers in the system (Ls) is

obtained by differentiating (3.40) with respect to z and
evaluating at z = 1

Ls ¼K0
sð1Þ ¼ lim

z!1

d

dz
KsðzÞ ¼Q0

Nr000s ð1ÞDr00qð1Þ�Dr000q ð1ÞNr00qð1Þ
3 Dr00qð1Þ
� 
2

2
64

3
75
where
Nr000s ð1Þ ¼ Nr000q ð1Þ � 6kR�ðkÞ 1� S�
bðdÞ

� �
hpþ k 1� S�

vðhÞ
� �� �

þ 6dgð1Þ k3=h
� �

1� S�
bðdÞ

� �
1� S�

vðhÞ
� �
cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
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4.3. Reliability measures

In the queueing system with unreliable server, the reliability
measures will provide the information which is required for
the improvement of the system. To justify and validate the

analytical results of this model, the availability measure ðAvÞ
and failure frequency (Ff) are obtained as follows:

(i) The steady state availability Av, which is the probability
that the server is either working for a positive customer

or in an idle period such that the steady state availability
of the server is given by

Av ¼ 1� lim
z!1

RðzÞð Þ ¼ 1�Rð1Þ

¼ 1�
gð1Þ 1�S�

bðdÞ
� � k2

h

� �
1�S�

vðhÞ
� �þR�ðkÞ k 1�S�

vðhÞ
� �þ hp

� �� �
k=hð Þ 1�S�

vðhÞ
� �þR�ðkÞ 1þ hp=kð Þð Þ � qS�

vðhÞ
� �

8>>><
>>>:

9>>>=
>>>;

(ii) The steady state failure frequency is obtained as

Ff ¼ d�Pbð1Þ

¼ Q0 1� S�
bðdÞ

� �
k2=h
� �

1� S�
vðhÞ

� �þR�ðkÞ k 1� S�
vðhÞ

� �þ hp
� �� �

R�ðkÞ � k 1� S�
bðdÞ

� �
1þ dgð1Þð Þ=d� �

( )
-queue
4.4. Mean busy period and busy cycle

Let EðTbÞ and EðTcÞ be the expected length of busy period and
busy cycle under the steady state conditions. The results follow

directly by applying the argument of an alternating renewal
process [9] which leads to

P0 ¼ EðT0Þ
EðTbÞ þ EðT0Þ ;EðTbÞ ¼ 1

k
1

P0

� 1

� �
and

EðTcÞ ¼ 1

kP0

¼ EðT0Þ þ EðTbÞ ð4:1Þ

where T0 is length of the system in empty state and
EðT0Þ ¼ 1=kð Þ. Substituting the Eq. (3.39) into (4.1) and use
the above results, then we can get

EðTbÞ ¼
k=hð Þ 1�S�

v ðhÞ
� �þR�ðkÞ � 1� S�

bðdÞ
� �

=d
� �

1þ dgð1Þ
� �

kS�
v ðhÞ þ hp

� �
hp R�ðkÞ � qð Þ

� �
ð4:2Þ

EðTcÞ¼
k=hð Þ 1�S�

vðhÞ
� �þR�ðkÞ 1þ hp=kð Þð Þ�S�

v ðhÞ k 1�S�
bðdÞ

� �
=d

� �
1þdgð1Þ
� �

hp R�ðkÞ�qð Þ
� �

ð4:3Þ
5. Conditional stochastic decomposition property

In this section, we study the stochastic decomposition property
of the system size distribution. The number of customers in the
system is distributed as the sum of two independent random

variables. In particular, in the context our system, we will dis-
cuss the conditional stochastic decomposition of the number of
customers in the orbit given that the server is busy. Let Nb is
the conditional orbit size of our retrial queuing system given

that server is busy and N0 is the conditional orbit size of the
M/G/1 retrial queueing system with negative customers is
given that the server is busy which is discussed in Theorem 5.1,
with working vacations and vacation interruption under Bernoulli sched-
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Theorem 5.1. The conditional orbit size Nb is given that the

server is busy can be decomposed into the sum of two
independent random variables
Nb ¼ N0 þNc

where N0 has the generating function N0ðzÞ as follows,
N0ðzÞ ¼
d 1� S�

b AbðzÞð Þ� �
z� 1ð Þ R�ðkÞ � k 1� S�

bðdÞ
� �

1þ dgð1Þ
� ��

d
� �� �

zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
1� S�

bðdÞ
� �
and Nc is the additional queue length due to vacations with the
probability generating function NcðzÞ as follows,
NcðzÞ ¼

k=hð ÞVðzÞ zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
þ 1� S�

b AbðzÞð Þ� �
k S�

v AvðzÞð Þ � 1
� �� hp

� �
R�ðkÞ þ zð1� R�ðkÞÞð Þ þ z kVðzÞ þ hpð Þ� �

( )
� 1� S�

bðdÞ
� �

d 1� S�
b AbðzÞð Þ� �

z� 1ð Þ R�ðkÞ k=hð Þ 1� S�
vðhÞ

� �þ 1� S�
bðdÞ

� �
k 1� S�

vðhÞ
� �þ hp

� �� �� k2=h
� �

gð1Þ 1� S�
bðdÞ

� �
1� S�

vðhÞ
� �� �
Proof. The mathematical version of the stochastic decomposi-
tion law is NbðzÞ ¼ N0ðzÞNcðzÞ.

In an M/G/1 retrial queueing system with negative
customers, the marginal function of the number of customers
in the orbit when the server is busy is given by
UðzÞ ¼ kP0R
�ðkÞ 1� S�

b AbðzÞð Þ� �
z� 1ð Þ

zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
and the probability that the server is busy is given by

Uð1Þ ¼ kP0R
�ðkÞ 1� S�

bðdÞ
� �

d R�ðkÞ � k 1� S�
bðdÞ

� �
1þ dgð1Þð Þ=d� �� �

( )
;

then for the probability generating function N0ðzÞ, we have
N0ðzÞ ¼ UðzÞ
Uð1Þ ¼

d 1� S�
b AbðzÞð Þ� �

z� 1ð Þ R�ðkÞ � k 1� S�
bðdÞ

� �
1þ dgð1Þ
� �

=d
� �� �

zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
1� S�

bðdÞ
� �
From the Eqs. (3.35) and (3.36), we know that for our retrial
system the probability generating function of Nb is given by
NbðzÞ ¼ PbðzÞþQðzÞ
Pbð1ÞþQð1Þ

¼

k=hð ÞVðzÞ zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b Abðð��

k S�
v AvðzÞð Þ � 1

� �� hp
� �

R�ðkÞ þ zð1� R�ðkÞÞð Þ þ z kVð�
(

zAbðzÞ � R�ðkÞ þ zð1� R�ðkÞÞð Þ AbðzÞS�
b AbðzÞð Þ þ��

� R�ðkÞ k=hð Þ 1� S�
vðhÞ

� �þ 1� S�
bðdÞ

� �
k 1� S�

vð
����

(

NbðzÞ ¼ N0ðzÞ �NcðzÞ
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From above stochastic decomposition law, we observe that

NbðzÞ ¼ N0ðzÞ �NcðzÞ which conform that the decomposition
results of Gao et al. [25], also valid for this special vacation
system. �
6. Special cases
In this section, we analyze briefly some special cases of our
model, which are consistent with the existing literature.

Case (i): No retrial and Multiple working vacations
Let R�ðkÞ !1, our model can be reduced to an
M/G/1 G-queue with working vacations and
vacation interruption. In this case, KsðzÞ can
be found as follows,
zÞÞ þ dG� bðzÞð Þ 1� S�
b AbðzÞð Þ� ���þ 1� S�

b AbðzÞð Þ� �
ðzÞ þ hpÞ� R�ðkÞ � k 1� S�

bðdÞ
� �

1þ dgð1Þ
� �

=d
� �� �

)

dG� bðzÞð Þ 1� S�
b AbðzÞð Þ� ���

hÞ�þ hp
��� k2=h

� �
gð1Þ 1� S�

bðdÞ
� �

1� S�
vðhÞ

� ��
)

-queue with working vacations and vacation interruption under Bernoulli sched-
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KsðzÞ ¼ P0

1� zð Þ zAbðzÞ � AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
kzVðzÞ=hð Þ þ 1ð Þ	 


þ 1� S�
b AbðzÞð Þ� �

S�
v AvðzÞð Þ � 1

� �þ zVðzÞ	 

zbðzÞ þ d 1� G� bðzÞð Þð Þð Þ

( )

1� zð Þ zAbðzÞ � AbðzÞS�
b AbðzÞð Þ þ dG� bðzÞð Þ 1� S�

b AbðzÞð Þ� �� �� �
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This coincides with the result of Zhang and

Liu [26].
Case (ii): No negative arrival, No vacation interruption

and Single working vacation

Let (d,h)? (0,0), our model can be reduced to
M/G/1 retrial queue with single working vaca-
tion. In this case, KsðzÞ coincides with the
result of Arivudainambi et al. [20] as follows,
KsðzÞ ¼
S�
vðkÞ R�ðkÞ � kbð1Þ

� 

kEðSvÞ � R�ðkÞS�

vðkÞ

8<
:

9=
; S�

v k� kzð Þ � 1
� �

R�ðkÞ þ zð1� R�ðkÞÞð Þ þ 1� zð ÞR�ðkÞS�
vðkÞ

	 
� �
S�
b k� kzð Þ

S�
vðkÞ z� R�ðkÞ þ zð1� R�ðkÞÞð ÞS�

b k� kzð Þ� �
( )
Case (iii): No retrial, No negative arrival and Multiple
working vacation
Let d ? 0 and R�ðkÞ ! 1, suppose that there is
no retrial time in the system then we get anM/

G/1 queue with working vacations and vaca-
tion interruption. In this case, KsðzÞ can be
obtained as follows,
KsðzÞ ¼
1� kbð1Þ

� 

1� zð Þ z� S�

b AbðzÞð Þ� �
kzVðzÞ=hð Þ þ 1ð Þ	 
þ z 1� S�

b AbðzÞð Þ� �
S�
v AvðzÞð Þ þ zVðzÞ � 1

	 
� �
1þ k=hð Þ 1� S�

vðhÞ
� �� kbð1ÞS�

vðhÞ
� 


1� zð Þ z� S�
b AbðzÞð Þ� �
This coincides with the result of Zhang and
Hou [23].

Case (iv): No negative arrival and Multiple working vaca-

tions
Let d = p = 0, our model can be reduced to a
single server retrial queueing system with

working vacations. In this case, KsðzÞ can be
yielded as follows,
KsðzÞ ¼ P0

1� zð Þ z� R�ðkÞ þ zð1�R�ðkÞÞð ÞS�
b AbðzÞð Þ� �

kVðzÞ=hð Þ þ 1ð Þ
þz 1�R�ðkÞð Þ S�

v AvðzÞð Þ þVðzÞS�
b AbðzÞð Þ� �� 1

	 

" #

þ 1�S�
b AbðzÞð Þ� �

S�
v AvðzÞð Þ � 1

� �
R�ðkÞ þ zð1�R�ðkÞÞð Þ þ zVðzÞ	 
( )

1� zð Þ z� R�ðkÞ þ zð1�R�ðkÞÞð ÞS�
b AbðzÞð Þ� �
This coincides with the result of Gao et al.
[25].
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Case (v): Single working vacation
Let p = 1, our model can be reduced to a sin-

gle server retrial queueing system with nega-
tive customers, single working vacation and
vacation interruption.

Case (vi): Multiple working vacations
Let p = 0, our model can be reduced to a sin-
gle server retrial queueing system with nega-
tive customers, multiple working vacation

and vacation interruption.
7. Cost optimization analysis

In order to carry out cost analysis, the optimum design of a
retrial queueing system is to determine the optimal system
parameters, such as optimal mean service rate or optimal
number of servers (see in [31,32]). In this section, the optimal
design of the single server retrial G-queue with working

vacations and vacation interruption under Bernoulli schedule
is addressed. Based on the definitions of cost elements
(Ch;Co;Cs and Ca) and cost structure listed below, the total

expected cost function per unit time is given by
-queue with working vacations and vacation interruption under Bernoulli sched-
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Table 1 Effects of (Ch;Co) on the expected cost function TC

with Cs = $1000 and Ca = $100.

(Ch;Co) (5,100) (5,110) (5,120) (10,100) (15,100)

TC 301.7446 303.3765 305.0084 303.4891 305.2337

Figure 1 TC versus k.

Figure 2 TC versus d.
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TC ¼ ChLs þ Co

EðTbÞ
EðTcÞ þ Cs

1

EðTcÞ þ Ca

EðT0Þ
EðTcÞ

¼ ChLs þ Co 1� P0ð Þ þ Cskþ CaP0

where Ch is the holding costs per unit time for each customer
present in the system, Co is the cost per unit time for keeping
the server on and in operations, Cs is setup cost per busy cycle

and Ca is the startup cost per unit time for the preparation
work of the server before starting the service.

If we assume exponential retrial times, service times, work-
ing vacation times and repair times then for the following val-

ues of the cost elements and other parameters like: k = 1;
lb = 5; lv = 2; a = 2; n= 3; h = 3; d= 0.1; p = 0.5;
Ch = 5, Co = 100, Cs = 1000 and Ca = 100, we find the total

expected cost per unit of time TC = 301.7446; Also, in this
case, the steady-state availability of the server Av = 98.94%

while the steady-state failure frequency of the server is

Ff = 3.18%.

Moreover, we can examine the behavior of the expected

cost function under different values of the cost parameters.
Let us fix the system parameters values as follows: k = 1;
lb = 5; lv = 2; a = 2; n= 3; h = 3; d= 0.1; p = 0.5. Tables

1–3 illustrate the effects of (Ch;Co), (Co;Ca) and (Cs;Ca) on the
expected cost function, respectively. It can be see that the
expected cost function shows a linearly increasing trend with

increasing cost parameters.
Similarly, a sensitivity analysis of some of the parameters

on the system can be conducted. Fixing the base values given
above, one parameter can be varied at a time and the corre-

sponding objective function value can be computed. The
graphs (from Figs. 1–4) show the effect of some of the system
parameters (k; d, a, p) on the total expected cost per unit of

time.

8. Numerical examples

In this section, we present some numerical examples to study
the effect of various parameters in the system performance
measures of our system where all retrial times, service times,

working vacation times and repair times are exponentially,
Erlangianly and hyper-exponentially distributed. We assume
Table 2 Effects of (Co;Ca) on the expected cost function TC with

(Co;Ca) (100,100) (125,100)

TC 301.7446 305.8243

Table 3 Effects of (Ca;Cs) on the expected cost function TC with

(Ca;Cs) (100,1000) (110,1000)

TC 301.7446 310.1127
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arbitrary values to the parameters such that the steady state

condition is satisfied. MATLAB software has been used to
illustrate the results numerically. Note that the exponential dis-
tribution is fðxÞ ¼ te�tx; x > 0, Erlang-2 stage distribution is

fðxÞ ¼ t2xe�tx; x > 0 and hyper-exponential distribution is

fðxÞ ¼ cte�tx þ ð1� cÞt2e�t2x; x > 0.
Ch = $5 and Cs = $1000.

(150,100) (100,110) (100,120)

309.9041 310.1127 318.4808

Ch = $5 and Co = $100.

(120,1000) (100,1050) (100,1100)

318.4808 311.7446 321.7446

-queue with working vacations and vacation interruption under Bernoulli sched-
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Figure 3 TC versus a.
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Table 4 shows that when retrial rate (a) increases, then the
idle probability (P0) increases, the mean orbit size (Lq)
Table 4 The effect of retrial rate (a) on P0, Lq and P.

Retrial distribution Exponential Erlan

a P0 Lq P P0

Retrial rate

2.00 0.4583 0.3400 0.0715 0.2394

3.00 0.4715 0.2269 0.0479 0.3033

4.00 0.4782 0.1699 0.0361 0.3337

5.00 0.4822 0.1356 0.0289 0.3514

Table 5 The effect of negative arrival rate (d) on Lq, P and Ff.

Retrial distribution Exponential Erlan

d Lq P Ff Lq

Negative arrival rate

0.30 0.3575 0.0718 0.0076 0.8118

0.40 0.3749 0.0721 0.0133 0.9138

0.50 0.3922 0.0725 0.0206 1.0218

0.60 0.4094 0.0728 0.0294 1.1363

Table 6 The effect of vacation rate (h) on P0, Lq and Qv.

Vacation distribution Exponential Erlan

h P0 Lq Qv P0

Vacation rate

1.00 0.5421 0.0561 0.0282 0.435

2.00 0.6708 0.0558 0.0150 0.538

3.00 0.7285 0.0524 0.0095 0.584

4.00 0.7612 0.0487 0.0066 0.611
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decreases and probability that server is idle during retrial time
(P) also decreases for the values of k= 1; h= 2; l = 9;
p= 0.7; n= 5; d = 0.2; lv = 4; c = 0.7. Table 5 shows that

when negative arrival rate (d) increases, the mean orbit size
(Lq) increases, probability that server is idle during retrial time

(P) increases and the servers failure frequency (Ff) also

increases for the values of k = 1; h = 2; l = 9; p = 0.7;
n= 5; a= 2; lv = 4; c = 0.7. Table 6 shows that when vaca-
tion rate (h) increases, the idle probability (P0) increases, then

the mean orbit size (Lq) decreases and probability that server is

under working vacation (Qv) also decrease for the values of
k= 1; d = 0.2; l = 9; p= 0.7; n = 5; a= 2; lv = 4;
c = 0.7. Table 7 shows that when lower speed service rate
(lv) increases, the idle probability (P0) increases, then the mean

orbit size (Lq) decreases and probability that server is on work-

ing vacation (Qv) also decrease for the values of k = 1;
d= 0.2; l= 9; p= 0.7; n = 5; a = 2; h = 2; c = 0.7.

For the effect of the parameters k, a, p, d; h; l, and lv on the

system performance measures, three dimensional graphs are
illustrated in Figs. 5–8. In Fig. 5, the surface displays an
upward trend as expected for increasing the value of arrival
rate (k) and negative arrival rate (d) against the mean orbit size
g-2 stage Hyper-exponential

Lq P P0 Lq P

0.7152 0.3276 0.4103 0.4323 0.1187

0.4580 0.2100 0.4322 0.2913 0.0794

0.3438 0.1540 0.4432 0.2207 0.0596

0.2791 0.1215 0.4498 0.1783 0.0477

g-2 stage Hyper-exponential

P Ff Lq P Ff

0.3323 0.0176 0.4570 0.1188 0.0103

0.3369 0.0309 0.4816 0.1189 0.0181

0.3413 0.0476 0.5063 0.1190 0.0279

0.3456 0.0676 0.5308 0.1191 0.0396

g-2 stage Hyper-exponential

Lq Qv P0 Lq Qv

5 0.1140 0.0416 0.5163 0.0777 0.0336

1 0.0992 0.0206 0.6390 0.0720 0.0173

5 0.0845 0.0124 0.6940 0.0650 0.0107

1 0.0730 0.0083 0.7253 0.0589 0.0073

-queue with working vacations and vacation interruption under Bernoulli sched-
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Figure 4 TC versus p.

Table 7 The effect of lower speed service rate (lv) on P0, Lq and Qv.

Vacation distribution Exponential Erlang-2 stage Hyper-exponential

lv P0 Lq Qv P0 Lq Qv P0 Lq Qv

Lower speed service rate

2.00 0.1111 0.3721 0.1389 0.0489 0.8189 0.0916 0.0962 0.4802 0.1383

3.00 0.1184 0.3572 0.1184 0.0540 0.8174 0.0864 0.1035 0.4658 0.1221

4.00 0.1239 0.3473 0.1032 0.0588 0.8053 0.0817 0.1092 0.4592 0.1092

5.00 0.1281 0.3410 0.0915 0.0631 0.7910 0.0773 0.1139 0.4581 0.0988

Figure 5 Lq versus k and d.

Figure 6 P0 versus lv and lb.

Figure 7 P0 versus p and h.
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(Lq). In Fig. 6, we examine the behavior of the idle probability

(P0) increases for increasing the value of the lower service rate
(lv) and regular service rate (lb). Fig. 7 shows that the idle

probability (P0) increases for increasing the value of single
working vacation idle probability (p) and vacation rate (h).
In Fig. 8, we examine the behavior of the mean orbit size
Please cite this article in press as: Rajadurai P et al., Analysis of an unreliable retrial G
ule, Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.03.008
(Lq) decreases for increasing the value of lower speed service

rate (lv) and retrial rate (a).
From the above numerical examples, we observed that the

influence of parameters on the performance measures in the
system and know that the results are coincident with the prac-
tical situations.
-queue with working vacations and vacation interruption under Bernoulli sched-
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Figure 8 Lq versus lv and a.
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9. Conclusion

In this work, we have investigated a single server retrial

queueing system with negative customers under both single
and multiple working vacations and vacation interruption,
where the server is subjected to breakdown and repair.

The necessary and sufficient condition for the system to
be stable is obtained. By using the probability generating
function approach and the method of supplementary vari-

able technique, the probability generating functions for
the numbers of customers in the system and its orbit when
it is free, busy, on working vacation, under repair are
derived. Various system’s performance measures, reliability

measures and conditional stochastic decomposition law are
discussed. The explicit expressions for the average queue
length of orbit and system have been obtained. Finally,

some numerical examples and cost optimization analysis
are presented to study the impact of the system parameters
and cost elements. The novelty of this investigation is the

introduction of both single and multiple working vacations
in presence of retrial G-queues and server breakdown. This
proposed model has potential practical real life application

in production to order system to enhance the performance
of the production facility and to stop the production facility
from becoming overloaded, in computer processing system
and telephone consultation of medical service systems.

Moreover, our model can be considered as a generalized
version of many existing queueing models (Gao et al. [25]
and Zhang and Liu [26]) equipped with many features

and associated with many practical situations. Hopefully,
this investigation will be great help to the system managers
who can design a system with economic management and

to make decisions regarding the size of the system and
other factors in a well-to-do manner.
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