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1. INTRODUCTION AND PRELIMINARIES

Fernando et al. [1] originated the algebra of conditional logic and an equational 3-valued gen-

erality of Boolean algebra established on logic functions “or”, “and” and “not”. Manes [3]

invented the Ada, in view of C-algebras. KoteswaraRao [2], started the idea of A*-algebra and

contemplated its equality with [3], [1] and its connection with 3-ring. Venkateswara Rao [7]

introduced the thought of Pre A*-algebra as reduct of [2], analogous to [1]. Satyanarayana et

al. [4] well-thought-out the partial ordering. Venkateswara Rao, et al. [8] acknowledged the

thought of Congruences. The idea of vector spaces over Boolean algebras started by Subrah-

manyam [6] is the inspiration to the current examination. Further, Subrahmanyam [5] started

the connection between the Boolean vector spaces with Boolean semirings. This manuscript

imparts the vector spaces over Pre A*-algebra. In other words simply, the vector space here is

a vector space in which scalars are elements in Pre A*-algebra.

Definition 1.1 [7]: A Pre A*-algebra is a system (A, ∧, ∨, (−)∼) satisfying, for x, y z in A:

(a) x
∼∼ = x (double tilde rule)

(b) x ∧ x = x (idempotent rule respecting ∧ )

(c) x ∧ y = y ∧ x (commutative rule respecting ∧ )

(d) (x∧ y)∼ = x
∼ ∨ y

∼(De Morgan’s rule)

(e) x ∧ (y ∧ z) = (x ∧ y) ∧ z (associative rule respecting ∧ )

(f) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (∧ is distributive over ∨)

(g) x ∧ y = x ∧ (x∼ ∨ y) (representation).

Example 1.1 [7]: A three element Pre A* algebra (3 = {0, 1, 2}) by means of ∧, ∨, (−)∼

described as:

∧ 0 1 2 ∨ 0 1 2 x x∼

0 0 0 2 0 0 1 2 0 1

1 0 1 2 1 1 1 2 1 0

2 2 2 2 2 2 2 2 2 2
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Note 1.1 [7]: From the above (Example 1.1) we note the following: (a) 2 is merely the self-tilde

element. (b) 1 is the ∧ identity element. (c) 0 is the ∨ identity element. (d) 2 is the uncertain

element.

Example 1.2 [7]: The two element Pre A* algebra (2 = {0, 1}) by means of ∧, ∨, (−)∼

described as:

∧ 0 1 ∨ 0 1 x x∼

0 0 0 0 0 1 0 1

1 0 1 1 1 1 1 0

2. PRE A*- VECTOR SPACES (RESULTS AND DISCUSSIONS)

Definition 2.1: Let V be an abelian group under addition, also A be a Pre A*-algebra. V is

named a Pre A*-vector space over A if there exists a mapping from, A× V → V such that, ∀ u,

v ∈ V and a, b in A,

(i) a . (u + v) = a . u + a . v

(ii) a . (b . v) = (a ∧ b) . v

(iii) If a ∧ b = 0, then (a ∨ b) . v = a . v + b . v

(iv) 1 . v = v for all v ∈ V.

Note 2.1: We note the product a v from the ordered pairs of the above as scalar multiplication.

Theorem 2.1:

Let A be Pre A*-algebra. For all a, b in A, a + b = (a ∧b∼) ∨ (a∼∧ b) and a . b = a ∧ b.

Then (A, +, .) exists as Boolean Pre A*-ring.

Proof: By the expression,

(a ∧ b∼) ∨ (a∼∧ b) = (a ∨ (a∼∧ b)) ∧ (b∼ ∨ ((b∼)∼ ∧ a∼))

= (a ∨ b) ∧ (a ∧ b)∼

Hence, a + b = b + a, follows by above

Consider, (a + b) + c = (a ∧ b∼ ∧ c∼) ∨ (a∼ ∧ b ∧ c∼) ∨ (a∼ ∧ b∼ ∧ c) ∨ (a ∧ b ∧ c)

The above is symmetric in a, b, c and therefore, + is associate and commutative.

For any a ∈ A, consider a + 0 = (a ∧0∼) ∨ (a∼∧ 0)

= (a ∧1) ∨ (a∼∧ a ) (since, a∼∧ 0 = a∼∧ a )

= a ∧ (1 ∨a∼) = a ∧ (a∼∨ 1) = a ∧ 1 (by representation) = a.
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Similarly, we can see that 0 + a = a. Hence, 0 is the additive identity in A.

Further, note that, a + (a ∧a∼) = [a ∧(a∧a∼)∼] ∨ [a∼∧ (a ∧a∼)]

= [a ∧ (a∼∨ a)] ∨ [(a∼∧ a∼) ∧a)]

= (a ∧ a) ∨ (a∼∧a) = a ∨ (a∼∧a) = a ∨ a = a.

This leads to a + (a ∧a∼) = a for each a in A.

Similarly, we can verify that (a ∧a∼) + a = a for each a in A.

By above, we conclude that a + 0 = a = a + (a ∧a∼) and hence, a ∧a∼ = 0, the additive identity

for each a in A.

To prove that every element of A has additive inverse:

Consider, a + b = (a ∧b∼) ∨ (a∼∧ b). Put b = a.

Then, a + a = (a ∧a∼) ∨ (a∼∧ a) = a ∧a∼= 0, the additive identity for each a in A(by above).

Hence, a is additive inverse of a in A. Therefore, (A, +) is an abelian group.

Clearly, the multiplication is associative in A (since, ∧ is associative in A).

To prove verify the distributive laws in A.

Let a, b, c ∈ A.

Consider, a.(b + c) = a ∧ [(b ∧c∼) ∨ (b∼∧ c)]

= [a ∧ (b ∧c∼)] ∨ [a ∧ (b∼∧ c)]

=[(a ∧ b) ∧c∼)] ∨ [(a ∧ c) ∧b∼] (1)

On the other hand, let us consider,

a . b + a . c = (a ∧ b) + (a ∧ c)

= [(a ∧ b) ∧(a∧ c)∼] ∨ [(a ∧ b)∼∧ (a ∧ c)]

= [(a ∧ b) ∧(a∼∨c∼)] ∨ [(a∼∨b∼)∧ (a ∧ c)]

= [(a ∧ b) ∧a∼]∨[ (a ∧ b)∧c
∼

] ∨ [(a ∧ c)∧a∼] ∨ [(a ∧ c) ∧b∼]

= [(a ∧a∼) ∧b]∨[ (a ∧ b)∧c
∼

] ∨ [(a ∧a∼) ∧ c] ∨ [(a ∧ c) ∧b∼]

= [(a ∧ 0) ∧b]∨[ (a ∧ b)∧c
∼

] ∨ [(a ∧0) ∧c] ∨ [(a ∧ c) ∧b∼](since, a ∧a∼ = a ∧ 0)

= [(a ∧ b) ∧0]∨[ (a ∧ b)∧c
∼

] ∨ [(a ∧c) ∧ 0] ∨ [(a ∧ c)∧b∼]

= {[(a ∧ b) ∧(a∧b)∼]∨[ (a∧b)∧c
∼

]}∨{[(a ∧c) ∧(a∧c)∼] ∨ [(a ∧ c) ∧b∼]}

(since, a∧0 = a∧a∼)

= [(a ∧ b) ∧ ((a∧b)∼∨c∼)] ∨ [(a ∧ c) ∧ ((a∧c)∼∨b∼)]
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= [(a ∧ b)∧c∼]
∨

[(a ∧ c)∧b∼] (2)

By (1) and (2), a . (b + c) = a . c + a . c. Since, . is commutative (as ∧ is so), we have the other

distributive law. Thus, (A, +, .) is a Pre A*-ring with identity 1.

Since, a . a = a ∧ a = a for all a in A, (A, +, .) is a Boolean Pre A*-ring in which 0 and 1 as

required.

Example 2.1: Let A be any Pre A*-algebra and V be the additive group of the resultant Pre

A*-ring as in the 2.1 theorem. Then V is an A-vector space if for a ∈ A and v ∈ V, av in A.

Theorem 2.2: Let R be any ring with 1. Suppose that there is defined a subset A of R as A = {r

∈ R / r2= r and rs = sr for all s ∈ R}, set of central idempotents. Then, (A, ∨, ∧, (−)∼) stands

as Pre A*-algebra, through operations: x ∨ y = x + y – x.y; x ∧ y = x.y and x∼ = 1 – x, for all

x, y ∈ A.

Proof: For that entire x, y in A, we verify the postulates as required.

(i) x∼∼=(x∼)∼ = (1−x)∼ = 1− (1− x) = 1 – 1 + x = x.

(ii) and (iii) are clear.

(iv) (x∧y)∼=(x .y)∼= 1−x.y.

Also consider x∼∨y∼ = (1−x)+(1−y)−(1−x)(1−y) = 1 – x y.

(v) Clearly ∧ is associative.

(vi) Consider, x ∧ (y ∨ z) = x.y + x.z – x.y.z (I)

Also consider, (x ∧ y) ∨ (x ∧ z) = (x . y) ∨ (x . z) = x y + x z – x y z (II)

(since x2 = x).

Hence, by (I) and (II), the result follows as required.

(vii) Consider, x ∧(x∼∨y) = x . (1–x) + x.y – x (1 – x) y. Hence, the result follows as required.

Therefore, (A, ∨, ∧, (−)∼) is an algebra as required.

Illustration 2.2: Let us consider the Pre A*-algebra A and R as in the above 2.2 theorem. If V

is the additive group of the ring R, then V is a Pre A*- vector space over (A, ∨, ∧, (−)∼) with

the similar scalar product as discussed above.

Illustration 2.3: Let (A = P(S), ∧, ∨, (−)∼) be the Pre A*-algebra of all subsets of a set S (A

= P(S), power set of S) and V = {v / v: S → G}, the functions of S into a group G with respect

to addition; any u, v ∈ V; a ∈ A (a = subset of S), define, (u + v) (p) = u (p) + v (p) for all p ∈ S
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and (av) (p) = v p if p ∈ a; (av) (p) = 0 if p /∈ a. At that juncture V is a Pre A*-vector space over

A.

Illustration 2.4: An illustration of a Pre A*- vector space is Ln (A)=An, where, An= A×·· ·×A

(n factors). In this instance, we define, the vector addition and scalar multiplication defined as

follows:

(i) (a1, . . . ,an)+(b1, . . . ,bn) = ((a1 ∧b1
∼)∨(a∼1 ∧b1), . . . ,(an ∧bn

∼)∨ (a∼n ∧bn)) for all

(a1, . . . ,an), (b1, . . . ,bn)∈An and

(ii) a . (b1, . . .bn) = (a ∧ b1, . . . ,a ∧bn), for all a ∈A and (b1, . . . ,bn)∈An.

Here, + is a binary operation on An and . (scalar multiplication) is a map from A ×An → An.

Verification: Left to the reader as it is straight forward verification.

Theorem 2.3: Let An be a Pre A*- vector space over A. Then An is a Pre A*-algebra.

Proof: Let u, v ∈Ln (A).

Define, “u ∨ v = (u1, u2, . . . . . . , un) ∨ (v1, v2, . . . . . . , vn) = (u1∨v1, u2∨v2, . . . . . . , un∨vn);

u ∧ v = (u1, u2, . . . . . . , un) ∧ (v1, v2, . . . . . . , vn) = (u1∧v1, u2∧v2, . . . . . . , un∧vn) and

(u)∼ = (u1, u2, . . . . . . , un)
∼= (u1

∼, u2
∼, . . . . . . , un

∼).

(1) Consider u∼∼=(u∼)∼=((u1
∼, u2

∼, . . . . . . , un
∼))∼ = (u1, u2, . . . . . . , un) = u, for all u ∈An.

(2) Consider u ∧ u = (u1, u2, . . . . . . , un) ∧ (u1, u2, . . . . . . , un) = (u1, u2, . . . . . . , un) = u, for all u

∈An.

(3) Let u, v ∈Ln (A). Consider u ∧ v = (u1, u2, . . . . . . , un) ∧ (v1, v2, . . . . . . , vn)

=(v1, v2, . . . . . . , vn)∧(u1, u2, . . . . . . , un)= v ∧u, for all u, v∈Ln (A)..

(4) Consider, (u ∧ v)∼

= (u1
∼, u2

∼, . . . . . . , un
∼)∨ (v1

∼, v2
∼, . . . . . . , vn

∼)

= u∼∨v∼, for all u, v ∈An.

(5) Consider, u ∧(v∧w= ((u1, u2, . . . . . . , un) ∧ (v1, v2, . . . . . . , vn))∧(w1, w2, . . . . . . , wn)

= (u∧v)∧w, for all u, v, w ∈An.

(6) Consider, u ∧ (v ∨ w) = (u1, u2, . . . . . . , un) ∧((v1, v2, . . . . . . , vn)∨(w1, w2, . . . . . . , wn))

= ((u1, u2, . . . . . . , un) ∧(v1, v2, . . . . . . , vn))∨((v1, v2, . . . . . . , vn) ∧(w1, w2, . . . . . . , wn))



2774 J.V. RAO, T.N. RAO, RAVI KUMAR, SRINIVAS, BALAMURUGAN

= (u ∧ v) ∨ (u ∧ w), for all u, v, w ∈An.

(7) Consider, u ∧ (u∼∨ v) =(u1, u2, . . . . . . , un)∧ ((u1, u2, . . . . . . , un)
∼∨(v1, v2, . . . . . . , vn))

= (u1, u2, . . . . . . , un) ∧(v1, v2, . . . . . . , vn) = u ∧ v.

Thus, (An, ∧, ∨, (−)∼) is an algebra as required.

Lemma 2.1: Let V be an arbitrary Pre A*-vector space over a Pre A*-algebra. For all v in V

and a in A, 0 v = 0 and a 0 = 0.

Proof: Let us consider v = 1 v = (0 ∨ 1) v = 0 v + 1 v = 0 v + v. Hence, as required.

Also the second result is obvious. Hence, a 0 = 0.

Lemma 2.2: Let V be an arbitrary Pre A*-vector space over A.

Then, a (- v) = - a v for all a in A and v in V.

Proof: Consider 0 = a 0 = a (v +(-v)) = a v + a (-v). Hence, as required.

Note 2.2 [8]: Henceforth, to enable the subsequent consequences, we consider a, b ∈ A such

that a ∨ b = 1 (so that a ∨a∼= 1 and a∧a∼= 0 in A).

Lemma 2.3: Let V be an arbitrary Pre A*-vector space over A. If a, b ∈ A such that a ∨ b = 1

and v ∈ V, then (i) a∼v = v− a v and (ii) (a ∨ b) v = a v + b v – a b v.

Proof: (i) Consider v = 1v = (a ∨a∼) v = a v + a∼ v. Hence, the result follows.

(ii) Consider, (a ∨ b) v = [a ∨ (b ∧a∼)] v (since, a ∨ b = a ∨ (b ∧a∼))

= a v + (b ∧a∼) v (since, a ∧ (b ∧a∼) = 0)

= a v + b (a∼v) = a v + b (v+(−a v)) = a v + b v – a b v.

Hence, result as required.

Theorem 2.4:Let V be a Pre A*-vector space over a A, such that a ∨ b = 1, for all a, b in A; and

let R = (R, +, .) be a Boolean Pre A*-ring corresponding to A. Then the necessary and sufficient

condition for V is a module over R is v + v = 0 for all v ∈ A.

Proof: Let a, b ∈ R and v ∈ V. Let us observe, (a + b) v = (a b∼∨a∼b) v = a b∼ v + a∼b v

= a (v−b v) + b (v− a v) = a v + b v – 2 a b v.

Successively, V is an R-module equivalently 2 a b v = 0 for all a, b ∈ A and v ∈ V, or corre-

spondingly, v + v = 0 for all v ∈ A.
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Definition 2.2: A Pre A*-vector space V over A is said to be Pre-A*-normed if and only if there

exists a mapping ‖.‖: V → A such that (1) ‖v‖= 0 if and only if v = 0 and (2) ‖a v‖= a ‖v‖

for all a ∈ A and v ∈ V.

Note 2.3: The Pre A*-vector spaces of above examples 2.1 and 2.3 are normed.

Theorem 2.5: For a Pre A*-vector space V over A (with a ∨ b = 1 for all a, b in A), the

subsequent are equivalent: (1) V is Pre A*-normed (2) To each v ∈ V, there relates an element

av∈ A such that (i) av v = v and (ii) if b ∈ A and b v = v, then b av = av. (av, for a specified a,

is exceptional).

Proof: Suppose that (1) holds. So V is A-normed. Let av = ‖v‖.

(i) Consider, ‖v−avv‖=‖av
∼v‖=av

∼ ‖v‖=av
∼av = 0. Hence, avv = v.

(ii) Let b ∈ A and b v = v. Consider,av=‖v‖=‖b v‖= b‖v‖= b av. Hence, b av = av.

Suppose that (2) holds.

Suppose c ∈ A, v ∈ V and c v = 0. Then consider, c∼v = v – c v = v (as c v = 0). Hence, c∼v = v.

Then, c∼av=av (By hypothesis). This indicates, c c∼av= c av. Hence, c av= 0 (asc c∼av= 0).

Hence, if b ∈ A and b (c v) = c v, then, b∼ (c v)= c v−b (c v)= c v− c v = 0 (as b (c v) = c

v). Therefore, b∼ (c v) = 0 and hence, b∼c av = 0.

Consider (c av) (c v) = c c av v = c v. Thus, (c av) (c v) = c v (X)

Also, consider, (ac v) (c v) = c v (Y)

We conclude that ac v = c av.

Let us define ‖v‖= av. By above, ac v = ‖c v‖ and c av = c ‖v‖.

So therefore, the mapping, ‖.‖ describes as required.

Corollary 2.1: If V is a Pre A*-normed vector space (over A), then ‖u+v‖ ≤ ‖u‖∨‖v‖ for all

u, v ∈ V.

Proof: By above results, we are considering ‖v‖=av (so that ‖v‖ v =av v = v).

Observe that (‖u‖∨‖v‖) (u+v) = ‖u‖(u+v)+‖v‖(u+v)−(‖u‖∧‖v‖) (u+v)

= ‖u‖u+‖u‖v+‖v‖u+‖v‖v−‖u‖(‖v‖(u)+‖v‖(v))

= u + ‖u‖v + ‖v‖u + v −‖v‖u −‖u‖v = u + v.

Therefore, ‖u + v‖=‖(‖u‖∨‖v‖) (u+v) ‖= (‖u‖∨‖v‖) ‖(u+v)‖.

Here, by the partial order on the Pre A*-algebra A [4], we can observe as required.
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Corollary 2.2: If V is a Pre A*-normed vector space, then d (u, v) = ‖u−v‖ defines Pre A*-

metric on V.

Proof: (i) Suppose that d (u, v) = 0 if and only if ‖u−v‖= 0 if and only if u – v = 0 if and only

if u = v.

(ii) Consider, d (u, v) = ‖u−v‖=‖(−1)(v−u)‖=‖(v−u)−(−1)∼(v−u)‖

(Since, a v = v −a∼v, for all a ∈ A and v ∈ V, by above lemma)

= ‖v−u‖ = d (v, u). Hence, d (u, v) = d (v, u) for all u, v ∈ V.

As the two expressions are symmetric in u and v. Hence, d (u, v) = d (v, u).

(iii) Consider d (u, w) = ‖u−w‖ ≤ ‖u−v‖∨‖v−v‖ = d (u, v) ∨ d (v, w).

Thus, d becomes a metric as required.

Definition 2.3 [5]: A system (R, +, .) is called a Boolean semiring if it satisfies:

(i) (R, +) is an additive abelian group.

(ii) (R, .) is a semigroup of idempotents in the sense, a a = a, for all a ∈ R

(iii) a . (b + c) = a . b + a . c and

(iv) a b c = b a c for all a, b, c ∈ R.

Theorem 2.6: Let V be a normed Pre A*-vector space over A and let, for u, v in V, u v = ‖u‖

v. Then (V, +, .) is a Boolean semiring.

Proof: (V, +, .) is a Boolean semiring because of the following:

(1) Note that (V, +) is an additive abelian group;

(2) To verify that (V, .) is a semigroup of idempotents:

For any u, v, w ∈ V, consider (u v) w = ‖u v‖ w = ‖u‖‖ v ‖ w.

Also consider, u (v w) = ‖u‖ (v w) = ‖u‖‖v‖ w. Hence, (u v) w = u (v w) for all u, v, w ∈ V.

For any u ∈ V, u . u = ‖u‖ u = u

(as by previous lemma, avv = v, and by av=‖v‖ , ‖v‖ v = v).

(3) For any u, v, w ∈ V, let us consider, u . (v + w) =‖u‖ v+‖u‖ w.

Also u v + u w = ‖u‖ v+‖u‖ w. Hence, u.(v + w) = u v + u w for all u, v, w ∈ V.

(4) For any u, v, v ∈ V, consider (u v) w = ‖u v‖ w =‖u‖‖v‖ w.Also consider, (v u) w

= ‖v u‖w =‖v‖‖u‖w =‖u‖‖v‖ w (since, ‖u‖ , ‖v‖∈A implies, ‖u‖ ∧‖v‖ = ‖v‖ ∧‖u‖ and

hence, we follow that ‖u‖‖v‖ = ‖v‖‖u‖).
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Theorem 2.7: If v ∈ V, uniquely as v = a1v1+a2v2+ . . . .+anvn, where v1, v2, . . . ., vn∈ V and

a1,a2, . . . ., an∈ A, then a = a1∨a2∨. . . .∨an (where ai∧aj=ai if i = j and is 0 if i 6= j) is the

duplicator of v such that ai= b ai.

Proof: To verify that a v = v. Consider, a v = (a1∨a2∨. . . .∨an) (a1v1+a2v2+ · · ·+anvn)

= (a1∨a2∨. . . .∨an) a1v1+ · · ·+(a1∨a2∨. . . .∨an) anvn

=a1(a1v1)+a2(a1v1)+ . . .an(a1v1) + . . . + a1(anvn)+a2(anvn)+ . . .an(anvn)

= a1v1+a2v2+. . . .+anvn (ai∧aj=ai if i = j and is 0 if i 6= j ) = v. Hence, a v = v.

Suppose that b v = v for some b = b1∨b2∨. . . .∨bn, similarly taken as a = a1∨a2∨. . . .∨an. Then,

v = b v = b a1v1+b a2v2+ . . . .+b anvn.

This implies, ai= b ai for all i (by the uniqueness of v).

Definition 2.4: A finite subset of nonzero elements {v1, v2, . . . ., vn}∈ V is named linearly

independent over A if and only if a1v1+a2v2+ . . . .+anvn = 0 and a1,a2, . . . .,an 6= 0 imply that

v1+v2+ . . . .+ vn= 0. A subset of nonzero elements of V is called linearly independent over A

if and only if every limited subset of S is linearly independent.

Definition 2.5: A subset S of V spans V if and only if each v ∈ V can be written as a finite sum

v = ∑g ∈ S agg, ag ah = 0 for g different from h and ag = 0 for nearly all g in S.

Definition 2.6: A basis of V is (i) linearly independent subset of V; and (ii) spans V.

Example 2.5:Let V be a Pre A*-vector space over A as in 2.3 example. Let K be the set

of all nonzero constant maps in V. Then, K is a basis of V. Let K = {f1, f2, . . . ., fn} ⊆ V. To

verify that {f1, f2, . . . ., fn} is linearly independent. Suppose that f1a1+ f2a2+ . . . .+ fnan = 0

and f1. f2. . . .fn 6= 0. Then, a1+ a2+ . . . .+ an = 0 (as each fi is a constant function).

Hence, K = {f1, f2, . . . ., fn} is linearly independent. Let v1 ∈ V and av ∈ A such that av u = v if

u = v and 0 if u 6= v. Then we can see that v1 = av1
v1+av2

v1+ . . .avnv1. Therefore, K is a basis

of V.

Lemma 2.4: Let V be a normed Pre A*-vector space and G∗ be a basis of V. If g ∈G∗, then, (i)

–g ∈G∗, (ii) if g, h ∈G∗ in addition g + h 6= 0, g + h ∈G∗.

Proof: As G∗ spans V, –g = ∑k ∈ G∗ ak k, where, ak ah= 0 for k 6= h also ak= 0, nearby all k

∈G∗. As, g 6= 0, ak 6=0 for some k (= m, say) in G∗. At that point −am g =am(−g) = amm.
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Hence, am (g+m)= 0. As, g, m ∈G∗, am 6= 0, in addition to G∗ is independent, g + m = 0 and

therefore, −g = m ∈G∗.

If g, h ∈G∗ in addition to g + h 6= 0, we similarly observe that ak (g+h)=akk for some k ∈G∗

plus ak 6= 0. This implies ak g+ak h+ak (−k)= 0. As, k ∈G∗ infers, - k ∈ G∗, g + h = k ∈G∗.

Theorem 2.8: If G∗ is a basis of V, then G∗ is an additive subgroup G of V.

Lemma 2.5: If g ∈G∗, then ‖g‖= 1.

Proof:If ‖g‖= a, then a∼g = g – a g = g – ‖g‖ g = g – g = 0. This implies, a∼g = 0. Since, g

6= 0, we must have a∼= 0. Then by above, 0 g = g – a g, so, a g = g. From this, it follows that a

= 1 and hence, ‖g‖= 1.

Lemma 2.6: If u = ∑
n
i=1 aiui, where aiaj = 0 for i 6= j, then ‖u‖=

∨n
i=1 ai ‖ui‖.

Proof: If n = 1, then u = a1u1and ‖u‖=‖a1u1‖=a1 ‖u1‖.

Suppose that the result is true for n-1. Let v = ∑
n
i = 2 aiui and b = ‖v‖.

Then b =‖∑
n
i = 2 aiui‖=

∨n
i=2 ai ‖ui‖ and u = a1u1+v (since, u = ∑

n
i=1 ai ui).

Also, a1v = a1(∑
n
i = 2 aiui) = a1a2u2+a1a3u3+ · · ·+a1anun = 0 (ai aj= 0 for i 6= j).

Hence, a1u =a1u1 (by above, since, a v = 0).

Then, ‖v‖=‖u−a1u1‖=‖u−a1u‖(since, a1u =a1u1)=‖a1
∼u‖=a1

∼ ‖u‖.

Hence, ‖v‖=a1
∼ ‖u‖.

Thus, ‖u‖= 1‖u‖= (a1∨a1
∼)‖u‖= a1 ‖u‖∨a1

∼ ‖u‖=a1 ‖u1‖∨b =
∨n

i=1 ai ‖ui‖.

Corollary 2.3: If u = ∑
n
i=1 ai ui, where, where ai aj = 0 for i 6= j and u1, u2, . . . . un∈G∗, then

‖u‖=
∨n

i=1 ai.

Proof: By above results, the proof is immediate.

CONCLUDING REMARKS

This work made a stand to study vector spaces over algebra and its useful characterizations

as well. The Pre A*-vector space is initiated and observed its various representations. An n-

factored set Ln (A) (= An = A×A×·· ·×A (n-factors)) is observed as a vector space over A and

such a Pre A*-vector space is identified as a Pre A*-algebra as well. The notion of normed Pre

A*-vector space is initiated and studied its properties. The method of construction of a Boolean

semiring from a normed Pre A*-vector space is obtained. It is noted that the basis of the Pre

A*-vector space forms a subgroup of the Pre A*-vector space.
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