
Abstract
Process parameters optimization of multiple response characteristics of WEDM on Inconel-825 super alloy using Fuzzy- 
Grey relational analysis is presented in this paper. Response characteristics such as MRR, surface finish and spark gap 
are optimized during wire EDM operation. Process parameters including pulse on time, pulse off time, corner servo 
voltage, flushing pressure, wire feed, wire tension, servo feed and spark gap voltage are investigated using Taguchi mixed 
L36 orthogonal array. These response characteristics are studied and examined using grey-fuzzy approach and optimal 
combination of influential input parameters are discovered. Based on the results of verification experiments it is concluded 
that Taguchi, Fuzzy-Grey Relational Analysis can efficaciously be used to find the optimal combination of influential input 
parameters of WEDM. Hence, this paper supports that the suggested approach can be a useful tool to ameliorate the 
performance of WEDM on Inconel-825.
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1. Introduction
The WEDM machining plays a crucial role in fabricating 
sectors especially industries like aero region, ordinance, 
automobile and general engineering etc1,2. WEDM is one 
of the significant unconventional machining procedures, 
used for machining of a harder to machine materi-
als. Figure 1 shows the schematic view of the WEDM 
 process.

WEDM can also be used towards making of complex 
profiles used in prosthetics; biomedicine applications. 
WEDM involves alternate heating and cooling process. 
The spark plasma intensity level affects the crater size 
and this will be determined by discharge time, which in 
turn will determine the machining skilfulness and surface 
quality. With the introduction and increased use of newer 
and harder materials like titanium, hardened steel, high 
strength temperature resistant alloys, fibre-reinforced 
composites and ceramics in aerospace, nuclear, missile, 

turbine, automobile, tool and die out making industries, 
a different class of machining process has been emerged. 
Improved finishing, depressed tolerance, higher produc-
tion rate, miniaturisation etc are also the present demands 
of the manufacturing industries.

Conventional machining is more efficient than uncon-
ventional machining like wire-cut EDM process but it is 
difficult to obtain intricate and complex shapes of the 
components3 as it is required in the above-mentioned 
applications. Moreover, machine tool tables provided by 
the manufacturer often do not meet the requirements 
in machining a particular material4. So, to obtain vari-
ous shapes of structural components the wire-cut EDM 
process is important in many cases, but it requires the 
improved machining efficiency. Hence, for improving the 
machining efficiency, it requires the models to predict 
optimum parametric combinations accurately. But wire 
cut EDM consists of a number of parameters, which makes 
it difficult to obtain optimal parametric combinations for 
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combined grey relational analysis for determining the 
optimal process parameters with multiple responses. 
Tosun8 used the grey relational analysis for the deter-
mination of optimal process parameters for drilling 
with the goal of achieving minimized surface roughness 
and burr height. Lin et al.9 presented the grey relational 
analysis for optimization of the EDM parameters. Most 
of the applications of Taguchi method concentrate on 
the optimization of single response problems. The grey 
relational analysis based on grey system theory can 
be used for solving the complicated interrelationships 
among the multi-responses9,10. A gray relational grade is 
obtained to evaluate the multiple-responses. As a result, 
optimization of the multiple-responses can be con-
verted into optimization of a single relational grade. In 
short, thither is a scope of applying the grey relational 
analysis with Taguchi method for multiple characteris-
tics  optimization.

GRA is a recommended method for optimizing the 
complicated inter-relationships among multiple response 
characteristics11–14. Moreover, Lin et al. showed grey 
relational analysis is more straightforward than the fuzzy-
based Taguchi method for optimizing the EDM process 
for multi-objective optimization14.

Caydas and Hascalik15 used GRA for the optimization 
of laser cutting process of St-37 steel. Ko-Ta16 employed 
fuzzy based grey relational analysis to find optimal pro-
cess parameters of an injection-moulded thermoplastic 
part with a thin-shell feature. 

The fuzzy logic is introduced by Zadeh, for dealing the 
problems with uncertain information12. Numerous num-
bers of researchers are succeeded by applying the fuzzy 
logic coupled with grey relational analysis is dealing the 
multiple response jobs with uncertain data13-16.

This paper describes the analysis method and the 
experimental design and subsequently the optimization 
of WEDM process parameters based on the fuzzy- 
GRA analysis. Finally, it concludes the summary of this 
study.

2. Experimental Procedure

2.1 Work Material
Due to their high temperature mechanical strength and 
high corrosion resistance properties, super alloys are 
nowadays used in Marine, Space and other applications. 
Their ability to maintain their mechanical properties at 

machining different materials for various responses like 
surface roughness, material removal rate, kerf etc.

In many applications, Taguchi’s robust design applied 
in order to obtain optimum parametric combinations4 for 
selected response characteristics. In EDM, it is important 
to select optimal influential parameters for enhancing 
the machine performance1. Usually, the desired process 
parameters are determined based on experience or on 
handbook values. However, this does not ensure that 
the selected process parameters result in optimal or near 
optimal performance of that particular EDM machine 
and machining environment.

The method of optimization of WEDM opera-
tion parameters using Taguchi method was explained 
by S. S. Mahapatra et al6. It has been shown that the 
grey-based Taguchi method can optimize the multi-
responses through the circumstances of the optimal 
process parameters3; but, in this paper, to calculate sig-
nal to noise ratios the grey relational analysis was not 
used. This is because grey relational analysis based on 
the grey system theory4 is used for solving the compli-
cated interrelationships among the multiple objectives. 
A grey relational grade is then obtained for determin-
ing the relational degree of the multiple parameters. The 
fuzzy-based Taguchi method can also be used for multi-
objective optimization through the settings of optimal 
process parameters5.

Chung-Feng et al.7 analysed multi-response opti-
mization of the injection molding for Polyether Ether 
Ketone (PEEK). This study looked into the dimen-
sional accuracy and strength of screws produced by 
the injection molding. This study applied the Taguchi 
method to cut down on the number of experiments and 

Figure 1. Schematic Diagram of WEDM Process.
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cooling process. The spark plasma intensity level affects the crater size and this 
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higher production rate, miniaturisation etc are also the present demands of the 
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Conventional machining is more efficient than unconventional machining 

like wire-cut EDM process but it is difficult to obtain intricate and complex shapes 
of the components3 as it is required in the above-mentioned applications. 
Moreover, machine tool tables provided by the manufacturer often do not meet the 
requirements in machining a particular material4. So, to obtain various shapes of 
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material from both the wire and work piece by local 
melting and vaporizing. The di-electric fluid (de-ionized 
water) is endlessly flashed through the gap along the wire, 
to the sparking area to remove the debris produced dur-
ing the erosion. A collection tank is located at the bottom 
to collect the used wire erosions and then is discarded. 
The wires in one case used cannot be reused again, due 
to the fluctuation in dimensional accuracy. Through an 
NC code, machining can be programmed. WEDM of 
Inconel-825 alloy has been considered in the present set 
of research work. 

The work piece is cut in to 10 × 10 × 15 mm size piece 
during experimentation on the wire-cut EDM. According 
to the Taguchi method based on robust intention a L36 
(21 × 37) mixed orthogonal array is employed for the 
experimentation. Every experiment was repeated two 
times and mean of two readings is taken for analysis. 
Totally 72 work pieces are cut for this analysis.

When setting the machining parameters particularly 
in rough cutting operation, the object is threefold - 
increased MRR, lower SR and lower gap width. Generally, 
the machine tool builder provides machining parameter 
table to be utilized for determining machining parame-
ter. This WEDM process trusts heavily on the experience 
of the operator. In practice, it is very unmanageable 
to utilize the optimal combination of parameters of a 
machine among many changeable machining param-
eters. With a view to relieve this difficulty, a simple but 
reliable method based on statistically designed experi-
ments is proposed for investigating the effects of various 
influential parameters on MRR, SR and Gap width and 
determines optimal setting of input parameters. In the 
current research work, data have been collected from 
few experimental runs with randomly chosen factor 
combinations. A quadratic mathematical model has 
been suited for identification of the process to establish 
approximate interrelationship among various working 
parameters as well as quality characteristics. These math-
ematical models have been used to generate data based 
on Taguchi design. At last, Taguchi method is integrated 
with Fuzzy-grey relational analysis for process param-
eters optimization.

For experimentation eight parameters (two levels for 
one control factor (Pulse on time) and three levels for 
remaining seven control factors), are selected for optimi-
sation analysis during WEDM machining of Inconel-825 
alloy. The work piece after WED machining is shown in 
Figure 2.

Table 1. Chemical Composition of Inconel-825

Component Content
Nickel 38–46%
Iron 22% min
Chromium
Molybdenum
Copper
Titanium

19.5%–3.5%
2.5–3.5%

1.53%
0.6–1.2%

Table 2. Properties of Inconel-825

Property Metric Imperial
Density 8.14 gm/cm3 0.294lb/in3

Melting point 14000C 25500F
Coefficient of 
expansion
Modulus of rigidity
Modulus of elasticity

14.0 m/m.0C
75.9N/mm2

196 KN/mm2

7.8 × 10–6in/in.0F
11009Ksi
28428ksi

high temperatures severely hinders the machinability of 
these alloys17-18. Its poor thermal diffusivity generates 
high temperature at the tool tip as well as high ther-
mal gradients in the cutting tool, affecting the tool life 
adversely. Inconel-825 is very chemically responsive. 
Because of this propensity, during machining tool fail-
ures are observed. Owing to all these problems, it is 
very difficult to machine Inconel-825 by conventional 
machining processes and moreover, by conventionally 
used tool materials.

Of late, modern machining techniques such as Wire 
Electrical Discharge Machining (WEDM) are increas-
ingly being used for machining such hard materials. 
Hence, this study focused on working of Inconel-825 
using WEDM, in order to satisfy product and quality 
requirement.

The compositional range for Inconel-825 is provided in 
the Table 1 and typical properties are covered in Table2 

2.2 Experimental Setup procedure
The present work was carried out on CNC WEDM 
machine of ULTRA CUT f2 model. In this machine, all 
the axes are servo controlled and can be programmed 
to follow a CNC codification which is fed by the control 
panel. All three axes have got an accuracy of 1μm. 0.25 
mm diameter brass wire is utilized as wire electrode. A 
small gap of 0.025 mm to 0.05 mm is kept in between 
the wire and work-piece. The high energy density gnaws 
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2.3  Machining Parameter Selection and 
Performance Evaluation

The choice of optimum cutting parameters in WEDM 
is a crucial step. Improperly selected parameters may 
cause severe problems like short-circuiting of wire, wire 
breakage and damage of work surface, which is levy-
ing certain limits on the production agenda and also 

 reducing  productivity. As Material Removal Rate (MRR), 
Surface Roughness (Ra) and Spark gap (SG) are most 
important quality parameters in WEDM; several inves-
tigations have been carried out by various researchers 
for bettering the MRR, Surface Finish and kerf width3-7. 
However, the problem of selection of cutting condi-
tions is not completely depending on machine controls 
rather material dependent. For experimental design, the 
selected machining parameters with different levels are 
presented in Table 3.

Experimental results are calculated based on the fol-
lowing equations and are presented in Table 4.

Material removal rate is calculated as

MRR = Vc
∗ b∗ h mm3/min

Where: V= Cutting speed in mm/min
b = Width of cut in mm
h = Height of the work piece in mm 

Surface roughness is measured with surfcorderSE3500 
in µm.

Spark gap is measured with micrometer in mm.

Table 4. Design of Experimentation with L36 orthogonal array and experimental results

Exp. No. T ON T OFF CS WP WF WT SV SF
MRR

Mm3/min
SR(µm) SG(mm)

1 105 50 50 8 2 9 20 1050 120.3 1.54 0.02
2 105 55 60 10 5 10 25 1100 143.2 1.86 0.03
3 105 60 70 15 6 11 30 1150 182.2 1.41 0.03
4 105 50 50 8 2 10 25 1100 119.6 1.68 0.01
5 105 55 60 10 5 111 30 1150 139.5 1.66 0.04
6 105 60 70 15 6 9 20 1050 183.7 1.75 0.01
7 105 50 50 10 6 9 25 1150 112.8 1.47 0.04

 Author name / Procedia Computer Science 00 (2016) 000–000 

When setting the machining parameters particularly in rough cutting 
operation, the object is threefold - increased MRR, lower SR and lower gap width. 
Generally, the machine tool builder provides machining parameter table to be 
utilized for determining machining parameter. This WEDM process trusts heavily 
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Figure 2: Machined work material after WEDM Machining 
 

2.3. Machining Parameter Selection and Performance Evaluation 

The choice of optimum cutting parameters in WEDM is a crucial step. 
Improperly selected parameters may cause severe problems like short-circuiting of 
wire, wire breakage and damage of work surface, which is levying certain limits on 
the production agenda and also reducing productivity. As Material Removal Rate 
(MRR), Surface Roughness (Ra) and Spark gap (SG) are most important quality 
parameters in WEDM; several investigations have been carried out by various 

Figure 2. Machined work material after WEDM 
Machining.

Table 3. Machining parameters and their levels for WEDM process

S.No. Factor  Parameter Symbol Level-1 Level-2 Level-3 Range of process 
parameters

 1  A  Pulse On Time T ON(µs)  105 115  - 105–115
2 B Pulse Off Time T OFF(µs) 50 55 60 50–60
3 C Corner servo CS(volts) 50 60 70 50–70
4 D Flushing pressure  

Of Dielectric Fluid
WP(Kg/cm2) 8 10 15 8–15

5 E Wire feed rate WF(m/min) 2 5 6 2–6
6 F Wire tension N WT(Kg-f) 9 10 11 9–11
7 G Spark gap voltage SV(volts) 20 25 30 20–30
8 H Servo Feed SF(mm/min) 1050 1100 1150 1050–1150

(Continued)



G. Rajyalakshmi and P. Venkata Ramaiah

Indian Journal of Science and Technology 5Vol 8 (35) | December 2015 | www.indjst.org

3.   Identification of Optimal 
Parameters for WEDM on 
Inconel-825

Taguchi, Fuzzy-GRA is used for identifying the optimal 
parameter combination of wire EDM on Inconel-825.

3.1 Step 1: Calculation of S/N Ratios
For design of experiments, Taguchi method is one of the 
uncomplicated and effective methods19. Based on Taguchi 
technique, signal-to-noise (S/N) ratio is employed to 

 represent a response parameters and the biggest value 
of S/N ratio is required. There are three types of S/N 
ratio—the smaller the better, the bigger the better and the 
nominal the better. 

The material removal rate is a higher-the-better per-
formance characteristic, since the maximization of the 
quality characteristic of interest is sought and can be 
expressed as

 S/N Ratio 
yij

2= − ( )
=
∑log /10

1

1 1n
i

n

 (1)

8 105 55 60 15 2 10 30 1050 142.5 1.17 0.05

9 105 60 70 8 5 11 20 1100 195.7 1.99 0.04

10 105 50 50 15 5 9 30 1100 114.7 1.86 0.04

11 105 55 60 8 6 10 20 1150 147.7 1.54 0.04

12 105 60 70 10 2 11 25 1050 202.1 1.94 0.04

13 105 50 60 15 2 11 25 1050 115.8 1.86 0.03

14 105 55 70 8 5 9 30 1100 127.1 1.85 0.01

15 105 60 50 10 6 10 20 1150 144.3 1.61 0.04

16 105 50 60 15 5 9 20 1150 123.3 1.94 0.04

17 105 55 70 8 6 10 25 1050 131.6 1.38 0.04

18 105 60 50 10 2 11 30 1100 187.1 1.47 0.04

19 110 50 60 8 6 11 30 1050 371.2 1.91 0.05

20 110 55 70 10 2 9 20 1100 315.3 1.88 0.01

21 110 60 50 15 5 10 25 1150 325.5 2.58 0.04

22 110 50 60 10 6 11 20 1100 277.8 2.03 0.04

23 110 55 70 15 2 9 25 1150 294.3 2.30 0.01

24 110 60 50 8 5 10 30 1050 309.3 1.91 0.03

25 110 50 70 10 6 10 30 1150 267.3 1.94 0.01

26 110 55 50 15 5 11 20 1050 329.2 1.95 0.03

27 110 60 60 8 6 9 25 1100 325.8 2.25 0.03

28 110 50 70 10 5 10 20 1050 264.7 2.23 0.05

29 110 55 50 15 6 11 25 1100 247.8 2.04 0.04

30 110 60 60 8 2 9 30 1150 352.2 2.44 0.01

31 110 50 70 15 6 10 30 1100 401.2 2.05 0.01

32 110 55 50 8 2 11 20 1150 348.7 2.94 0.03

33 110 60 60 10 5 9 25 1050 360.0 2.32 0.03

34 110 50 70 8 5 11 25 1150 322.5 1.90 0.04

35 110 55 50 10 6 9 30 1050 352.5 1.82 0.03

36 110 60 60 15 2 10 20 1100 274.8 2.30 0.04
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Where

n = number of replicas and
yij = observed reaction value

Where i = 1, 2... .... n; j = 1, 2 ... k.
The surface roughness and gap width are the small-

er-the-better performance characteristic and the loss 
function for the same can be expressed as

 S/N Ratio = − ( )
=
∑log /10

2

1

1 n yij
i

n

 (2) 

Table 5. The Signal to Noise ratio values for the 
experimental results

Experiment
Number

S/N Ratio 
MRR

S/N Ratio
Surface 

Roughness

S/N Ratio
Spark Gap

1. 41.6107 –3.75041 32.0412

2. 43.1219 –5.39026 29.1186

3. 45.2134 –2.98438 28.5194

4. 41.5564 –4.50619 36.4782

5. 42.8915 –4.40216 26.9357

6. 45.2845 –4.86076 36.4782

7. 41.052 –3.34635 26.9357

8. 43.0763 –1.36372 26.0206

9. 45.834 –5.97706 26.9357

10. 41.1951 –5.39026 27.9588

11. 43.3905 –3.75041 26.9357

12. 46.1124 –5.75603 26.9357

13. 41.2798 –5.39026 29.1186

14. 42.0846 –5.34343 36.4782

15. 43.1898 –4.13652 27.9588

16. 41.8245 –5.75603 26.9357

17. 42.3868 –2.79758 27.9588

18. 45.4426 –3.34635 27.9588

19. 51.3933 –5.62067 26.0206

20. 49.9765 –5.48316 40

21. 50.251 –8.23239 27.9588

22. 48.877 –6.14992 27.9588

23. 49.378 –7.23456 36.4782

24. 49.8097 –5.62067 29.1186

25. 48.5424 –5.75603 40

26. 50.3505 –5.80069 30.4576

27. 50.261 –7.04365 29.1186

28. 48.4567 –6.9661 26.0206

29. 47.8847 –6.1926 27.9588

30. 50.937 –7.7478 36.4782

31. 52.0683 –6.23508 40

32. 50.8503 –9.36695 30.4576

33. 51.1261 –7.30976 29.1186

34. 50.1706 –5.57507 26.9357

35. 50.9432 –5.20143 29.1186

36. 48.7827 –7.23456 26.9357

S/N ratios for the corresponding responses are calcu-
lated and presented in Table 5.

3.2 Step 2: Normalization of S/N Ratios
The beginning step in the GRA is normalization of the 
S/N ratio, which is performed to prepare raw data for the 
analysis where the original sequence is transferred to a 
comparable sequence. Linear normalization is usually 
demanded since the range and unit in one data sequence 
may differ from the others. A linear normalization of 
the S/N ratio in the range between zero and unity is also 
called as the grey relational generation. 

3.2.1 Data Pre-Processing
Data Pre-Processing is normally required, since the range 
and unit in one data sequence may differ from others. It 
is also necessary when the sequence scatter range is too 
large, or when the directions of the target in the sequences 
are different. The formulae are 

Larger the better value 

 Z
n

ij =
− =

= − =
y y i

y i n y i
ij ij

ij ij

min( , , , ... )
max( , , , ... ) min( ,

1 2
1 2 11 2, , ... )n

 (3)

Smaller the better value

 Z
n y

ij 
ij=

= −
= − =

max( , , , ... )
max( , , , ... ) min( ,

y i
y i n y i

ij

ij ij

1 2
1 2 11 2, , ... )n

 (4)

Where yij is the ith performance characteristic in the jth  
experiment. max yij and min yij are the maximum and 
minimum values of ith performance characteristic for 
alternate j, respectively.

The normalized S/N ratios are presented in Table 6.(Continued)
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3.3 Step 3: Determination of Grey 
Relational Coefficient (GRC)
GRC for all the sequences expresses the relationship 
between the ideal (best) and actual normalized S/N ratio. 
If the two sequences agree at all points, then their grey 
relational coefficient is 1. g(x0(k), xi(k)) Can be expressed 
by equation (5).

 g
x
x

( ( ), ( ))
min max

( ) max
x k x k

ki
i

0
0

=
∆ + ∆
∆ + ∆

 (5)

Where, Δ min is the smallest value of ∆ = −∗ ∗0 0i i k ik x k x k( ) min min ( ) ( ) 
∆ = −∗ ∗0 0i i k ik x k x k( ) min min ( ) ( )  and Δ max is the largest value of 

∆ = −∗ ∗ ∗0 0 0i i k ik x k x k x k( ) max max ( ) ( ) , ( ) is the ideal nor-

malized S/N ratio, x ki
∗( ) is the normalized comparability 

sequence,  and ζ is the distinguishing coefficient. The 
value of ζ can be adjusted with the systematic actual need 
and defined in the range between 0 and 1, ζ ∈ [0, 1]. It will 
be 0.5 generally15. The GRC for all response parameters 
are presented in Table 7.

Table 6. Normalized S/N ratio values for the 
experimental results

Experiment
Number

MRR
Surface 

Roughness
Spark Gap

1. 0.0507 0.2982 0.5693

2. 0.1878 0.5031 0.7783

3. 0.3777 0.2025 0.8212

4. 0.0457 0.39265 0.2519

5. 0.1669 0.3796 0.9345

6. 0.3842 0.4369 0.2519

7. 0 0.2477 0.9345

8. 0.1837 0 1

9. 0.434 0.5764 0.9345

10. 0.0129 0.5031 0.86135

11. 0.2122 0.2982 0.9345

12. 0.4593 0.5488 0.9345

13. 0.0206 0.5031 0.7783

14. 0.0937 0.4972 0.2519

15. 0.194 0.3464 0.86135

16. 0.0701 0.0685 0.9345

17. 0.1212 0.1791 0.86135

18. 0.3985 0.2477 0.86135

19. 0.9387 0.5319 1

20. 0.8101 0.5147 0

21. 0.9258 0.8582 0.86135

22. 0.7103 0.5986 0.86135

23. 0.7557 0.7335 0.2519

24. 0.7949 0.5319 0.7783

25. 0.6799 0.5488 0

26. 0.844 0.5543 0.6826

27. 0.8359 0.7097 0.7783

28. 0.6721 0.7 1

29. 0.6202 0.6033 0.86155

30. 0.897 0.7976 0.2519

31. 1 0.6086 0

32. 0.8894 1 0.6826

33. 0.9144 0.7429 0.7783

34. 0.8277 0.5262 0.9345

35. 0.8978 0.4795 0.7783

36. 0.7017 0.7335 0.9345

Table 7. Grey relational coefficients

Experiment
Number

GRC
Material 

Removal Rate

GRC
Surface 

Roughness

GRC
Spark gap

1. 0.9079 0.6264 0.4675
2. 0.7269 0.4984 0.3911
3. 0.5696 0.71174 0.3784
4. 0.9162 0.562 0.6649
5. 0.7497 0.5684 0.3485
6. 0.5654 0.5336 0.6649
7. 1 0.6686 0.3485
8. 0.7313 1 0.3333
9. 0.5353 0.46449 0.3485

10. 0.9748 0.4985 0.3672
11. 0.7019 0.6264 0.3485
12. 0.5212 0.4767 0.3485
13. 0.9604 0.4984 0.3911
14. 0.8421 0.5014 0.6649
15. 0.7169 0.5906 0.3672
16. 0.877 0.8795 0.3485
17. 0.8049 0.7362 0.3672
18. 0.5564 0.6686 0.3672

(Continued)
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to express the inference relationship between input and 
output. A typical linguistic fuzzy rule called Mamdani is 
described as

Rule 1:  if x1 is A1, x2 is B1, x3 is C1 and x4 is D1  
then y is E1 else,

Rule 2:  if x1 is A2, x2 is B2, x3 is C2 and x4 is D2  
then y is E2 else,

Rule n:  if x1 is An, x2 is Bn, x3 is Cn and x4 is Dn 
then y is En else.

The output variable is the Grey-Fuzzy grade yo, and also 
converted into linguistic fuzzy subsets using member-
ship functions of a triangle form, as shown in Figure 5. 
Unlike the input variables, the output variable is assigned 
into relatively nine subsets i.e., very very low (VVL), very 
low (VL), small (S) medium low (ML), medium (M), 
medium high (MH) high (H), very high (VH), very very 
high (VVH) grade. Then, considering the conformity 
of three performance characteristics for input variables, 
fuzzy rules are defined. The fuzzy inference engine is the 
kernel of a fuzzy system. It can clear a problem by simu-
lating the thinking and decision pattern of human being 
using approximate or fuzzy reasoning. In this paper, the 

19. 0.3475 0.4845 0.3333

20. 0.3816 0.4927 1

21. 0.3506 0.3681 0.3672

22. 0.4131 0.4553 0.3672

23. 0.39818 0.4053 0.6649

24. 0.3861 0.4845 0.3911

25. 0.4237 0.4767 1

26. 0.3726 0.4742 0.4299

27. 0.3742 0.4133 0.3911

28. 0.42658 0.4166 0.3333

29. 0.4463 0.4531 0.3672

30. 0.3529 0.3853 0.6649

31. 0.3333 0.451 1

32. 0.3598 0.3333 0.42279

33. 0.3535 0.4622 0.3911

34. 0.3765 0.4872 0.3485

35. 0.3527 0.5104 0.3911

36. 0.416 0.4053 0.3485

3.4  Step 4: Determination of Fuzzy-Grey 
Relational Grade

A fuzzy logic unit constitutes a fuzzifier, membership 
functions, a fuzzy rule base, an inference engine and a 
defuzzifier. In the fuzzy logic analytic thinking, first, the 
fuzzifier uses membership functions to fuzzify the grey 
relational coefficient. Next, the inference engine per-
forms a fuzzy reasoning on fuzzy rules to generate a fuzzy 
value. at last, the defuzzifier converts the fuzzy value into 
a Grey-Fuzzy grade. The structure built for this study is 
a three input- one-output fuzzy logic unit as shown in 
Figure 3. 

The function of the fuzzifier is to change outside crisp 
sets of input data into proper linguistic fuzzy sets of infor-
mation. The input variables of the fuzzy logic system in 
this study are the grey relational coefficients for MRR, 
SR, SG. They are changed into linguistic fuzzy subsets 
using membership functions of a triangle form, as shown 
in Figure 4, and are uniformly assigned into three fuzzy 
subsets-small (S), medium (M), and large (L) grade. The 
fuzzy rule base consists of a group of if-then control rules 
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 max-min compositional operation of Mamdani is fol-
lowed to perform calculation of fuzzy reasoning. Suppose 
that x1, x2, and x3 are the input variables of the fuzzy 
logic system, the membership function of the output of 
fuzzy reasoning can be expressed as 

µDo(y) =  [µA1(x1) ^ µB1(x2) ^ µC1(x3) ^µD1(y)] ٧ …….. 
µAn(x1) ^ µBn(x2) ^ µCn(x3) ^µDn(y)]

Where ^ is the minimum operation and ٧ is the maxi-
mum operation. Finally, a defuzzification method called 
centre of gravity3-18 is used to transform the fuzzy output 
into a non-fuzzy value y0,

y
y y

y
D

D

o

o

0 = ∑
∑

m

m

( )

( )

The non-fuzzy value y0 gives Fuzzy Grey Relational 
Grade. Invariably, a larger Fuzzy grey relational 
grade is opted, which gives a improved performance 
 characteristic.

Table 8 shows the results of fuzzy-grey relational grade 
for different experiments.

4.   Analysis and Discussion on 
Experimental Results using 
Fuzzy-GRG and ANOVA

The experimental strategy applied in this work is based on 
Taguchi, fuzzy grey relational analysis, by which it is pos-
sible to distinguish the effect of each machining parameter 
on the Fuzzy-GRG at different levels. The mean Fuzzy-GRG 
at each level for the different machining parameters is pre-
sented in Table 9, which is referred to as a response table. 
The influence of each machining parameter can be more 
clearly presented by means of the Fuzzy-GRG response 
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Experiment 
Number  Fuzzy-GRG Rank 

1.   0.73 4 
2.   0.596 9 
3.   0.5 15 

Table 8. Fuzzy-Grey Relational Grade

Experiment
Number

Fuzzy-GRG Rank

1. 0.73 4
2. 0.596 9
3. 0.5 15
4. 0.723 5
5. 0.568 10
6. 0.447 32
7. 0.756 1
8. 0.625 7
9. 0.454 28

10. 0.75 2
11. 0.535 13
12. 0.4542 27
13. 0.7148 3
14. 0.627 6
15. 0.561 12
16. 0.5625 11
17. 0.611 8
18. 0.51 14
19. 0.458 26
20. 0.32 35
21. 0.496 16
22. 0.463 24
23. 0.452 29
24. 0.494 18
25. 0.253 36
26. 0.487 21
27. 0.491 19
28. 0.441 33
29. 0.467 23
30. 0.486 22
31. 0.382 34
32. 0.461 25
33. 0.489 20
34. 0.448 31
35. 0.495 17
36. 0.449 30

graph. The Fuzzy-GRG graph shows the change in the 
response when a given factor goes from level 1 to level 3. 
The response graph for the machining parameters of the 
wire EDM machining process is presented in Fig. 6. Based 
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on time at level 1, pulse of time at level 1, corner servo 
voltage at level 1, flushing pressure at level 1, wire feed at 
level 2, wire tension at level 1, spark gap voltage at level 2 
and servo feed at level 1.

5.  Confirmation Test
The last step of the optimization process was to forecast 
and verify the improvement in the performance char-
acteristic for machining of Inconel-825 alloys by a wire 
electrical discharge machining process with respect to the 
chosen initial parameter setting. The estimated Fuzzy-
GRG, using the optimal level of the machining parameters, 
can be calculated from following equation.

M M M Mm o
i

n

m

∧

=

= + −∑( )
1

Where Mm is the total mean of the Fuzzy-GRG, Mo is 
the mean Fuzzy-GRG at optimal level, and n is the num-
ber of main design parameters that influence the multiple 
responses. Table 11 shows the comparisons of predicted 
and actual machining performance for multiple perfor-
mance characteristics using their optimal machining 

Table 9. Response Table for Fuzzy-GRG

Parameter Level-1 Level-2 Level-3
T ON 0.595806 0.446222 --------
T OFF 0.556775 0.520333 0.485933

CS 0.577500 0.536442 0.449100
WP 0.543167 0.492183 0.527692
WF 0.514833 0.534375 0.513833
WT 0.550458 0.513833 0.498750
SV 0.492542 0.558167 0.512333
SF 0.53716 0.519333 0.506542

Table 10. ANOVA for Fuzzy-GRG

 Parameter Degree of 
Freedom

Sum of 
square

Mean 
sum of 
square

F-Value % Contribution

Pulse On 
Time 1 0.20138 0.20138 26.51 43.81

Pulse Off 
Time 2 0.0301 0.0151 1.16 6.54

Corner 
servo 2 0.1032 0.0516 4.78 22.45

Flushing 
pressure Of 
Dielectric 
Fluid

2 0.0164 0.0082 0.61 3.56

Wire feed 
rate 2 0.0032 0.0016 0.12 0.696

Wire 
tension N 2 0.0170 0.0085 0.63 3.698

Spark gap 
voltage 2 0.0272 0.0136 1.04 5.91

Servo Feed 2 0.0057 0.0028 0.21 1.24

Error 20 0.05543 0.00277

Total 35 0.45961

   

 
and response table, the optimal machining parameters for the Wire EDM 
machining process can be achieved. Basically, the larger the Fuzzy-GRG, the 
better the multiple performance characteristic. It was found from experimental 
results that the settings for experiment number 7 had the highest Fuzzy-GRG, as 
seen in Table 8. Therefore, experiment 7 machining parameter settings are optimal 
for attaining multiple performances simultaneously among 36 experiments. 
However, the relative importance among the machining parameters for the 
multiple performance characteristics still needs to be analyzed so that the optimal 
combinations of the machining parameter levels can be determined more clearly9. 
The relative importance among the factors can be analyzed through an analysis of 
variance (ANOVA). ANOVA is used to analyze which machining parameters 
significantly affect the performance characteristics. This is accomplished by 
separating the total variability of the Fuzzy-GRG, which is measured by the sum of 
the squared deviations from the total mean of the Fuzzy-GRG, into contributions 
by each machining parameter and the error.  

Based on the ANOVA (Table 10), it was found that, pulse on time and 
corner servo voltage were the most significant machining parameters impressing 
multiple performance characteristics. Referring to the average response table and 
average response graph, the variable settings for optimal machining parameters are 
the pulse on time at level 1, pulse of time at level 1, corner servo voltage at level 1, 
flushing pressure at level 1, wire feed at level 2, wire tension at level 1, spark gap 
voltage at level 2 and servo feed at level 1. 
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on the response graph and response table, the  optimal 
machining parameters for the Wire EDM machining 
process can be achieved. Basically, the larger the Fuzzy-
GRG, the better the multiple performance characteristic. 
It was found from experimental results that the settings for 
experiment number 7 had the highest Fuzzy-GRG, as seen 
in Table 8. Therefore, experiment 7 machining parameter 
settings are optimal for attaining multiple performances 
simultaneously among 36 experiments. However, the rela-
tive importance among the machining parameters for the 
multiple performance characteristics still needs to be ana-
lyzed so that the optimal combinations of the machining 
parameter levels can be determined more clearly9. The rela-
tive importance among the factors can be analyzed through 
an Analysis of Variance (ANOVA). ANOVA is used to 
analyze which machining parameters significantly affect 
the performance characteristics. This is accomplished by 
separating the total variability of the Fuzzy-GRG, which is 
measured by the sum of the squared deviations from the 
total mean of the Fuzzy-GRG, into contributions by each 
machining parameter and the error.

Based on the ANOVA (Table 10.), it was found that, 
pulse on time and corner servo voltage were the most 
significant machining parameters impressing multiple 
performance characteristics. Referring to the average 
response table and average response graph, the variable 
settings for optimal machining parameters are the pulse 
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parameters. Based on the confirmation experiment 
results, the final optimal setting for parameters are pulse 
on time at level 1, pulse of time at level 1, corner servo 
voltage at level 1, flushing pressure at level 1, wire feed at 
level 2, wire tension at level 1, spark gap voltage at level 2 
and servo feed at level .

6. Conclusions
This paper has presented the use of Taguchi, fuzzy-Grey 
relational analysis for the optimization of the wire-cut 
electrical discharge machining process on an Inconel-825 
alloy with multiple performance characteristics. A fuzzy 
reasoning of the multiple performance characteristics has 
been performed by the fuzzy logic unit. As a result, the 
performance characteristics such as MRR, SR and SG can 
be improved through this approach. An experiment was 
conducted to confirm this approach. Based on the experi-
mental results and confirmation test the conclusion can 
be drawn as follows.

The experimental results for optimal settings showed •	
that there was a considerable improvement in the 
performance characteristics viz., metal removal rate, 
surface roughness, and spark gap.
The most important factors affecting the WEDM pro-•	
cess robustness have been identified as pulse on time 
(T ON), and corner servo voltage (CS).
The following factor settings have been identified as •	
to yield the best combination of process variables: 
A1B1C1D1E2F1G2H1.
This technique is more convenient and economical to •	
predict the optimal machining parameters. 
The Taguchi method with fuzzy logic technique using •	
Fuzzy-GRG converts the multiple performance char-
acteristics into single performance characteristics and, 
therefore, simplifies the optimization procedure.

In the future, the methodology presented in this paper •	
could be applied to different machining conditions 
such as different work material, electrode etc. so as 
to build an expert system of WEDM with the goal of 
automation.

7. Acknowledgements
The Authors are thankful to VIT management for  carrying 
out this work with the support of DST.

8.  References
 1. Sanchez A, et al. On the influence of cutting speed limita-

tion on the accuracy of wire-EDM corner-cutting. J Mater 
Process Technol. 2007; 182:574–9.

 2. Ramakrishnan R, Karunamoorthy L. Multi-response opti-
mization of wire EDM operations uses robust design of 
experiments. 2006; 29:105–12.

 3. Choi KK, Nam WJ, Lee YS. Effects of heat treatment on the 
surface of a die steel STD 11 machined by WEDM. J Mater 
Process Technol. 2008; 201:580–4.

 4. Manna A, Bhattacharya B. Taghuchi and guass elimination 
method: a dual response approach for parametric optimiza-
tion of CNC wire cut EDM. Int J Adv Manuf Technol. 2006; 
28:67–75.

 5. Lee HT, Yur JP. Characteristic analysis on EDMed sur-
faces using Taguchi method approach. Materials and 
Manufacturing Processes. 2000; 15(6)781–806.

 6. Mahapatra SS, Patnaik A. Optimization of Wire Electrical 
Discharge Machining (WEDM) process parameters 
using Taguchi method. Int J Adv Manuf Technol. 2007; 
34:911–25.

 7. Kuo CFJ, Su TL. Optimization of multiple quality character-
istics for polyether ether ketone injection molding process, 
fibers and polymers. 2006; 74:404–413.

 8. Tosun N. Determination of optimum parameters for 
multi performance characteristics in drilling by using 
grey relational analysis. Int J Adv Manuf Technol. 2006; 
28:450–5.

 9. Lin CL, Lin JL, Ko TC. Optimization of the EDM Process 
based on the orthogonal array with fuzzy logic and Grey 
relational analysis method. Int J Adv Manuf Technol. 2002; 
19:271–7.

10. Deng J. Introduction to grey system. Grey Syst. 1989; 
1:1–24.

11. Kung LM, Yu SW. Prediction of index futures returns and 
the analysis of financial spillovers – A comparison between 
GARCH and the grey theorem. Eur J Oper Res. 2008; 
186(3):1184–200.

Table 11. Results of Confirmation Experiment
Initial machining 

parameters
Optimal machining 

parameters

Prediction Experimental

Setting level A1B1C1D2E3F1G2H3 A1B1C1D1E2F1G2H1

Material 
removal rate

112.875 114.750 120.35

Surface 
roughness

1.47 1.42 1.381

Spark gap 0.0450 0.042 0.0414



Application of Taguchi, Fuzzy-Grey Relational Analysis for Process Parameters Optimization of WEDM on Inconel-825

Indian Journal of Science and Technology12 Vol 8 (35) | December 2015 | www.indjst.org

12. Ng David KW. Grey system and grey relational model. 
ACM SIGICE Bulletin. 1994; 20(2):1–9.

13. Chang SH, Hwang JR, Doong JL. Optimization of the 
injection molding process of short glass fiber reinforced 
polycarbonate composites using grey relational analysis. J 
Mater Process Technol. 2000; 97:186–93.

14. Lin JL, Lin CL. The use of the orthogonal array with grey 
relational analysis to optimize the electrical discharge 
machining process with multiple performance characteris-
tics. Inter J Mach Tools Manuf. 2002; 42(2):237–44.

15. Caydas U, Hascalik A. Use of the grey relational 
analysis to determine optimum laser parameters with mul-
tiperformance characteristics. Opt Laser Technol. 2008; 
40(7):987–94.

16. Ko-Ta C. The optimal process conditions of an injection 
molded thermoplastic part with a thin shell feature using 
greyfuzzy logic: A case study on machining the PC/ABS cell 
phone shell. Mater Des. 2007; 28(6):1851–60.

17. Ezugwu EO. Key improvements in the machining of diffi-
cult-to-cut aerospace superalloys. Int J Mach Tool Manu. 
2005; 45:1353–67.

18. Choudhury IA, El-Baradie MA. Machinability of nickel-
base super alloys: A general review. Journal of Materials 
Processing Tech. 1998; 77:278–84, ISSN: 0975-54621546.

19. Lin CL. Use of the Taguchi method and grey relational 
analysis to optimize turning operations with multiple 
performance characteristics. Mater Manuf Process. 2004; 
19:209–20.


