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In this paper, we prove coupled fixed-point theorems in complex partial b-metric space. +e proved results generalize and extend
some of the well-known results in the literature. We also give some applications of our main results.

1. Introduction

+e notion of b-metric space was introduced by Backhtin [1]
in 1989, and Czerwik [2] extended the results of metric
spaces. +e notion of complex valued metric spaces was
introduced by Azam et al. [3] in 2011 who also proved some
common fixed-point theorems under the contraction con-
dition. In 2013, Rao et al. [4] introduced the concept of
complex valued b-metric space which is more general than
the well-known complex valued metric space and also
proved common fixed-point theorem under the contraction
condition. In 2017, Dhivya and Marudai [5] introduced the
notion of complex partial metric space and also proved
common fixed-point theorems under the contraction con-
dition of rational expression. In 2019, Gunaseelan [6] in-
troduced the notion of complex partial b-metric space and
also proved fixed-point theorem under the contractive
condition. Some interesting concepts and applications have

been studied by many authors, and important results have
been obtained in [7–12]. In this paper, we prove coupled
fixed-point theorems in complex partial b-metric space.

In the next section, we give basic definitions, examples,
and primary results for the better understanding of our
major results presented in this research paper.

2. Preliminaries

Let C be the set of complex numbers and η1, η2, η3 ∈ C.
Define a partial order ⪯ on C as follows: η1 ⪯ η2 if and only
if Re(η1) ≤ Re(η2), Im(η1)≤ Im(η2).

Consequently, one can infer that η1 ⪯ η2 if one of the
following conditions is satisfied:

(i) Re(η1) � Re(η2), Im(η1)< Im(η2)
(ii) Re(η1)<Re(η2), Im(η1) � Im(η2)

(iii) Re(η1)<Re(η2), Im(η1)< Im(η2)
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(iv) Re(η1) � Re(η2), Im(η1) � Im(η2)

In particular, we write η1 ⋨ η2 if η1 ≠ η2 and one of (i),
(ii), and (iii) is satisfied and we write η1 ≺ η2 if only (iii) is
satisfied. Notice that

(a) If 0 ≺ η1 ⋨ η2, then |η1|< |η2|
(b) If η1 ≺ η2 and η2 ≺ η3, then η1 ≺ η3
(c) If λ, β ∈ R, and λ≤ β, then λa1 ≺ βa1 for all

0 ≺ a1 ∈ C

Definition 1 (see [4]). Let Y be a nonvoid set and let s≥ 1 be
a given real number. A function d: Y × Y⟶ C is called a
complex valued b-metric on Y if for all a, b, c ∈ Y the
following conditions are satisfied:

(i) 0 ≺ d(a, b) and d(a, b) � 0 if and only if a � b

(ii) d(a, b) � d(b, a)

(iii) d(a, b) ≺ s[d(a, c) + d(c, b)]
+e pair (Y, d) is called a complex valued b-metric space.
Here, C+(� (a,b) |a,b ∈ R

+{ }) and R
+(� a ∈ R |a≥0{ })

denote the set of non-negative complex numbers and the set
of non-negative real numbers, respectively. We now give the
complex partial metric space.

Definition 2 (see [5]). A complex partial metric on a non-
void set △ is a function ζc: △ ×△⟶ C

+ such that for all
e, f, g ∈△:

(i) 0 ≺ ζc(e, e) ≺ ζc(e, f)(small self − distances)

(ii) ζc(e, f) � ζc(f, e)(symmetry)

(iii) ζc(e, e) � ζc(e, f) � ζc(f, f) if and only if
e � f(equality)

(iv) ζc(e,f) ≺ ζc(e,g)+ ζc(g,f) − ζc(g,g)(triangularity)

A complex partial metric space is a pair (△, ζc) such that
△ is a nonvoid set and ζc is the complex partial metric on△.

Definition 3 (see [6]). A complex partial b-metric on a
nonvoid set△ is a function θcb: △ ×△⟶ C

+ such that for
all e, f, g ∈△:

(i) 0 ≺ θcb(e, e) ≺ θcb(e, f)(small self − distances)

(ii) θcb(e, f) � θcb(f, e)(symmetry)

(iii)
θcb(e, e) � θcb(e, f) � θcb(f, f)⟺ e � f(equality)

(iv) ∃ a real number s≥ 1 such that θcb(e, f) ≺ s[θcb(e,
g) + θcb(g, f)] − θcb(g, g)(triangularity)

A complex partial b-metric space is a pair (△, θcb) such
that △ is a nonvoid set and θcb is the complex partial
b-metric on △. +e number s is called the coefficient of
(△, θcb).

Remark 1 (see [6]). In a complex partial b-metric space
(△, θcb), if e, f ∈△ and θcb(e, f) � 0, then e � f, but the
converse may not be true.

Remark 2 (see [6]). It is clear that every complex partial
metric space is a complex partial b-metric space with co-
efficient s � 1 and every complex valued b-metric is a
complex partial b-metric space with the same coefficient and
zero self-distance. However, the converse of this fact need
not hold.

Example 1 (see [6]). Let△ � R
+ and θcb: △ ×△⟶ C

+ be
defined by θcb(e, f) � [max e, f ]3 + |e − f|3 + i [max e,{{

f}]3 + |e − f|3}, ∀e, f ∈△. +en, (△, θcb) is a complex
partial b-metric space with coefficient s � 23, but it is neither
a complex valued b-metric nor a complex partial metric.

Proposition 1 (see [6]). Let△ be a nonvoid set such that ζc is
a complex partial metric and d is a complex valued b-metric
with coefficient s> 1 on △. Cen, the function
θcb: △ ×△⟶ C

+ defined by θcb(e, f) � ζc(e, f) + d(e,
f), ∀e, f ∈△ is a complex partial b-metric on △, that is,
(△, θcb) is a complex partial b-metric space.

Proposition 2 (see [6]). Let (△, ζc) be a complex partial
metric space, r≥ 1; then, (△, θcb) is a complex partial
b-metric space with coefficient s � 2r− 1, where θcb is defined
by θcb(e, f) � [ζc(e, f)]

r.

Every complex partial b-metric θcb on a nonvoid set △
generates a topology τcb on △ whose base is the family of
open θcb-balls Bθcb

(e, ε) where τcb � Bθcb
(e, ε): e ∈△, ε> 0 

and Bθcb
(e, ε) � f ∈△: θcb(e, f)< ε + θcb(e, e) . Now, we

define Cauchy sequence and convergent sequence in com-
plex partial b-metric spaces.

Definition 4 (see [6]). Let (△, θcb) be a complex partial
b-metric space with coefficient s. Let en  be any sequence in
△ and e ∈ △. +en,

(i) +e sequence en  is said to be convergent with
respect to τcb and converges to e, if
limn⟶∞θcb(en, e) � θcb(e, e).

(ii) +e sequence en  is said to be Cauchy sequence in
(△, θcb) if limn,m⟶∞θcb(en, em) exists and is finite.

(iii) (△, θcb) is said to be a complete complex partial
b-metric space if for every Cauchy sequence en  in
△ there exists e ∈△ such that limn,m⟶∞θcb
(en, em) � limn⟶∞θcb(en, e) � θcb(e, e).

(iv) A mapping T: △⟶△ is said to be continuous at
e0 ∈ △ if for every ε> 0, there exists δ > 0 such that
T(Bθcb

(e0, δ)) ⊂ Bδcb
(T(e0, ε)).

Let △ be a complex partial b-metric space and B⊆△. A
point e ∈ △ is called an interior of set B, if there exists
0< r ∈ C such that Bθcb

(e, r) � f ∈△: θcb(e, f)< θcb(e,
e) + r}⊆B. A subset B is called open, if each point of B is an
interior point of B. A point e ∈ △ is said to be a limit point
of B, for every 0< r ∈ C, Bθcb

(e, r)∩ (B − e{ })≠ ϕ. A subset
C⊆△ is called closed if B contains all its limit points.
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Example 2 (see [6]). Let △ � R
+, a> 0 be any constant and

define θcb:△×△⟶C
+ by θcb(e,f) � (max e,f +a)(1+

i)∀e,f ∈ △.
+en, (△, θcb) is a complex partial b-metric space with

arbitrary coefficient s≥ 1. Now, define a sequence en  in △
by en � 1 for all n ∈ N. Note that, if f≥ 1, we have
θcb(en, f) � (f + a)(1 + i) � θcb(f, f).+erefore,
limn⟶∞θcb(en, f) � θcb(f, f) for all f≥ 1. +us, the limit
of convergent sequence in complex partial b-metric space
need not be unique.

Example 3 (see [6]). Let △ � [0,∞) be endowed with
complex partial b-metric θcb: △ ×△⟶ C

+ with

θcb � (max e, f )2 + i(max e, f )2 ∀e, f ∈ △.
It is easy to verify that (△, θcb) is a complex partial

b-metric space and note that self-distance need not be zero,
for example, θcb(1, 1) � 1 + i≠ 0. Now, the complex valued
b-metric not induced by θcb is as follows:
dθcb(e, f) � 2θcb(e, f) − θcb(e, e) − θcb(f, f); without loss of
generality, suppose that e≥f; then, dθcb(e, f)
� 2[(max e, f )2 + i(max e, f )2] − (e2 + ie2) − (f2 + if2).
+erefore, dθcb(e, f) � e

2 − f2 + i(e2 − f2).
+us, we have the following proposition.

Proposition 3 (see [6]). Cere exists a complex partial
b-metric θcb which does not define a complex b-metric dθcb,
where
dθcb(e, f) � 2θcb(e, f) − θcb(e, e) − θcb(f, f)∀e, f ∈ △.

Definition 5 (see [13]). Let (△, ⪯ ) be a partially ordered set
and Λ: △ ×△⟶△. We say that Λ has the mixed
monotone property ifΛ(i, j) is monotone nondecreasing in i
and is monotone nonincreasing in j, that is, for any i, j ∈ △,

i1, i2 ∈ △, i1 ≺ i2⟹Λ i1, j( ⪯Λ i2, j( ,
j1, j2 ∈ △, j1 ≺ j2⟹Λ i, j1( ≽Λ i, j2( . (1)

Definition 6. Let (△, θcb) be a complex partial b-metric
space. An element (i, j) ∈△ ×△, is called a coupled fixed
point of the mapping Λ: △ ×△⟶△ if Λ(i, j) � i and
Λ(j, i) � j.

Example 4. Let △ � [0,∞) be endowed with complex
partial b-metric θcb: △ ×△⟶ C

+ defined by
θcb(e, j) � (max e, j )2 + i(max e, j )2 ∀e, j ∈△. Consider
the mapping Λ: △ ×△⟶△ with Λ(e, j) � i((e + j)/4).
Here, (0, 0) is the coupled fixed point of Λ.

In 2019, Gunaseelan and Mishra [14] proved the fol-
lowing theorem.

Theorem 1 (see [14]). Let (U, ξc) be a complete complex
partial metric space. Suppose that the mapping
ϕ: U × U⟶ U satisfies the following contractive condition
for all α, β, c, δ ∈ U:

ξc(ϕ(α, β), ϕ(c, δ)) ≺ kξc(ϕ(α, β), α) + lξc(ϕ(c, δ), c),
(2)

where k, l are nonnegative constants with k + l< 1. Cen, ϕ
has a unique coupled fixed point.

Inspired by +eorem 1, we prove coupled fixed-point
theorem on partially ordered complex partial b-metric space
using mixed monotone property.

In the next section, we firstly prove that a continuous
mapping having the mixedmonotone property on a partially
ordered complete complex partial b-metric space has a
coupled fixed point under certain conditions. Secondly, we
give result of a coupled fixed point for a mapping having the
mixed monotone property on a partially ordered complete
complex partial b-metric space by losing the property of
continuity. +en, we find the condition under which a
continuous mapping having the mixed monotone property
on a partially ordered complete complex partial b-metric
space has a unique coupled fixed point under certain con-
ditions. We also give an example of continuous mapping
having the mixed monotone property on a partially ordered
complete complex partial b-metric space and show that it
has unique coupled fixed point under said conditions.

3. Main Results

Let (△, ≺ ) be a partially ordered set and θcb be a complex
partial b-metric space on△. Further, we endow the product
space △ ×△ with the following partial order:

for (i, j), (g, h)∈△ ×△,
(g, h)⪯ (i, j)⟺ i≽g, j⪯ h.

(3)

We begin with the following theorem that establishes the
existence of a fixed-point theorem for a function Λ on the
product △ ×△.

Theorem 2. Let (△, θcb, ⪯ ) be a partially ordered complete
complex partial b-metric space with the coefficient s≥ 1. Let
Λ: △ ×△⟶△ be a continuous mapping having the mixed
monotone property on △. Assume that there exists a
2sα ∈ [0, 1) with

θcb(Λ(i, j),Λ(g, h)) ≺ α θcb(i, g) + θcb(j, h) , ∀i≽g, j⪯ h.
(4)

If there exists i0, j0 ∈ △ such that

i0 ⪯Λ i0, j0( ,
j0 ≽Λ j0, i0( , (5)

then Λ has a coupled fixed point.

Proof. Since i0 ≺ Λ(i0, j0) � i1 (say) and j0 ≽Λ(j0, i0) � j1
(say), letting i2 � Λ(i1, j1) and j2 � Λ(j1, i1), we denote

Λ2 i0, j0(  � Λ Λ i0, j0( ,Λ j0, i0( (  � Λ i1, j1(  � i2,
Λ2 j0, i0(  � Λ Λ j0, i0( ,Λ i0, j0( (  � Λ j1, i1(  � j2. (6)

Due to the mixed monotone property of Λ,
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i2 � Λ2 i0, j0(  � Λ i1, j1( ≽Λ i0, j0(  � i1,
j2 � Λ2 j0, i0(  � Λ j1, i1( ⪯Λ j0, i0(  � j1. (7)

Further, for p � 1, 2, . . ., we let

ip+1 � Λp+1 i0, j0(  � Λ Λp i0, j0( ,Λp j0, i0( ( ,
jp+1 � Λp+1 j0, i0(  � Λ Λp j0, i0( ,Λp i0, j0( ( . (8)

We can easily verify that

i0 ⪯Λ i0, j0(  � i1 ⪯Λ2 i0, j0(  � i2 ⪯ · · · ⪯Λp+1 i0, j0( ⪯ · · · ,
(9)

j0 ≽Λ j0, i0(  � j1 ≽Λ2 j0, i0(  � j2 ≽ · · · ≽Λp+1 j0, i0( ≽ · · · .
(10)

If ip+1 � ip and jp+1 � jp for some p, then Λ(ip, jp) � ip
and Λ(jp, ip) � jp, and hence (ip, jp) is a coupled fixed
point of Λ. Suppose, further, that

ip ≠ ip+1,
or jp ≠ jp+1, for eachp ∈ N0.

(11)

Now, we claim that, for p ∈ N0,

θcb ip+1, ip   + θcb jp+1, jp  ≤ 2pαp θcb i1, i0(   + θcb j1, j0(   .
(12)

Indeed, for p � 1, using i1 ≽ i0, j1 ⪯ j0, we get

θcb i2, i1(  � θcb Λ i1, j1( ,Λ i0, j0( ( 
⪯ α θcb i1, i0(  + θcb j1, j0(  , (13)

which implies that

θcb i2, i1(  ≤ α θcb i1, i0(   + θcb j1, j0(   . (14)

Similarly,

θcb j2, j1(  � θcb Λ j1, i1( ,Λ j0, i0( ( 
⪯ α θcb j1, j0(  + θcb i1, i0(  , (15)

which implies that

θcb j2, j1(  ≤ α θcb j1, j0(   + θcb i1, i0(   . (16)

Adding (12) and (16), we have

θcb i2, i1(   + θcb j2, j1(  ≤ 2α θcb i0, i1(   + θcb j0, j1(   .
(17)

In a similar way, proceeding by induction, if we assume
that (12) holds, we get that

θcb ip+2, ip+1   + θcb jp+2, jp+1  ≤ 2α θcb ip+1, ip   + θcb jp+1, jp   
≤ 2p+1αp+1 θcb i0, i1(   + θcb j0, j1(  . (18)

Hence, by induction, (12) is proved. Set

lp ≔ θcb ip, ip+1   + θcb jp, jp+1  , p ∈ N. (19)

+en, the sequence lp  is decreasing and

lp ≤ 2pαpl0. (20)

By assumption (9), lp > 0 for p ∈ N0. +en, for each
p≥ q, we have

θcb iq, ip ⪯ sθcb iq, iq+1  + s2θcb iq+1, iq+2  + · · · + spθcb ip− 1, ip 
− θcb iq+1, iq+1  − θcb iq+2, iq+2  − θcb iq+3, iq+3 
− · · · − θcb ip− 1, ip− 1 

⪯ sθcb iq, iq+1  + s2θcb iq+1, iq+2  + · · · + spθcb ip− 1, ip ,
θcb jq, jp ⪯ sθcb jq, jq+1  + s2θcb jq+1, jq+2  + · · · + spθcb jp− 1, jp 

− θcb jq+1, jq+1  − θcb jq+2, jq+2  − θcb jq+3, jq+3 
− · · · − θcb jp− 1, jp− 1 

⪯ sθcb jq, jq+1  + s2θcb jq+1, jq+2  + · · · + spθcb jp− 1, jp ,

(21)
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which implies that

θcb iq, ip  ≤ s θcb iq, iq+1   + s2 θcb iq+1, iq+2   + · · · + sp θcb ip− 1, ip  ,
θcb jq, jp  ≤ s θcb jq, jq+1   + s2 θcb jq+1, jq+2   + · · · + sp θcb jp− 1, jp  . (22)

+erefore,

lq � θcb iq, ip   + θcb jq, jp  ≤ s θcb iq, iq+1   + θcb jq, jq+1   
+ s2 θcb iq+1, iq+2   +θcb jq+1, jq+2    + · · ·
· · · + sp θcb ip− 1, ip   +θcb jp− 1, jp   

≤ slq + s2lq+1 + · · · + splp− 1

≤ s2qαq 1 + s2α + · · · + sp− 1(2α)p− q− 1 l0
≤ s(2α)

q

1 − s2α
l0 ⟶ 0, as q⟶∞.

(23)

+erefore, ip  and jp  are Cauchy sequences in △.
Since △ is complete complex partial b-metric space, there
exists (t, r) ∈△ ×△ such that

lim
p⟶∞

ip � t,

lim
p⟶∞

jp � r,
(24)

and θcb(t, t) � limp⟶∞θcb(t, tp) � limp,q⟶∞θcb(tp, tq) � 0
and θcb(r, r) � limp⟶∞θcb(r, rp) � limp,q⟶∞θcb(rp, rq)
� 0. Finally, we claim that (t, r) is a coupled fixed point of Λ.
Indeed, from ip+1 � Λ(ip, jp) and jp+1 � Λ(jp, ip), using
(24) and the continuity of Λ, it immediately follows that t �
Λ(t, r) and r � Λ(r, t).

In the next theorem, we will substitute the continuity
hypothesis on Λ by an additional property satisfied by the
space (△, θcb, ≺ ).

Theorem 3. Let (△, θcb, ≺ ) be a partially ordered complete
complex partial b-metric space with the coefficient s≥ 1. Let
Λ: △ ×△⟶△ be a mapping having the mixed monotone
property on △. Assume that there exists 2sα ∈ [0, 1) with

θcb(Λ(i, j),Λ(g, h)) ≺ α θcb(i, g) + θcb(j, h) , ∀i≽g, j⪯ h.
(25)

Finally, assume that △ has the following properties:

(i) If a nondecreasing sequence ip  in △ converges to
i ∈△, then ip ≺ i for all p.

(ii) If a nonincreasing sequence jp  in △ converges to
j ∈△, then jp ≽ j for all p.

+en, Λ has a coupled fixed point.

Proof. Following the proof of +eorem 2, we only have to
show (t, r) is a coupled fixed point of Λ. We have

θcb(Λ(t, r), t)⪯ s θcb Λ(t, r), ip+1  + θcb ip+1, t  
− θcb ip+1, ip+1 

⪯ s θcb Λ(t, r), ip+1  + θcb ip+1, t  
� s θcb Λ(t, r), ip+1  + θcb ip+1, t  .

(26)

Since the nondecreasing sequence ip  converges to t
and the nonincreasing sequence jp  converges to r, by
(i)–(iii), we have

t≽ ip,
r⪯ jp, ∀p.

(27)

Now, from the contractive condition (25), we have

θcb Λ(t, r),Λ ip, jp   ≺ α θcb t, ip  + θcb r, jp  . (28)

+en, from (26), we get

θcb(Λ(t, r), t)⪯ s α θcb t, ip  + θcb r, jp   + θcb ip+1, t  ,
(29)

which implies that
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θcb(Λ(t, r), t)
 ≤ sα θcb t, ip   + sα θcb r, jp   + s θcb ip+1, t  .

(30)
Taking limit as p⟶∞, we have

θcb(Λ(t, r), t)
 ≤ 0. (31)

+erefore, Λ(t, r) � t. Similarly, we can prove that
Λ(r, t) � r. Hence, (t, r) is a coupled fixed point of Λ.

Theorem 4. Assume that

∀(e, f), e∗, f∗(  ∈△ ×△,
∃ x1, x2(  ∈△ ×△

that is comparable to (e, f) and e∗, f∗( .
(32)

Adding (32) to the hypotheses of +eorem 2, we obtain
the uniqueness of the coupled fixed point of Λ.

Proof. From+eorem 2, we know that there exists a coupled
fixed point (t, r) of Λ, which is obtained as
t � limp⟶∞Λp(i0, j0) and r � limp⟶∞ Λp(j0, i0). Suppose
that (e∗, f∗) is another coupled fixed point, i.e.,

Λ e∗, f∗(  � e∗,
Λ f∗, e∗(  � f∗. (33)

Let us claim that

θcb t, e
∗(  + θcb r, f

∗(  � 0. (34)

We discuss two cases.

Case 1: (t, r) is comparable with (e∗, f∗) with respect
to the ordering in △ ×△. Let, e.g., t≽ e∗ and r ≺ f∗.

+en, we can apply the contractive condition (4) to
obtain

θcb t, e
∗(  � θcb Λ(t, r),Λ e∗, f∗( ( 
⪯ α θcb t, e

∗(  + θcb r, f
∗(  , (35)

which implies that

θcb t, e
∗(  ≤ α θcb t, e

∗(   + θcb r, f
∗(   . (36)

θcb r, f
∗(  � θcb Λ(r, t),Λ f∗, e∗( ( 
≤ α θcb r, f

∗(  + θcb t, e
∗(  , (37)

which implies that

θcb r, f
∗(  ≤ α θcb r, f

∗(   + θcb t, e
∗(   . (38)

Adding (36) and (38), we get

θcb t, e
∗(   + θcb r, f

∗(  ≤ 2α θcb t, e
∗(   + θcb r, f

∗(   .
(39)

Since 2α ∈ [0, (1/s)), (34) holds.
Case 2: (t, r) is not comparable with (e∗, f∗). In this
case, there exists (x1, x2) ∈△ ×△ that is comparable
both to (t, r) and (e∗, f∗).+en, for all p ∈ N, (Λp(x1,
x2),Λp(x2, x1)) is comparable both to (Λp(t, r),Λp(r,
t)) � (t, r) and (Λp(e∗, f∗),Λp(f∗, e∗)) � (e∗, f∗).
We have

θcb t, e
∗(  + θcb r, f

∗(  � θcb Λp(t, r),Λp e∗, f∗( (  + θcb Λp(r, t),Λp f∗, e∗( ( 
⪯ θcb Λp(t, r),Λp x1, x2( (  + θcb Λp x1, x2( ,Λp e∗, f∗( ( 
+ θcb Λp(r, t),Λp x2, x1( (  + θcb Λp x2, x1( ,Λp f∗, e∗( ( 

⪯ 2pαp θcb t, x1(  + θcb r, x2(  + θcb e
∗, x1(  + θcb f

∗, x2(  ,
(40)

which implies that

θcb t, e
∗(   + θcb r, f

∗(  ≤ 2pαp θcb t, x1(   + θcb r, x2(  
+ θcb e

∗, x1(   + θcb f
∗, x2(  .

(41)

Since 2α ∈ [0, (1/s)), (34) holds.
We deduce that in all cases, (34) holds. +is implies that

(t, r) � (e∗, f∗) and the uniqueness of the coupled fixed
point of Λ is proved.

Theorem 5. In addition to the hypotheses ofCeorem 2 (resp.
Ceorem 3), suppose that i0, j0 in △ are comparable. Cen,
t � r.

Proof. Suppose that i0 ⪯ j0. We claim that

ip ⪯ jp, ∀p ∈ N. (42)
From the mixed monotone property of Λ, we have

i1 � Λ i0, j0( ⪯Λ j0, j0( ⪯Λ j0, i0(  � j1. (43)

Assume that ip ⪯ jp for some p. Now,
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ip+1 � Λp+1 i0, j0(  � Λ Λp i0, j0( ,Λp j0, i0( ( 
� Λ ip, jp 
⪯Λ jp, jp  ⪯ Λ jp, ip 
� jp+1.

(44)

Hence, (42) holds.
Now, using (42) and the contractive condition, we get

θcb(t, r)⪯ s θcb t, ip+1  + θcb ip+1, r   − θcb ip+1, ip+1 
⪯ s θcb t, ip+1  + θcb ip+1, r  
⪯ s θcb t, ip+1  + s θcb ip+1, jp+1  + θcb jp+1, r  − θcb jp+1, jp+1   
⪯ sθcb t, ip+1  + s2θcb ip+1, jp+1  + s2θcb jp+1, r 
� sθcb t, ip+1  + s2 θcb Λ ip, jp  ,Λ jp, ip   + s2θcb jp+1, r 
⪯ sθcb t, ip+1  + s2α θcb ip, jp  + θcb jp, ip   + s2θcb jp+1, r ,

(45)

which implies that

θcb(t, r)
 ≤ s θcb t, ip+1   + s2α θcb ip, jp   + θcb jp, ip    + s2 θcb jp+1, r  . (46)

Passing to the limit as p⟶∞, we get

θcb(t, r)≤ 2s2αθcb(t, r). (47)

Since 2s2α< 1, this implies that θcb(t, r) � 0, i.e., t � r.

Example 5. Let △ � [1,∞) be equipped with the partial
order ≼ defined by

e ≺ f⟺ e≤f, (48)

and with the functional θcb: △ ×△⟶ C
+ defined by

θcb(e, f) � |e − f|
2 + 2 + i(|e − f|2 + 2) for all e, f ∈△.

Clearly, (△, θcb) is a partially ordered complete complex

partial b-metric space with s � 2. Define the mapping
Λ: △ ×△⟶△ by

Λ(e, f) �

0, if e<f,

e − f

2
, if e≥f.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (49)

Obviously, the mapping Λ has the mixed monotone
property and is continuous. Let e, f, t, r ∈△ be such that
e≤ t and f≥ r. We have considered the following cases.

Case 1: e≥f. Since e≤ t, we have t≥ e≥f≥ r:

θcb(Λ(e, f),Λ(t, r)) � θcb
e − f

2
,
t − r

2
 

�
e − f

2
−
t − r

2



2

+ 2 + i
e − f

2
−
t − r

2



2

+ 2 
�
e − t

2
+
r − f

2



2

+ 2 + i
e − t

2
+
r − f

2



2

+ 2 
⪯ 2 e − t

2



2

+
r − f

2



2  + 2 + i 2

e − t

2



2

+
r − f

2



2  + 2 

�
1

2
|e − t|2 +|r − f|2 + 4 + i |e − t|2 +|r − f|2 + 4  

� α θcb(e, t) + θcb(r, t)( .

(50)
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Case 2: e<f, t≥ r, and e> r:

θcb(Λ(e, f),Λ(t, r)) � 0 −
t − r

2



2

+ 2 + i 0 −
t − r

2



2

+ 2 

�
|t − r|2

4
+ 2 + i

|t − r|2

4
+ 2 

⪯ |t − r + f − e|
2

4
+ 2 + i

|t − r + f − e|2

4
+ 2 

⪯ 1
2
|e − t|2 +|f − r|2 + 4  + i 1

2
|e − t|2 +|f − r|2 + 4  

� α θcb(e, t) + θcb(r, t)( .

(51)

Case 3: e<f, t≥ r, and e< r:

θcb(Λ(e, f),Λ(t, r) � 0 −
t − r

2



2

+ 2 + i 0 −
t − r

2



2

+ 2 
�
t − r

2



2

+ 2 + i
t − r

2



2

+ 2 

⪯ |t − r + f − e|
2

4
+ 2 + i

|t − r + f − e|2

4
+ 2 

⪯ 1
2
|e − t|2 +|f − r|2 + 4  + i 1

2
|e − t|2 +|f − r|2 + 4  

� α θcb(e, t) + θcb(r, t)( .

(52)

Case 4: e<f and t< r:
θcb(Λ(e, f),Λ(t, r)) � θcb(0, 0) � 2(1 + i) ≺ α θcb(e, t)(

+ θcb(r, t).
(53)

+us, Λ satisfies all assumptions of +eorem 4 and it has
a unique coupled fixed point (which is (0, 0)).

Next, we present a result for the existence of a unique
solution for a particular system of integral equations.

3.1. Applications to Integral Equations. We study the exis-
tence of solutions for the following system of integral
equations:

e(u) � b
a
T1(u, s) + T2(u, s)( (H(s, e(s)) + K(s, f(s)))ds + l(u), (54)

f(u) � b
a
T1(u, s) + T2(u, s)( (H(s, f(s)) +K(s, e(s)))ds + l(u), (55)

where u ∈ I � [a, b].
We assume that T1, T2, H,K satisfy the following

conditions:

(i) T1(u, s)≽ 0 and T2(u, s) ≺ 0 for all u, s ∈ [a, b].

(ii) +ere exist e, f ∈ R, e ≺ f such that
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0≼H(u, e) − H(u, f)≼ (e − f)
and − (e − f)≼K(u, e) − K(u, f)≼ 0.

(56)

(iii) b
a
|T1(u, s) − T2(u, s)|

2ds⪯ α/4.

Theorem 6. Consider integral equations (54) and (55) with
T1, T2 ∈ C(I,R), H,K ∈ C(I × R,R), and l ∈ C(I,R).
Under assumptions (i)–(iii), equations (54) and (55) have a
unique solution.

Proof. Consider the natural order relation on△ � C(I,R);
that is, for e, f ∈ C(I,R),

e ≺ f⟺ e(u)≤f(u), ∀u ∈ I. (57)

It is well known that △ is a complete complex partial
b-metric space with respect to

θcb(e, f) � |e − f|
2
+ 2 + i |e − f|2 + 2 , e, f ∈ C(I,R).

(58)

Suppose that tp  is a monotone nondecreasing se-
quence in△ that converges to a point t ∈ △. +en, for every
u ∈ I, the sequence of real numbers

t1(u)≤ t2(u)≤ · · · ≤ tp(u)≤ · · · (59)

converges to t(u). +erefore, for all u ∈ I, p ∈ N, tp ≤ t(u).
Hence, tp ≤ t, for all p. Similarly, it can be verified that, if for
all u ∈ I, r(u) is a limit of a monotone nondecreasing
sequence rp  in △, then r(u)≤ rp(u) for all p, and hence
r≤ rp for all p.

Also, △ ×△ � C(I,R) × C(I,R) is a partially ordered
set under the following order relation in △ ×△:

(e, f), (t, r) ∈ △ ×△,
(e, f)≤ (t, r)⟺ e(u) ≺ t(u),

f(u)≽ r(u), ∀u ∈ I.
(60)

For any e, f ∈△, max e(u), f(u)  andmin e(u), f(u) ,
for each u ∈ I, are in△ and are the upper and lower bounds
of e, f, respectively. +erefore, for every (e, f), (t, r) ∈ △
×△, there exists (max e, t{ }, min f, r ) ∈△ ×△ that is
comparable to (e, f) and (t, r). Define Λ: △ ×△⟶△ by

Λ(e, f)(u) � b
a
T1(u, s)(H(s, e(s)) +K(s, f(s)))ds + b

a
T2(u, s)(H(s, f(s)) +K(s, e(s)))ds + l(u), for all u ∈ [a, b].

(61)

We now claim that Λ has the mixed monotone property.
If (t1, r) ≺ (t2, r), then

Λ t1, r( (u) � b
a
T1(u, s) H s, t1(s)(  + K(s, r(s))( ds + b

a
T2(u, s) H(s, r(s)) +K s, t1(s)( ( ds + l(u)

⪯ b
a
T1(u, s) H s, t2(s)(  +K(s, r(s))( ds + b

a
T2(u, s) H(s, r(s)) + K s, t2(s)( ( ds + l(u)

� Λ t2, r( (u).
(62)

Similarly, if (t, r1)⪯ (t, r2), then

Λ t, r1( (u) � b
a
T1(u, s) H(s, t(s)) + K s, r1(s)( ( ds

+ b
a
T2(u, s) H s, r1(s)(  +K(s, t(s))( ds + l(u)

⪯ b
a
T1(u, s) H(s, t(s)) +K s, r2(s)( ( ds

+ b
a
T2(u, s) H s, r2(s)(  +K(s, t(s))( ds + l(u)

� Λ t, r2( (u).

(63)
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+us, Λ(t, r) is monotone nondecreasing in t andΛ(t, r)
is monotone nonincreasing in r. Also, for (e, f)⪯ (t, r), that
is, t≽ e, r ≺ f, it follows that

θcb(Λ(t, r),Λ(e, f)) � |Λ(t, r) − Λ(e, f)|2 + 2 + i |Λ(t, r) − Λ(e, f)|2 + 2 

� b
a
T1(u, s)(H(s, t(s)) +K(s, r(s)))ds + b

a
T2(u, s)(H(s, r(s)) + K(s, t(s)))ds + l(u)



− b
a
T1(u, s)(H(s, e(s)) +K(s, f(s)))ds − b

a
T2(u, s)(H(s, f(s)) + K(s, e(s)))ds − l(u)


2

+2

+ i b
a
T1(u, s)(H(s, t(s)) + K(s, r(s)))ds + T2(u, s)(H(s, r(s)) + K(s, t(s)))ds + l(u)



− b
a
T1(u, s)(H(s, e(s)) +K(s, f(s)))ds − b

a
T2(u, s)(H(s, f(s)) + K(s, e(s)))ds − l(u)


2

+2

θcb(Λ(t, r),Λ(e, f)) � b
a
T1(u, s) H(s, t(s)) − H(s, e(s)) + K(s, r(s)) − K(s, f(s)))ds(



− b
a
T2(u, s)(H(s, f(s)) − H(s, r(s)) +K(s, e(s)) − K(s, t(s))


2

+2

+ i b
a
T1(u, s)(H(s, t(s)) − H(s, e(s)) +K(s, r(s)) − K(s, f(s)))ds



− b
a
T2(u, s)(H(s, f(s)) − H(s, r(s)) +K(s, e(s)) − K(s, t(s)))


2

+2

⪯ b
a
T1(u, s)(t(s) − e(s) + f(s) − r(s))ds − b

a
T2(u, s)(f(s) − r(s) + t(s) − e(s))ds



2

+ 2

+ i b
a
T1(u, s)(t(s) − e(s) + f(s) − r(s))ds − b

a
T2(u, s)(f(s) − r(s) + t(s) − e(s))ds



2

+ 2 

⪯ 4b
a
T1(u, s) − T2(u, s)
 2 |f(s) − r(s)|2 +|t(s) − e(s)|2 ds + 4

+ i 4b
a
T1(u, s) − T2(u, s)
 2 |f(s) − r(s)|2 +|t(s) − e(s)|2 ds + 4

⪯ 4α
4

θcb(f, r) + θcb(t, e)( 
� α θcb(f, r) + θcb(t, e)( .

(64)
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Now, all the hypotheses of +eorem 4 are satisfied.
+erefore, Λ has a unique coupled fixed point.

4. Conclusion

In 2019, Gunaseelan and Mishra [14] proved coupled fixed-
point theorem on complex partial metric space. In this
paper, we proved coupled fixed-point theorems on complex
partial b-metric space using partially ordered set and mixed
monotone property. An illustrative application in partially
ordered complex partial b-metric space is given.
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