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Abstract

Automatic detection of liver cancer is the fundamental requirement of computer-aided
diagnosis in the clinical sector. The traditional methods used in the liver detection pro-
cess are not effective in accurately detecting the tumour region using a large-sized dataset.
Moreover, segmenting the large intensity of the tumour region is a complex issue with the
existing methods. To overcome these issues, an accurate and efficient liver cancer detec-
tion method named atom search-Jaya-based deep recurrent neural network is proposed in
this research. The proposed method mimics the atomic motion based on the interaction
forces and the constraint forces of the hybrid molecules. The optimal solution is revealed
through the fitness measure, which in turn accepts the minimal error value as the optimal
solution. The weights of the classifier are optimally updated based on the position of the
atom with respect to the iterations. The proposed atom search-Jaya-based deep recurrent
neural network attained significantly better performance in accurately detecting the tumor
region using the exploration ability of atoms in the search space. The results obtained by
the proposed model in terms of accuracy, specificity, sensitivity, and precision are 93.64%,
96%, 95%, and 94.88%, respectively, while considering the three features using 80% of
training data.

1 INTRODUCTION

The liver has major functions in animals and vertebrates. In the
human body, the liver diseases occur without causing any sign
or warning [1]. Therefore, detecting the liver diseases at an early
stage is a significant keystone in the medical sector [2]. In recent
years, liver cancer becomes a dangerous and harmful disease,
as it escorts to human death. The most significant type of liver
cancer among the worldwide level is cholangiocarcinoma and
hepatocellular carcinoma (HCC), respectively [3, 4]. Based on
the geographical region and gender, the cause of liver cancer
may vary [4, 5]. In the worldwide level, the rate of liver cancer
increases, and most of the patients with cancer died even after
taking the diagnosis for six months [4]. However, the liver can-
cer specifies a high changeability in their localization, appear-
ance, and shape [6]. The liver cancer may be either hyperdense
or hypodense. Here, the hyperdense appears brighter, whereas
the hypodense looks darker when compared to the healthy
parenchyma liver [7]. However, the appearance of liver cancer
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is based on the state, lesion type, and imaging, such as timing,
contrast method, and settings, and also the type of cancer may
vary from patient to patient [8, 9]. The liver cancers are of two
types, namely primary and secondary liver cancer. The primary
cancer originates from the liver and is also termed as hepatoma
or HCC. In the secondary liver cancer, the cancer cell originates
from various human organs and passes into the liver [10–12].
Moreover, the diagnosis of cancers is carried out in three differ-
ent ways: biopsy, imaging test, and blood test [13, 14]. Among
these testing models, the imaging test is highly focused on in
order to receive the computer-assisted approach. The imaging
tests used to diagnose the liver cancer are computed tomogra-
phy (CT).

CT scan is the most robust and common imaging method
used to detect the lesions in the liver. CT is a non-invasive
procedure or medical examination that uses an X-ray equip-
ment for producing the cross-sectional images in the parts of
a human body [15]. This imposes the requirement to model
the automated system for classifying and detecting the liver
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anomalies based on the images of the CT scan [16]. In the CT
scan image, each cross-sectional image specifies the slice of a
liver, which is similar to the slice of a bread. In recent years,
the quality of CT scan images has improved, which limits the
role of an image interpretation in human beings [8]. However,
the computer-assisted detection mechanism is based on the
principle of image analysis, which in turn offers more infor-
mation regarding the detection of liver cancer. Moreover, the
conventional liver cancer detection method consists of three
different steps: first, the tumor is segmented from the CT scan
abdominal images; second, the features are extracted; and third,
the classification mechanism is carried out based on the selected
classifiers. Based on the texture features, characteristics of the
liver images are modelled in the past years [17]. The major issue
in detecting the liver tumor is the poor contrast between the
values of liver intensity and tumor. Initially, the tumor is present
in a small region, hence it is very difficult to detect the tumor.
Therefore, this research focusses on increasing the contrast
of the image that contains a tumor in the liver. The images
are pre-processed to enable the user identify the presence of a
tumor through CT images. To detect the liver cancer at an early
stage is a major advantage in preventing the liver cancer [18, 19].

Classification of liver cancer poses a major role in diagnosing
the tumor at an early stage. The deep learning methods based
on deep neural network (DNN) is used to solve a wide range
of issues in the recent works [20–22]. To detect the liver cancer
automatically, the convolutional neural network (CNN) is used
to segment the lesions effectively from the CT images and a
coefficient of dice similarity value of 80.06% is obtained [22].
DNN is learned by identifying the top-level features from the
bottom-level features in the hierarchy level, and the machine
classification is performed by Fukushima. Optimization algo-
rithms are used to train DNN [23]. However, the deep learning
methods are categorized into sparse autoencoder, deep belief
network (DBN), restricted Boltzmann machine (RBM), and
CNN, respectively [19]. The deep learning model specifies the
advanced structure in CNN. Based on the convolutional pro-
cedure, the features extracted from the input data are passed to
the successive layers based on their respective features. Here, the
convolutional procedure is used to retrieve the suitable prop-
erties from the CT image. Lu et al. [24] introduced the deep
learning model based on the graph cut refinement for efficiently
and automatically segmenting the CT images. In [25], the deep
learning methods, such as fully convolutional networks, DBN,
autoencoder, and CNN, are introduced for detecting and diag-
nosing liver cancer. An automated detection model is devel-
oped in [22] by combining the deep learning classifier and Gaus-
sian mixture model (GMM) for detecting the region of the liver
lesion [22].

The detection of liver and its lesion poses a challenging
issue due to the variability of high anatomical shape and the
facts regarding the contact of neighbouring pixel intensity [26].
There exist a number of difficulties in the analysis of auto-
matic cancer detection that includes less image contrast among
the tissue samples due to the differences in scan time and
perfusion, parenchyma, and the behaviour of lesions in the
contrast enhancement [19]. To extract the boundary region

of liver based on the abdominal CT image poses a major
challenge in the computer-aided diagnosis, as the boundary
region is weak in liver cancer [21]. The detection of liver can-
cer from the CT images poses a challenging issue due to less
contrast among the liver and tumor. However, the presence
of other human parts with various dimensions and equiva-
lent intensity level makes the detection process more diffi-
cult [19]. Due to the complexity of liver anatomy issues and
the insufficiency of organ shape, the accurate segmentation
remains a difficult process. These problems are considered a
motivation, a new method is proposed for the liver cancer
detection.

In this research, the liver cancer detection mechanism is
performed using the proposed atom search-Jaya-based deep
recurrent neural network (AS-Jaya-based Deep RNN). The pro-
posed work highly concentrates on detecting the liver cancer
based on the parametric features of atomic motion and con-
trol parameters. Initially, the input images are pre-processed
and are segmented using black hole entropic fuzzy cluster-
ing (BHEFC). The segmented result obtained from the seg-
mentation module is allowed to perform the feature extrac-
tion phase, where the features are effectively extracted. The
feature extraction module ensures the effectiveness of detec-
tion accuracy. Deep RNN effectively detects the liver lesion
based on weights, as the weights are optimally trained using
the optimization algorithm. The proposed work is modelled
based on the inspiration of basic molecular dynamics and is
functioned with the population-based heuristic model. The pro-
posed optimization achieved effective performance in cancer
detection through the mimicking behaviour of atomic motion,
which is controlled using the constraint and the interaction
(total) forces. The training procedure of the Deep RNN is car-
ried out with the proposed AS-Jaya optimization in order to
update the weights of the classifier using the position of the
atom.

The major contributions of this research are elaborated as
follows. The liver cancer detection model is achieved using the
proposed AS-Jaya-based Deep RNN classifier. The character-
istic features of AS-Jaya tune the classifier optimally to achieve
the best detection result through the optimal fitness value. The
fitness measure is evaluated based on the position of an atom,
which in turn reflects the accuracy and the robustness of detec-
tion measure.

The paper is organized as follows. Section 2 elaborates the
literature review of the existing liver cancer detection meth-
ods. Section 3 discusses the proposed AS-based Deep RNN for
detecting the liver cancer. Section 4 elaborates the results and
discussion of the proposed method, and finally, Section 5 con-
cludes the paper.

2 LITERATURE SURVEY

Various existing liver cancer detection methods are reviewed in
this section. Das et al. [22] introduced a watershed Gaussian-
based deep learning (WGDL) approach for effectively delineat-
ing the liver lesion through CT images. The presence of the
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cancer region was segmented with the Gaussian model. After
segmenting the tumour, the extraction of texture features was
carried out for classifying the tumor region. It increased the clas-
sification accuracy but failed to consider the volumetric image.
Priya et al. [27] developed an efficient fusion model for increas-
ing the information of edge location in the CT images. It uti-
lized the Laplacian operators and phase congruency to gen-
erate the fusion of high- and low-frequency coefficients. The
computational complexity of this model was high. Das et al.
[28] developed an approach to detect the liver cancer regions
in CT scan images, by integrating the spatial fuzzy clustering
approach and adaptive thresholding. This method was used to
effectively identify the cancer region, without any manual pro-
cess. Anyhow, this method did not apply to the large datasets.
Wang et al. [29] developed an electrochemical detection model
to increase the efficiency in detecting the presence of the liver
tumour. It reached the detection limit of 125 fM with less
detection time. However, it failed to consider the amplification
system.

Bi et al. [30] developed a deep residual network (Deep
ResNet) for segmenting the liver tumour. It consisted of skip
connections between the convolutional layers and was used
to solve the issues in the training accuracy of deep net-
works. Here, the multi-scale fusion was used to obtain the pre-
cise boundary in the liver lesion. However, the performance
achieved by this model was poor. Wang et al. [31] developed
a cantilevel-based biosensor model to diagnose the liver can-
cer by achieving high throughput and sensitivity. It effectively
detected the multi-biomarkers in the cantilever array. It attained
high detection accuracy with low cost and volume. However,
the performance in the resolution and accuracy still needs to
be improved. Gruber et al. [32] developed a deep learning
approach for segmenting the liver cancer. It used two differ-
ent types of network segments to accurately segment the outer
and inner tumour regions. This approach performed the seg-
menting procedure automatically and achieved better perfor-
mance. However, it required more number of iterations to
segment the tumor region. Kumar and Bharathi [33] intro-
duced an edge prediction based segmentation model for seg-
menting the tumour region from the liver. It effectively clas-
sified abnormal and normal lesions using a machine learning
classifier. The computational cost required in this model was
high.

3 PROPOSED ATOM SEARCH-JAYA
BASED DEEP RECURRENT NEURAL
NETWORK FOR LIVER CANCER
DETECTION

Liver cancer is one of the leading diseases that causes death
in males [34]. To accurately detect the liver cancer, there are
various techniques, but they face challenge regarding the pixel
intensities. Hence, an effective method is developed to per-
form the liver cancer detection framework based on BHEFC.
Initially, the input image is passed on to the pre-processing
stage, which is subjected to segmentation using BHEFC

[35, 36], which generated multi-segments. The segmented result
is fed to the feature extraction stage, where the features such
as CNN features, statistical features, and the pixel pattern
based texture features (PPBTFs) are effectively extracted. The
statistical features include mean, variance, skewness, energy,
and kurtosis, respectively. The features that are extracted from
the segmented result are passed into the Deep RNN classifier,
which is trained using the proposed AS-Jaya-based Deep RNN
that is the integration of atomic search optimization (ASO)
[37] with the Jaya optimization [38]. Figure 1 represents the
schematic diagram of liver cancer detection modules.

3.1 Read the input image

The input image is collected from the liver cancer dataset [11]
and is used to perform the cancer detection process. Let us con-
sider the database Mwith mnumber of cancer images, which is
represented as

M = {R1, R2,…Rk,…R𝜛} , (1)

where M represents the database, 𝜛 denotes the total number
of input images, and RK represents the image located at the kth
index. The total images are considered for experimentation, but
the explanation is provided based on the kth image.

3.2 Pre-processing the input image

The input image Rk is selected and is pre-processed in the
pre-processing module in order to enhance the contrast of the
image. The aim of pre-processing is to increase the quality of
the image by removing unwanted falsification or distortions.
It is required to pre-process the image in order to make the
image highly contrasting and effective for further processing.
The result of the pre-processed image is denoted by Rp.

3.3 Segmentation using BHEFC

Segmentation is the process of partitioning the pre-processed
image into various segments, such as pixels or image objects.
The pre-processed image Rp is passed into the segmentation
phase, where the segmentation process is carried out using
BHEFC [35]. The BHEFC generates samples based on the
assumption of the Dirichlet distribution of the fuzzy member-
ship function. BHEFC performs the segmentation process by
absorbing the merits of three aspects, such as black hole entropy
(BHE) based information, fuzzy clustering, and Bayesian infer-
ence model. BHEFC is developed by integrating the BHE with
the fuzzy clustering. BHEFC accurately and effectively char-
acterizes the behaviour of clustering using the principle called
maximum-a-posteriori. BHEFC uses the Gibbs sampler for
generating the samples from the posteriori distribution. Accord-
ing to the fuzzy c-means clustering and principle of Lagrangian
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FIGURE 1 Schematic diagram of liver cancer detection modules

optimization, the BHEFC is modelled as
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where 𝜆 represents the vector, 𝛼 denotes the factor, which is set
to ‘2’ for simplifying the segmentation process. Rp denotes the
pre-processed image, qp indicates the fuzzy membership func-
tion, S denotes the clustering centre set, T specifies the mem-
bership matrix, Zl indicates the cluster centre, and N denotes
the cluster dataset, respectively. Finally, the segmented result
obtained using the BHEFC is represented as Rs such that Rs =
P̃ (Rp, qp|S ).

3.4 Feature extraction using the segments

The segmented result Rs is passed into the feature extraction
phase, where the features, such as CNN features, statistical fea-
tures, and the PPBTFs, are effectively extracted. The feature
extraction is the process of transforming the segmented image
into the confined matrix such that the processing complexity is
relieved. The features that are extracted from the image Rs are
discussed as follows:

(i) CNN features: CNN is the multi-layered network with the
special architecture, which is used to detect the complex
features from the result of the segmented image. The archi-
tecture of CNN consists of three different layers, namely
convolution layer, pooling layer, and fully connected layer.
Convolution is the first layer, which helps to extract the
essential features from the segmented image. It preserves
the relations between the image features and the pixel

values. It takes the segmented result Rs as input and extracts
the CNN features through the convolution layer. The fea-
tures that are extracted at the first convolution layer are
termed as CNN features and are represented as f𝜔 with
the dimension of [1 × 256], respectively. The CNN fea-
ture extracted using the convolution layer is depicted in
Figure 2.

(ii) Statistical features: The extraction of statistical features assures
the effectiveness of cancer detection. The features that are
extracted through the statistical analysis are termed as sta-
tistical features. Here are some of the statistical features
extracted from the segmented result that are listed as fol-
lows:
∙ Mean The pixels present in the segmented results are aver-

aged to compute the mean value.
∙ Variance The variance feature f1 is calculated based on the

value of the mean.
∙ Kurtosis and skewness Kurtosis refers to the symmetry and

is denoted as f3. Skewness specifies the shape of the
object with respect to the numerical value and is indicated
as f4, respectively.

∙ Energy The energy of the individual segments is extracted
by summing the energy of all the pixels in the segment.

Finally, the statistical features extracted from the segmented
result are represented as f𝜐 = { f1, f2, f3, f4, f5} with the dimen-
sion of [1 × 5], respectively.

(iii) PPBTFs: The grayscale image is transformed into the
pattern map, where the background and the edge pix-
els are classified using the pattern matching that returns
the spatial features. The pixel values present in the pat-
tern map specifies the pattern classes of the image pixels.
However, the PPBTF [39] extracted from the segmented
result is represented as f𝜌, with the dimension of [1 × 32].
Finally, the features extracted from the segmented result
Rs are denoted as F such that F includes { f𝜔, f𝜐 , f𝜌},
respectively.
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FIGURE 2 Extraction of CNN features

FIGURE 3 Architecture of Deep RNN classifier

3.5 Deep recurrent neural network for liver
cancer detection

The features F that are extracted from the segmented images
are given as the input to the Deep RNN classifier. Deep RNN
[40] is the network architecture that contains multiple recurrent
hidden layers in the layer of network hierarchy. The architecture
of Deep RNN is shown in Figure 3.

The structure of Deep RNN is made by considering the
input vector of the bth layer at the rth time as F (b,r ) =

{F
(b,r )

1 , F
(b,r )

2 ,…F
(b,r )

i
,…F

(b,r )
y } and the output vector of the

bth layer at the rth time as J (b,r ) = {J
(b,r )
1 , J

(b,r )
2 ,… J

(b,r )
i

,… J
(b,r )
y },

respectively. The pair of each elements of input and the out-
put vectors is termed as the unit. Here, i denotes the arbitrary
unit number of the bth layer and y represents the total number
of units of the bth layer. In addition, the arbitrary unit number
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and the total number of units of (b − 1)th layer is denoted
as j and E , respectively. At this time, the input propagation
weight from the (b − 1)th layer to the bth layer is represented
as W (b) ∈ H y×E , and the recurrent weight of the bth layer is
represented as w (b) ∈ H y×y. Here, H denotes the set of weights.
However, the components of the input vector is expressed as

F
(b,r )

i
=

E∑

z=1

p
(b)
iz

J
(b−1,r )
z +

y∑

i′

x
(b)
ii′

J
(b,r−1)
i′

, (3)

where p
(b)
iz

and x
(b)
ii′

are the elements of W (b) and w (b). i′ denotes
the arbitrary unit number of the bth layer. The elements of the
output vector of the bth layer is represented as

J
(b,r )
i

= 𝛽(b)
(

F
(b,r )

i

)
, (4)

where 𝛽(b) denotes the sigmoid activation function. The recti-
fied linear unit function is denoted as 𝛽(F ) = max(F,𝓁), and the

logistic sigmoid function is denoted as 𝛽(F ) =
1

(1+e−F )
, which

are the frequently used activation functions. To simplify the pro-

cess, let us introduce the 𝓁th weight as p
(b)
i𝓁

and the 𝓁th unit as

J
(b−1,r )
𝓁

and hence, the bias is represented as

J (b,r ) = 𝛽(b) ⋅
(
W (b)J (b−1,r ) + w (b) ⋅ J (b,r−1)) . (5)

Here, J (b,r ) denotes the output of the classifier.

3.5.1 Training of deep recurrent neural
network

The training of the Deep RNN classifier is done using the
proposed optimization algorithm named AS-Jaya optimization
in order to obtain the optimal weights to achieve the update
process.

3.6 Proposed AS-Jaya optimization for
training the deep recurrent neural network
classifier

In the clinical diagnosis sector, the pathologists rely on the
examination of the set of nuclei in the tissue sample. In most
of the situations, the diagnostic label is used for the tissue sam-
ple, and hence, the optimization algorithm is required to find the
sets of nuclei among the patients with cancer in order to detect
liver cancer. To achieve the liver cancer detection mechanism,
the optimization named AS-Jaya is proposed in this research.
The proposed AS-Jaya optimization is used to train the weight
of the Deep RNN classifier in order to generate the optimal
solution with the optimal detection rate. The proposed AS-Jaya
optimization is the integration of ASO [37] with the Jaya opti-
mization [38], which extracts the parametric features from both

the optimization, towards boosting the performance of detec-
tion accuracy. Here, the location of each atom lying in the search
space specifies the solution that is measured by the mass. All the
atoms present in the population either attract or repel each other
based on the distance between them. The heavier atoms have
lower acceleration, which makes them obtain a better solution
in the search space. The lighter atoms have higher acceleration,
which intensively finds a new region in the search space.

Solution encoding

It is the representation of the solution vector, which determines
the optimal solution for detecting liver cancer. The optimal
solution is computed based on the fitness function. The fit-
ness function with the minimal error value is accepted as the
best solution. The algorithmic steps of the proposed AS-Jaya
optimization based Deep RNN are elaborated as follows:

(i) Initialize the population: The unconstrained optimization prob-
lem is solved by initializing the population of atoms. Here,
the term atom represents the image. Let us consider the pop-
ulation with 𝜀 number of atoms and the location of nth atom
is represented as

hn =
[
h1

n ,… hK
n

]
; n = {1,…𝓁} , (6)

where ht
n (t = 1,…K ) represents the tth position component of

the nth atom in the Kth dimensional space.

(ii) Fitness function: The fitness function is calculated based on
the difference between the actual output value and the esti-
mated output value. The function with the minimal fitness
value is accepted as the optimal solution. However, the fit-
ness function is computed using the following expression:

Ln =
1
𝜎

𝜎∑

𝜈=1

J
(b,r )
𝜈 − 𝜅𝜈 , (7)

where Ln denotes the fitness value of the nth atom, J
(b,r )
𝜈 denotes

the output of the classifier, and 𝜅𝜈 denotes the estimated out-
put.

(iii) Compute the mass: The mass of the atom is measured at the
lowest level based on the fitness value. However, the mass
of the nth atom at the gth iteration is computed as

Gn (g) =
𝜒n (g)

∑𝓁

n=1 𝜒n (g)
, (8)

where Gn(g) represents the mass, and the term 𝜒n(g) is com-
puted as

𝜒n (g) =
Ln − Lbst

eLwst−Lbst
. (9)



NAVANEETHAKRISHNAN ET AL. 343

Here, Lbst and Lwst are represented as Lbst = min
n=1,…𝓁

Ln, and

Lwst = max
n=1,…𝓁

Ln, respectively.

(iv) Determine theD neighbours: Each atom interacts with other
atoms based on the best fitness value with D neighbours.
Therefore, with the function of time, D gradually decreases
with respect to the lapse of iterations. Hence, D is com-
puted as

D (g) = 𝓁 − (𝓁 − 2) ×

√
g

𝛾
, (10)

where 𝛾 is the maximum number of iterations.

(vi) Compute the total force and constraint force: The sum of all the
components being used with the random weight that is
acted on the nth atom from other atoms is considered as
the total force and is expressed as

W t
n (g) =

∑

u∈Dbst

randuW t
nu (g), (11)

where W t
n (g) denotes the total force, and randu denotes the ran-

dom number that lies in the range of 0–1, respectively. Each
atom in the population space is acted based on the constraint
force from the best atom, and so the constraint force of the nth
atom is represented as

Ot
n (g) = 𝜂 (g)

(
ht

bst
(g) − ht

n (g)
)

, (12)

where 𝜂(g) denotes the Lagrangian multiplier, ht
bst

(g) represents
the position of best atom at the gth iteration, and Ot

n(g) denotes
the constraint force. Here, the Lagrangian multiplier is repre-
sented as

𝜂 (g) = �e
20g

𝛾 , (13)

where � denotes the multiplier weight.

(vii) Compute the acceleration: Based on the geometric constraint
and the total force, the acceleration of the nth atom at the
gth time is expressed as

zt
n (g) =

W t
n (g)

Gn (g)
+

Ot
n (g)

Gn (g)
, (14)

where W t
n (g) is the total force, Ot

n(g) is the constraint force, and
Gn(g) denotes the mass.

(viii) Update the velocity: Based on the (g + 1) iteration, the veloc-
ity of the nth atom is updated as

ct
n (g + 1) = rand t

n ct
n (g) + zt

n (g) , (15)

where rand t
n denotes the random number and zt

n (g) indicates the
acceleration.

(ix) Update the position of atom: The update process of the pro-
posed AS-Jaya optimization is carried out by modifying the
position of the nth atom of ASO with the nth candidate
solution of Jaya optimization. The position of the nth atom
at the (g + 1)th iteration is represented as

ht
n (g + 1) = ht

n (g) + ct
n (g + 1) (16)

ht
n (g + 1) = ht

n (g) + rand t
n ct

n (g) + zt
n (g) . (17)

Equation 17 specifies the position of the nth atom, which is
modified with the candidate solution of Jaya optimization. The
updated equation of the candidate solution of Jaya optimization
is represented as

ht
n (g + 1) = ht

n (g) + mt
1n

(
ht

bst,n
− ||ht

n (g)||
)

−mt
2n

(
ht

wst,n −
||ht

n (g)||
)
. (18)

Let us assume ht
n(g) as positive, and hence, the above equa-

tion can be rewritten as Equations (A1)–(A3) provided in the
Appendix.

Equation (19) specifies the updated equation of Jaya opti-
mization. By substituting Equation (A3) in Equation (17), the
resultant equation is expressed as Equations (A4)–(A11) (given
in the Appendix).

Here ht
n(g + 1) represents the position of the nth atom at the

(g + 1)th iteration, rand t
n denotes the random number, zt

n (g) indi-
cates the acceleration, ht

wst,n represents the value for worst can-
didate, and mt

2n
and mt

1n
are the random number that lie in the

interval [0, 1]. The equation (19) is the standard equation of the
proposed AS algorithm, which is obtained by modifying the
ASO with the Jaya optimization. By integrating the ASO with
the Jaya provides more beneficial result in liver cancer detec-
tion with less computation cost and time. The integration of the
parametric features of ASO with the Jaya optimization ensures
the effectiveness of performance in the liver cancer detection
model. The mimicking behaviour of atomic motion results in
the potential and constraint forces of atoms from the best atom.
Algorithm 1 specifies the pseudo-code of the proposed AS-Jaya-
based Deep RNN.

4 RESULTS AND DISCUSSION

The proposed AS-Jaya-based Deep RNN with respect to the
evaluation metrics is discussed in this section.

4.1 Evaluation metrics

The performance attained by the proposed method is evaluated
based on the performance metrics such as sensitivity, specificity,
accuracy, and precision [4].
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ALGORITHM 1 Pseudo-code of the proposed AS-Jaya-based Deep RNN

Sl. No Pseudo code of the proposed AS-Jaya-based Deep RNN

Input: hn

Output: ht
n (g + 1)

1 Initialize the set of atoms A and the velocity c

2 While stopping criteria is not satisfied

3 Do

4 Compute L

5 if (Ln < Lbst ) then

6 Lbst = Ln

7 Abst = An

8 End if

9 Compute Gn (g)

10 Determine the D neighbours

11 Compute W t
n (g) and Ot

n (g)

12 Calculate zt
n (g)

13 Update ct
n (g + 1)

14 Update ht
n (g + 1) using Equation (A10)

15 End while

16 Return Abst

4.1.1 Accuracy

Accuracy is the measure used to differentiate the proportion
of true-positive rate and the true-negative rate, which is repre-
sented as

Acc =
TP + TN

TP + FN + FP + FN
, (20)

where TP represents the true-positive rate, TN denotes the true-
negative, FP indicates the false-positive, and FN is the false-
negative.

4.1.2 Sensitivity

It is the measure used to determine the accurate result of true-
positive rate, which is represented as

Sen =
TP

TP + FN
. (21)

4.1.3 Specificity

Specificity is the measure used to determine the true-negative
result, which is represented as

Spe =
TN

TN + FP
. (22)

FIGURE 4 Experimental result: (a) input image-1, (b) input image-2, (c)
detected result-1, and (d) detected result-2

4.1.4 Precision

Precision is the measure used to determine the positive predic-
tive value, which is represented as

Pre =
TP

TP + FP
. (23)

4.2 Experimental set-up

The implementation of the proposed method is carried out in
the MATLAB tool [41] using the dataset specified in [11]. It con-
tains 416 liver patient records among which 167 patient records
are collected from the northeast of Andhra Pradesh.

4.3 Experimental result

Figure 4 represents the experimental result of the proposed AS-
Jaya-based Deep RNN. Figure 4(a) portrays the input image 1,
Figure 4(b) shows the input image 2. Figure 4(c) represents the
detected result 1, and Figure 4(d) represents the detected result
2.

4.4 Performance analysis

The performance analysis conducted using the proposed AS-
Jaya-based Deep RNN by varying the training percentage and
hidden layers is discussed as follows.
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TABLE 1 Performance analysis of the proposed AS-Jaya-based Deep
RNN based on training percentage

Training

percentage

Population size 40% 50% 60% 70% 80%

Specificity

5 94.41 94.53 94.65 94.85 94.89

10 95.51 95.63 95.75 95.96 96.00

15 95.51 95.63 95.75 95.96 96.00

20 95.51 95.63 95.75 95.96 96.00

25 95.51 95.63 95.75 95.96 96.00

Sensitivity

5 70.48 70.60 70.70 70.83 70.93

10 79.84 79.95 80.05 80.18 80.28

15 84.67 84.78 84.88 85.01 85.11

20 87.75 87.86 87.96 88.09 88.19

25 89.96 90.07 90.17 90.30 90.40

Accuracy

5 92.39 92.52 92.65 92.85 92.92

10 92.57 92.70 92.83 93.03 93.10

15 92.75 92.88 93.01 93.21 93.28

20 92.94 93.07 93.19 93.39 93.46

25 93.12 93.25 93.37 93.57 93.65

Precision

5 85.76 85.91 86.02 86.18 86.25

10 89.30 89.46 89.57 89.73 89.79

15 90.97 91.13 91.24 91.40 91.46

20 92.06 92.22 92.32 92.49 92.55

25 92.86 93.02 93.12 93.29 93.35

4.4.1 Performance analysis with training
percentage

Table 1 portrays the performance analysis of the proposed
detection mechanism by varying the training percentage. When
the training percentage is 40%, the specificity obtained by the
proposed AS-Jaya-based Deep RNN with population size 5 is
94.41%, population size 10 is 95.51%, population size 15 is
95.51%, population size 20 is 95.51%, and population size 25
is 95.51%, respectively. When training percentage is 50%, the
sensitivity obtained by the proposed AS-Jaya-based Deep RNN
with population size 5 is 70.60%, population size 10 is 79.95%,
population size 15 is 84.78%, population size 20 is 87.86%, and
population size 25 is 90.07%, respectively.

When training percentage is 60%, the accuracy obtained by
the proposed AS-Jaya-based Deep RNN with population size
5 is 92.65%, population size 10 is 92.83%, population size 15
is 93.01%, population size 20 is 93.19%, and population size
25 is 93.37%, respectively. For the training percentage is 50%,
the AS-Jaya-based Deep RNN with population size 5 is 85.91%,
population size 10 is 89.46%, population size 15 is 91.13%, pop-

TABLE 2 Performance analysis of the proposed AS-Jaya-based Deep
RNN based on hidden layers

Hidden layers

Population size 2 4 6 8 10

Specificity

5 95.47 95.64 95.79 95.94 96.00

10 95.47 95.64 95.79 95.94 96.00

15 95.47 95.64 95.79 95.94 96.00

20 95.47 95.64 95.79 95.94 96.00

25 95.47 95.64 95.79 95.94 96.00

Sensitivity

5 84.67 84.71 84.87 84.99 85.08

10 89.76 89.80 89.96 90.07 90.17

15 92.50 92.54 92.70 92.81 92.91

20 94.27 94.31 94.47 94.59 94.68

25 94.59 94.63 94.79 94.90 95.00

Accuracy

5 92.38 92.47 92.69 92.86 92.92

10 92.57 92.65 92.87 93.04 93.10

15 92.75 92.83 93.05 93.22 93.28

20 92.93 93.01 93.23 93.40 93.46

25 93.11 93.19 93.41 93.58 93.65

Precision

5 90.81 90.95 91.10 91.27 91.33

10 92.57 92.71 92.86 93.03 93.09

15 93.54 93.68 93.83 94.00 94.06

20 94.20 94.34 94.48 94.65 94.72

25 94.36 94.50 94.65 94.82 94.88

ulation size 20 is 92.22%, and population size 25 is 93.02%,
respectively.

4.4.2 Performance analysis based on hidden
layers

Table 2 portrays the performance analysis of the proposed
detection mechanism by varying the hidden layers. When the
number of hidden layers is 8, the specificity obtained by the
proposed AS-Jaya-based Deep RNN with population sizes 5,
10, 15, 20, and 25 is 95.94%. When the number of hidden layers
is 10, the sensitivity obtained by the proposed AS-Jaya-based
Deep RNN with population size 5 is 85.08%, population size
10 is 90.17%, population size 15 is 92.91%, population size 20
is 94.68%, and population size 25 is 95.00%, respectively.

When the number of hidden layers is 8, the accuracy obtained
by the proposed AS-Jaya-based Deep RNN with population size
5 is 92.86%, population size 10 is 93.04%, population size 15 is
93.22%, population size 20 is 93.40%, and population size 25
is 93.58%, respectively. When the training percentage is 50%,
the AS-Jaya-based Deep RNN with population size 5 is 90.95%,
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TABLE 3 Comparative analysis using two features based on the training
percentage

Method

Metrics GMM SetSVM CNN

Deep

ResNet

Proposed AS-

Jaya-based

Deep RNN

Specificity (%) 73.27 90.33 94.76 93.33 94.90

73.41 93.35 96.00 95.73 96.00

73.54 94.20 96.00 96.00 96.00

73.68 94.73 96.00 96.00 96.00

73.81 95.38 96.00 96.00 96.00

Sensitivity (%) 70.37 70.56 70.74 0.74 70.93

70.56 70.74 78.94 76.65 80.28

70.74 70.93 80.28 78.77 85.11

70.93 71.11 83.73 81.01 88.19

71.11 71.30 85.94 82.55 90.40

Accuracy (%) 70.37 84.54 92.73 90.07 92.92

70.55 87.73 92.92 91.25 93.10

70.73 88.16 93.10 91.51 93.28

70.91 89.04 93.28 91.93 93.46

71.09 89.63 93.46 92.25 93.65

Precision (%) 71.34 81.81 86.08 84.71 86.25

71.50 83.94 89.28 87.88 89.79

71.67 84.43 89.79 88.76 91.46

71.84 84.96 91.00 89.65 92.55

72.01 85.44 91.80 90.26 93.34

population size 10 is 92.71%, population size 15 is 93.68%, pop-
ulation size 20 is 94.34%, and population size 25 is 94.50%,
respectively.

4.5 Comparative methods

The performance of the proposed method is revealed by com-
paring the proposed method with the existing methods, such
as GMM [22], set support vector machine (SetSVM) [7], CNN
[21], and Deep ResNet [30], respectively.

4.6 Comparative analysis

The comparative analysis of the proposed algorithm is discussed
by considering the extracted features with respect to the training
percentage.

4.6.1 Comparative analysis by considering
two features

Table 3 shows the comparative analysis of the proposed algo-
rithm by considering two features, namely statistical features
and PPBTFs. When training percentage is 40%, the specifici-

TABLE 4 Comparative analysis using three features based on the training
percentage

Method

Metrics GMM SetSVM CNN

Deep

ResNet

Proposed AS-

Jaya-based

Deep RNN

Specificity (%) 73.27 95.45 96.00 96.00 96.00

73.41 96.00 96.00 96.00 96.00

73.54 96.00 96.00 96.00 96.00

73.67 96.00 96.00 96.00 96.00

73.81 96.00 96.00 96.00 96.00

Sensitivity (%) 70.37 70.56 84.90 80.18 85.08

70.56 70.74 89.99 83.63 90.17

70.74 70.93 92.72 85.52 92.91

70.93 71.11 94.50 86.76 94.68

71.11 71.30 95.00 87.68 95.00

Accuracy (%) 70.37 89.44 92.73 91.70 92.92

70.55 89.94 92.92 91.98 93.10

70.73 90.37 93.10 92.25 93.28

70.91 91.01 93.28 92.59 93.46

71.09 91.59 93.46 92.90 93.65

Precision (%) 71.34 85.15 91.21 89.29 91.33

71.50 85.54 92.97 90.54 93.09

71.67 85.77 93.94 91.26 94.06

71.84 86.04 94.59 91.78 94.72

72.01 86.29 94.82 92.19 94.88

ties obtained by the existing GMM, SetSVM, CNN, and Deep
ResNet are 73.27%, 90.33%, 94.76%, and 93.33%, respectively,
while the specificity of the proposed AS-Jaya-based Deep RNN
is 94.90%. When training percentage is 70%, the sensitivity
obtained by the proposed AS-Jaya-based Deep RNN is 88.19%,
while the percentage of improvement reported when compar-
ing the proposed AS-Jaya-based Deep RNN with the existing
GMM, SetSVM, CNN, and Deep ResNet is 24%, 24%, 5%, and
8%, respectively.

When training percentage is 50%, the accuracy obtained by
the existing GMM, SetSVM, CNN, and Deep ResNet is 70.55%,
87.73%, 92.92%, and 91.25%, respectively, while the accuracy of
the proposed AS-Jaya-based Deep RNN is 93.10%. For training
percentage is 60%, the precision of the methods such as GMM,
SetSVM, CNN, and Deep ResNet, and the proposed AS-Jaya-
based Deep RNN are 71.67%, 84.43%, 89.79%, 88.76%, and
91.46%, respectively.

4.6.2 Comparative analysis by considering
three features

Table 4 shows the comparative analysis of the proposed algo-
rithm by considering three features, namely statistical features,
CNN features, and PPBTFs. When training percentage is 50%,
the specificity obtained by the existing GMM, SetSVM, CNN,
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TABLE 5 Comparative discussion

Metrics/Methods

Specificity

(%)

Sensitivity

(%)

Accuracy

(%)

Precision

(%)

By considering two features

GMM 73.81 71.11 71.09 72.01

SetSVM 95.38 71.30 89.63 85.44

CNN 96.00 85.94 93.46 91.80

Deep ResNet 96.00 82.55 92.25 90.26

Proposed
AS-Jaya-based
Deep RNN

96.00 90.40 93.65 93.34

By considering three features

GMM 73.81 71.11 71.09 72.01

SetSVM 96.00 71.30 91.59 86.29

CNN 96.00 95.00 93.46 94.82

Deep ResNet 96.00 87.68 92.90 92.19

Proposed
AS-Jaya-based
Deep RNN

96.00 95.00 93.65 94.88

and Deep ResNet are 73.41%, 96%, 96%, and 96%, respec-
tively, while the specificity of the proposed AS-Jaya-based Deep
RNN is 96%. When training percentage is 40%, the sensitiv-
ity obtained by the existing GMM, SetSVM, CNN, and Deep
ResNet is 70.37%, 70.56%, 84.90%, and 80.18%, respectively,
while the sensitivity of the proposed AS-Jaya-based Deep RNN
is 85.08%.

When training percentage is 70%, the accuracy obtained by
the existing GMM, SetSVM, CNN, and Deep ResNet is 70.91%,
91.01%, 93.28%, and 92.59%, respectively, while the sensitivity
of the proposed AS-Jaya-based Deep RNN is 93.46%. When
training percentage is 60%, the precision of the methods such
as GMM, SetSVM, CNN, and Deep ResNet, and the pro-
posed AS-Jaya-based Deep RNN are 71.67%, 85.77%, 93.94%,
91.26%, and 94.06%, respectively.

4.7 Comparative discussion

Table 5 portrays the comparative discussion. The proposed AS-
Jaya-based Deep RNN obtained the best results in 80% of train-
ing data. The proposed AS-Jaya-based Deep RNN obtained
better performance for accuracy as 93.65%, specificity as 96%,
and sensitivity as 95%, respectively, by considering three fea-
tures. By considering two features, the proposed AS-Jaya-based
Deep RNN obtained 96% for specificity, 90.40% for sensitiv-
ity, and 93.65% for accuracy using 80% training data, respec-
tively, which is better than the existing methods, such as GMM,
SetSVM, CNN, and Deep ResNet. The accuracy of the pro-
posed AS-Jaya-based Deep RNN shows 24.19%, 4.29%, 0.20%,
and 1.49%, better performance than the existing methods
such as GMM, SetSVM, CNN, and Deep ResNet, respectively,
by considering the two features. While considering the three
features, the proposed AS-Jaya-based Deep RNN is 24.19%,

TABLE 6 Computational complexity

Method Time (s)

GMM 11.87

SetSVM 9.98

CNN 8.21

Deep ResNet 7.36

Proposed AS-Jaya-based Deep RNN 6.08

2.20%, 0.20%, and 0.8%, better accuracy than the existing meth-
ods such as GMM, SetSVM, CNN, and Deep ResNet, respec-
tively. The precision of the proposed AS-Jaya-based Deep RNN
is 22.85%, 8.46%, 1.65%, and 3.30%, better than the exist-
ing methods, by considering the two features. By considering
the three features, the proposed AS-Jaya-based Deep RNN is
24.10%, 9.05%, 0.06%, and 2.83%, better than the existing
methods such as GMM, SetSVM, CNN, and Deep ResNet,
respectively.

Table 6 depicts the computational complexity of the pro-
posed AS-Jaya-based Deep RNN, with the existing methods
such as GMM, SetSVM, CNN, and Deep ResNet, in which the
proposed AS-Jaya-based Deep RNN has the minimum compu-
tation time of 6.08 s.

5 CONCLUSION

A new optimization named AS-Jaya-based Deep RNN is mod-
elled in this research to achieve the liver cancer detection pro-
cess. The pre-processed result enhances the contrast of the
image by removing the redundancies and noise in the origi-
nal image. The segmentation module processes the image and
transformed into segmented using BHEFC. The features are
effectively extracted based on the pixel values and increase the
efficiency of the detection rate. The proposed AS-Jaya optimiza-
tion inherits the characteristic features from ASO and Jaya and
effectively updates the weight of the classifier. The fitness mea-
sure is evaluated based on the position of an atom in order to
obtain the best optimal solution such that the function with the
minimal error value is accepted as the optimal solution. The
proposed detection model outperforms the existing liver cancer
detection techniques with respect to the performance of the seg-
mentation result. However, the proposed AS-Jaya-based Deep
RNN attained better performance with the values of accuracy as
93.64%, and specificity as 96%, sensitivity as 95%, and precision
as 94.88%, respectively, by considering three features at 80%
training data. Some of the real-time applications of this method
are Cancer Epidemiology, Cancer Immunology Research, Can-
cer Discovery, Molecular Cancer Research, and Clinical Cancer
Research. However, this method has the difficulty of operat-
ing in artificial computing and fictional computing platforms.
In future, the performance of cancer detection will be enhanced
using any other optimization algorithm that operates in artificial
computing and fictional computing platforms.
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