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Authenticated key distribution using given set of primes for secret sharing
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In recent years, Chinese remainder theorem (CRT)-based function sharing schemes are proposed in the literature. In this
paper, we study systems of two or more linear congruences. When the moduli are pairwise coprime, the main theorem is
known as the CRT, because special cases of the theorem were known to the ancient Chinese. In modern algebra the CRT
is a powerful tool in a variety of applications, such as cryptography, error control coding, fault-tolerant systems and certain
aspects of signal processing. Threshold schemes enable a group of users to share a secret by providing each user with a
share. The scheme has a threshold t+ 1 if any subset with cardinality t+ 1 of the shares enables the secret to be recovered.
In this paper, we are considering 2t prime numbers to construct t share holders. Using the t share holders, we split the secret
S into t parts and all the t shares are needed to reconstruct the secret using CRT.

Keywords: key distribution; Chinese remainder theorem; Pell’s equation; graceful labeling
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1. Introduction
A threshold scheme enables a secret to be shared among a
group of � members providing each member with a share.
The scheme has a threshold t+ 1 if any subset with car-
dinality t+ 1 out of the � shares enables the secret to
be recovered. We will use the notation (t+ 1, �) to refer
to such a scheme. Ideally, in a (t+ 1) threshold scheme,
t shares should not give any information on the secret.
We will discuss later how to express this information.
In the 1980s, several algebraic constructions of (t+ 1, �)
threshold schemes were proposed.

Key distribution is a central problem in cryptographic
systems, one of the nicest ones is the idea of secret shar-
ing, originally suggested by Blakley (1979). Somewhat
surprisingly, Shamir was able to construct a very efficient
such scheme for any n and t without relying on any cryp-
tographic assumptions. Such schemes are called t out of
n secret sharing schemes. An n out of n schemes is a
scheme where all n shares are needed to reconstruct, and
if even one share is missing then there is absolutely no
information about the secret. Secret sharing was invented
independently by Shamir (1979) and Blakley (1979).

A number of common mathematical techniques in sig-
nal processing and data transmission have as their common
basis an earliest number-theoretic theorem known as the
Chinese remainder theorem (CRT). The scope of problems
to which this applies is very wide. It includes cryptogra-
phy, error control coding, fault-tolerant systems and certain

∗Corresponding author. Email: ncmowli@hotmail.com

aspects of signal processing. In this paper, we present three
new centralized group key management protocols based
on the CRT. By shifting more computing load onto the
key server we optimize the number of re-key broadcast
messages, user-side key computation, and number of key
storages. It is attracted much attention in the research com-
munity and a number of schemes have been proposed,
including many encryption schemes and signature schemes
(Lu & Li, 2013).

The CRT can also be used in secret sharing, there are
two secret sharing schemes that make use of the CRT,
Mignotte’s and Asmuth-Bloom’s Schemes see in Mignotte
(1983) and Asmuth and Bloom (1983). They are threshold
secret sharing schemes, in which the shares are gener-
ated by reduction modulo the integers mi, and the secret is
recovered by essentially solving the system of congruences
using the CRT (Apostol (1976)).

THEOREM 1.1 (CRT) Suppose that m1, m2, . . . , mr are
pairwise relatively prime positive integers, and let
a1, a2, . . . , ar be integers. Then the system of congruences,
x ≡ ai (mod mi) for 1 ≤ i ≤ r, has a unique solution mod-
ulo M = m1 × m2 × . . .× mr, which is given by: x ≡
a1M1y1 + a2M2y2 + . . .+ arMryr (mod M ), where Mi =
M/mi and yi ≡ (Mi)

−1 (mod mi) for 1 ≤ i ≤ r.

All types of secret key sharing considered in this
paper mainly uses factorization difficulty and discrete log

c© 2015 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/Licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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problem difficulty. Here, we propose three secret sharing
scheme among t shares. The motivation for the use of
secret key sharing scheme is that, it gives confidence to the
source node or the owner about the genuinely participating
shares in the network. Here, a key is transmitted or shared
among the multiple share holders in the network that are
under the process of encryption and decryption. The objec-
tive is to maintain the genuineness of the nodes that are
present in the network. Here, the shares are properly dis-
tributed by choosing 2t prime numbers and then it is shared
to their corresponding nodes for which it is generated.

2. Main result
In this section we give key distribution theorem and algo-
rithms. The proposed system involves a design of a pre-
distribution algorithm using a deterministic approach. A
key pre-distribution algorithm using number theory with
high connectivity, high resilience and memory require-
ments is being designed by implementing a deterministic
approach. Most of the related technical terms and defi-
nitions appear in Mignotte (1983), Muralikrishna, Srini-
vasan, and Chandramowliswaran (2013), Okamoto and
Tanaka (1989) and Muralikrishna et al. (2013). The oth-
ers can be found in text books such as Apostol (1976),
Berlekamp (1968), Blakley (1979), and Koblitz (1994).

In this section, we give three distinct novel secret shar-
ing schemes. Consider the three very large odd primes p , q
and r with (qr−1 + rq−1) �≡ 0 (mod p), (rp−1 + pr−1) �≡
0 (mod q) and (pq−1 + qp−1) �≡ 0 (mod r). To accomplish
our first secret key sharing scheme, we adopt the following
theorem.

THEOREM 2.1 Let S be the given secret and N = pqr
where p , q and r are distinct large odd primes. Define
three secret shareholders Y1, Y2, Y3 as follows: Y1 ≡
(−Sk1p(qr−1 + rq−1)) (mod N ), Y2 ≡ (−Sk2q(pr−1 + rp−1))

(mod N ) and Y3 ≡ (−S(k3r(pq−1 + qp−1)+ 1)) (mod N )

then S = Y1 + Y2 + Y3 (mod N )

In order to prove the proposed theorem, we regard a
Lemma 2.2, as the secret key information.

LEMMA 2.2 Let p , q and r be three given distinct odd
primes. Then there exist integers k1, k2 and k3 such that

k1p(qr−1 + rq−1)+ k2q(pr−1 + rq−1)+ k3r(pq−1 + qp−1)

+ 2 ≡ 0 (mod pqr).

Proof Define: X = (pq−1 + qp−1)+ (pr−1 + rp−1)+
(qr−1 + rq−1)− 2. Then

X ≡ (qr−1 + rq−1) (mod p)

X ≡ (pr−1 + rp−1) (mod q) and

X ≡ (pq−1 + qp−1) (mod r).

By CRT, the above system of congruences has exactly one
solution modulo the product pqr.

Define M = pqr then Mp = M/p = qr, Mq = M/q =
pr and Mr = M/r = pq.

Since (Mp , p) = 1, then there is a unique M ′p such that
MpM ′p ≡ 1 (mod p).

Similarly there are unique M ′q and M ′r such that
MqM ′q ≡ 1 (mod q) and MrM ′r ≡ 1 (mod r).

Consider

X ≡ ((pq−1 + qp−1)MrM ′r + (pr−1 + rp−1)MqM ′q

+ (qr−1 + rq−1)MpM ′p) (mod pqr)

that is,

pq−1 + qp−1 + pr−1 + rp−1 + qr−1 + rq−1 − 2

≡ ((pq−1 + qp−1)MrM ′r + (pr−1 + rp−1)MqM ′q

+ (qr−1 + rq−1)MpM ′p) (mod pqr)

− 2 ≡ ((pq−1 + qp−1)(MrM ′r − 1)+ (pr−1 + rp−1)

× (MqM ′q − 1)+ (qr−1 + rq−1)(MpM ′p − 1))

× (mod pqr).

Thus

k1p(qr−1 + rq−1)+ k2q(pr−1 + rq−1)+ k3r(pq−1 + qp−1)

+ 2 ≡ 0 (mod pqr). �

Proof of Theorem 2.1 By the above Lemma 2.2, we have

k1p(qr−1 + rq−1)+ k2q(pr−1 + rq−1)+ k3r(pq−1 + qp−1)

+ 2 ≡ 0 (mod N ).

1 ≡ (−(k1p(qr−1 + rq−1))− (k2q(pr−1 + rq−1))

− (k3r(pq−1 + qp−1)+ 1)) (mod N ).

Thus S = Y1 + Y2 + Y3 (mod N ). �

The following three examples motivating us to write
nice secret sharing algorithms

Example 1 Secret Key Sharing using Quadratic Polyno-
mials

Step 1 Define P(x) = �1x2 + �2x + �3 (secret) where
�i ∈ Z

+, i ∈ {1, 2, 3}
Let λ be a positive integer with P(λ) = �1λ

2 +
�2λ+ �3 = μ (say)

Step 2 Define Q(x) = P(x)− μ then Q(λ) = 0
Step 3 Let s is the given secret. Find integers

a, b, c, d, e, f , g, , h, r satisfying �1x2 + �2x +
(�3 − μ+ s) = α[a(1+ x)2 + b(1+ x)+ c]+
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β[d(1+ x)2 + e(1+ x)+ f ]+ γ [g(1+ x)2 +
h(1+ x)+ r] with

∣∣∣∣∣∣
a d g

2a+ b 2d + e 2g + h
a+ b+ c d + e+ f g + h+ r

∣∣∣∣∣∣
= ±1.

Step 4 Compare the coefficients on both sides we get,

αa+ βd + γ g = �1

α(2a+ b)+ β(2d + e)+ γ (2g + h) = �2

α(a+ b+ c)+ β(d + e+ f )+ γ (g + h+ r)

= �3 − μ+ s.

Step 5

⎛
⎝

a d g
2a+ b 2d + e 2g + h

a+ b+ c d + e+ f g + h+ r

⎞
⎠

⎛
⎝

α

β

γ

⎞
⎠

=
⎛
⎝

�1
�2

�3 − μ+ s

⎞
⎠ ,

where

⎛
⎝

a d g
2a+ b 2d + e 2g + h

a+ b+ c d + e+ f g + h+ r

⎞
⎠

∈ GL3(Z),

where GL3(Z) be the set of all 3× 3 matrices
of integer coefficients with determinant is ±1

Step 6

⎛
⎝

α

β

γ

⎞
⎠ =

⎛
⎝

a d g
2a+ b 2d + e 2g + h

a+ b+ c d + e+ f g + h+ r

⎞
⎠
−1

×
⎛
⎝

�1
�2

�3 − μ+ s

⎞
⎠ ,

where α, β and γ are uniquely solved by the
above information

Step 7 Select three secret share holders P1, P2 and P3

P1 ←→ ax2 + (2a+ b)x + (a+ b+ c) = P1(x)

P2 ←→ dx2 + (2d + e)x + (d + e+ f ) = P2(x)

and

P3 ←→ gx2 + (2g + h)x + (g + h+ r) = P3(x)

Example 2 Secret Key Sharing using Finite Groups

Step 1 Let P = 2pr + 1 and Q = 2qs + 1, where
P ,Q, p and q are very large odd primes (which
is kept secret).

Step 2 Let N = PQ
Step 3 Define G = {1 ≤ x ≤ N | (x, N ) = 1}
Step 4 Let ×N be the multiplication modulo N .

Clearly (G,×N ) forms a finite group with
O(G) = φ(N ) = 4prqs

Step 5 Let s (given secret) be the element of G
Step 6 From finite group theory, any map �, g �−→

gm is always an automorphism of G, if
(m, O(G)) = 1

Step 7 Let m = �1 + �2 + · · · + �t.
Consider s = xm

s = x�1+�2+···+�t

s = x�1x�2 · · · x�t

s = y1y2 · · · yt,

where yi = x�i (mod N ), 1 ≤ i ≤ t be the indi-
vidual share holders.

Example 3 Secret Key Sharing using affine number theo-
retic functions

Step 1 Let S = {ak | 1 ≤ k ≤ N } be the given set of
distinct positive integers

Step 2
∑N

k=1 ak = P, where P is very large odd prime
Step 3 Clearly, (

∏N
j=1 aj , P) = 1 and (aj , P − aj ) =

1,∀j , 1 ≤ j ≤ N
Step 5 Denote {0, 1, 2, . . . ,

∏N
j=1 aj − 1} = [0,

∏N
j=1

aj − 1], then

Define fP : [0,
∏N

j=1 aj − 1]
1−1−−→
onto

[0,
∏N

j=1 aj −
1] such that for each x ∈ [0,

∏N
j=1 aj − 1],

fP(x) = Px + t (mod
∏N

j=1 aj ) where t ∈ [0,∏N
j=1 aj − 1]

Step 6 Define faj : [0, P − aj − 1]
1−1−−→
onto

[0, P − aj − 1]
such that for each y ∈ [0, P − aj − 1] faj (y) =
aj y + bj (mod P − aj ) where bj ∈ [0, P −
aj − 1]
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Step 7 Define gaj : [0, aj − 1]
1−1−−→
onto

[0, aj − 1] such
that for each z ∈ [0, aj − 1] gaj (z) = (P −
aj )z + cj (mod aj ) where cj ∈ [0, aj − 1]

Step 8 Define Yj = gaj (z) = (P − aj )w+ dj (mod aj ),
w ∈ [0, aj − 1] and ∀j , j {1, 2, . . . , N } with
(ar, as) = 1, ∀s, r ∈ {1, 2, . . . , N }.
Solve w uniquely mod

∏N
j=1 aj

Step 9 Let S = fP(w) = Pw+ t (mod
∏N

j=1 aj ) be the
given secret

3. Algorithms
ALGORITHM 1 By means of our first secret key sharing
scheme, we execute the following hierarchy.

Step 1 Consider {pi, qi : i ∈ {1, 2, . . . , t}} be the given
distinct secrete odd primes

Step 2 Let Ni = piqi
Step 3 Pick ai such that (ai, Ni) = 1
Step 4 Choose the positive integers ei such that

(ei, (pi − 1)(qi − 1)) = 1
Step 5 Select a common secret S such that (S, Ni) =

1, i ∈ {1, 2, . . . , t}
Step 6 Define xi, i ∈ {1, 2, . . . , t} by Niy2

i + 1 = x2
i

where xi, yi be the least positive integer solution
of Niy2 + 1 = x2

Step 7 For each i, 1 ≤ i ≤ t then construct xi ≡
aiSei (mod Ni)

Step 8 Solve S uniquely under (mod
∏

Ni) i ∈
{1, 2 . . . , t} using CRT

Step 9 S is the common secret shared by the each share
holder xi, i ∈ {1, 2, . . . , t}

The following proposition asserts that algorithm 2 is a
nontrivial secret share holders.

PROPOSITION Let P, Q be given very large odd primes
with the following conditions

(i) P does not divides x2 and y2
(ii) Q does not divides x1 and y1
(iii) 2y2

1 �≡ −1 (mod Q) and 2y2
2 �≡ −1 (mod P)

where x1, y1, x2, y2, x3 and y3 satisfy y2
1 − Px2

1 = 1 y2
2 −

Qx2
2 = 1 y2

3 − PQx2
3 = 1 and 1 ≡ ((y1y2y3)

2 + (−P(x1

y2y3)
2)+ (−Q(x2y1y3)

2)) (mod PQ) gives non-degenerate
key sharing.

ALGORITHM 2 Construction of Secret sharing by two
odd primes P and Q

Step 1 Let P, Q be given very large odd primes
Step 2 Define N = PQ
Step 3 Consider the following Pell’s equations

Px2 + 1 = y2 (1)

Qx2 + 1 = y2 (2) and

PQx2 + 1 = y2 (3).

Step 4 Let (x1, y1), (x2, y2) and (x3, y3) be the least pos-
itive integral solution of (1), (2) and (3) (i.e.)
Px2

1 + 1 = y2
1 , Qx2

2 + 1 = y2
2 and PQx2

3 + 1 =
y2

3

y2
1 − Px2

1 = 1 (1)′

y2
2 − Qx2

2 = 1 (2)′

y2
3 − PQx2

3 = 1 (3)′.

Step 5 1 = (y2
1 − Px2

1)(y
2
2 − Qx2

2)(y
2
3 − PQx2

3)

1 ≡ (y2
1 − Px2

1)(y
2
2 − Qx2

2)y
2
3 (mod PQ)

1 ≡ (y2
1 y2

2 − Px2
1y2

2 − Qx2
2y2

1 )y2
3 (mod PQ)

1 ≡ ((y1y2y3)
2 − P(x1y2y3)

2 − Q(x2y1y3)
2)

× (mod PQ)

1 ≡ ((y1y2y3)
2 + (−P(x1y2y3)

2)

+ (−Q(x2y1y3)
2)) (mod PQ).

Step 6 Select a secret S such that (S, PQ) = 1
Step 7

S = (S(y1y2y3)
2 + (−PS(x1y2y3)

2)

+ (−QS(x2y1y3)
2)) (mod PQ).

Step 8 Y1, Y2 and Y3 are secret share holders, where
Y1 = S(y1y2y3)

2 (mod PQ),

Y2 = (−PS(x1y2y3)
2) (mod PQ) and

Y3 = (−QS(x2y1y3)
2) (mod PQ).

ALGORITHM 3 Extension of Algorithm 2 for three odd
primes P, Q and R

Step 1 Let P, Q and R be given very large odd primes
Step 2 Consider the following Pell’s equations

Px2 + 1 = y2 (1)

Qx2 + 1 = y2 (2)
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PQx2 + 1 = y2 (3)

Rx2 + 1 = y2 (4)

PRx2 + 1 = y2 (5)

QRx2 + 1 = y2 (6) and

PQRx2 + 1 = y2 (7).

Step 3 Let (xi, yi) be the least positive integral solution
of (1)–(7)

Px2
1 + 1 = y2

1 (1)

Qx2
2 + 1 = y2

2 (2)

PQx2
3 + 1 = y2

3 (3)

Rx2
4 + 1 = y2

4 (4)

PRx2
5 + 1 = y2

5 (5)

QRx2
6 + 1 = y2

6 (6) and

PQRx2
7 + 1 = y2

7 (7).

Step 4

1 = (y2
1 − Px2

1)(y
2
2 − Qx2

2)(y
2
3 − PQx2

3)(y
2
4 − Rx2

4)

× (y2
5 − PRx2

5)(y
2
6 − QRx2

6)(y
2
7 − PQRx2

7)

that is, (y2
1 − Px2

1)(y
2
2 − Qx2

2)(y
2
3 − PQx2

3)

(y2
4 − Rx2

4)(y
2
5 − PRx2

5)(y
2
6 − QRx2

6)y
2
7 ≡ 1

(mod PQR)

Step 5
Step A : (y2

1 − Px2
1)(y

2
6 − QRx2

6) (mod PQR) ≡ y2
1 y2

6 −
Px2

1y2
6 − QRy2

1 x2
6 (mod PQR)

Step B : (y2
3 − PQx2

3)(y
2
5 − PRx2

5) (mod PQR) ≡ y2
3 y2

5 −
PQx2

3y2
5 − PRy2

3 x2
5 (mod PQR)

Step C : (y2
2 − Qx2

2)(y
2
4 − Rx2

4) (mod PQR) ≡ y2
2 y2

4 −
Qx2

2y2
4 − Ry2

2 x4 − QRx2
2x2

4 (mod PQR)

Step 6 Combining Step A and Step C, we have the
following

(y2
1 − Px2

1)(y
2
6 − QRx2

6)(y
2
2 − Qx2

2)(y
2
4 − Rx2

4)

× (mod PQR) ≡ y2
1 y2

2 y2
4 y2

6 − Qx2
2y2

1 y2
4 y2

6

− Rx2
4y2

1 y2
2 y2

6 + QRx2
2x2

4y2
1 y2

6 − Px2
1y2

2 y2
4 y2

6

+ PQx2
1x2

2y2
4 y2

6 + PRx2
1x2

4y2
2 y2

6

− QRx2
6y2

1 y2
2 y2

4 + Q2Rx2
2x2

6y2
1 y2

4

+ QR2x2
4x2

6y2
1 y2

2

− Q2R2x2
2x2

4x2
6y2

1 (mod PQR).

Step 7 Now include Step B, we have

y2
1 y2

2 y2
3 y2

4 y2
5 y2

6 − Qx2
2y2

1 y2
3 y2

4 y2
5 y2

6

− Rx2
4y2

1 y2
2 y2

3 y2
5 y2

6 + QRx2
2x2

4y2
1 y2

3 y2
5 y2

6

− Px2
1y2

2 y2
3 y2

4 y2
5 y2

6 + PQx2
1x2

2y2
3 y2

4 y2
5 y2

6

+ PRx2
1x2

4y2
2 y2

3 y2
5 y2

6 − QRx2
6y2

1 y2
2 y2

3 y2
4 y2

5

+ Q2Rx2
2x2

6y2
1 y2

3 y2
4 y2

5 + QR2x2
4x2

6y2
1 y2

2 y2
3 y2

5

− Q2R2x2
2x2

4x2
6y2

1 y2
3 y2

5 − PQx2
3y2

1 y2
2 y2

4 y2
5 y2

6

+ PQ2x2
2x2

3y2
1 y2

4 y2
5 y2

6 + P2Qx2
1x2

3y2
2 y2

4 y2
5 y2

6

+ P2Q2x2
1x2

2x2
3y2

4 y2
5 y2

6 − PRx2
5y2

1 y2
2 y2

3 y2
4 y2

6

+ PR2x2
4x2

5y2
1 y2

2 y2
3 y2

6 + P2Rx2
1x2

5y2
2 y2

3 y2
4 y2

6

− P2R2x2
1x2

4y2
2 y2

3 y2
5 y2

6

≡ 1 (mod PQR).

Step 8 Let S be the given secret with P, Q and R does
not divide S

Step 9 Let

t1 = y2
1 y2

2 y2
3 y2

4 y2
5 y2

6 , t2 = −Qx2
2y2

1 y2
3 y2

4 y2
5 y2

6 ,

t3 = −Rx2
4y2

1 y2
2 y2

3 y2
5 y2

6 , t4 = QRx2
2x2

4y2
1 y2

3 y2
5 y2

6 ,

t5 = −Px2
1y2

2 y2
3 y2

4 y2
5 y2

6 , t6 = PQx2
1x2

2y2
3 y2

4 y2
5 y2

6 ,

t7 = PRx2
1x2

4y2
2 y2

3 y2
5 y2

6 , t8 = −QRx2
6y2

1 y2
2 y2

3 y2
4 y2

5

t9 = Q2Rx2
2x2

6y2
1 y2

3 y2
4 y2

5 , t10 = QR2x2
4x2

6y2
1 y2

2 y2
3 y2

5 ,

t11 = −Q2R2x2
2x2

4x2
6y2

1 y2
3 y2

5 , t12 = −PQx2
3y2

1 y2
2 y2

4 y2
5 y2

6 ,

t13 = PQ2x2
2x2

3y2
1 y2

4 y2
5 y2

6 , t14 = P2Qx2
1x2

3y2
2 y2

4 y2
5 y2

6 ,

t15 = P2Q2x2
1x2

2x2
3y2

4 y2
5 y2

6 , t16 = −PRx2
5y2

1 y2
2 y2

3 y2
4 y2

6 ,

t17 = PR2x2
4x2

5y2
1 y2

2 y2
3 y2

6 , t18 = P2Rx2
1x2

5y2
2 y2

3 y2
4 y2

6 and

t19 = −P2R2x2
1x2

4y2
2 y2

3 y2
5 y2

6

then, the 19 secret share holders are Yi = tiS
where 1 ≤ i ≤ 19

Step 10
∑19

j=1 Yj ≡ S (mod PQR).

Example 4 Managing the shortage of Login ID Problems
in Petersen Networks . The other terminology not defined
here can be found in Balakrishnan and Ranganathan (2000)
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(1) There are 10 Login ID and 15 users in the given
network

(2) Any two Login IDs can be utilized by at most one
user

(3) Every Login ID is used by exactly three users
(4) Represent the Login IDs by the nodes (vertices)

of the graph G
(5) If there is a user-j using Login IDs Log IDr and

Log IDs, then join them by an edge

(6) If the two users have a common Login ID then
they are conflict users, otherwise non-conflict
users. For example, Conflict users: user-1, user-2
and user-7, they have common Login ID Log ID1
and Non-Conflict users: user-2, user-5 and user-9

(7) Define V(G) = {vi = Log IDi | 1 ≤ i ≤ 10}
Define E(G) = {k = user k | 1 ≤ k ≤ 15}

(8) Define f (vi) = f (Log IDi) = σ(i), where σ is a
permutation on the set of numbers {1, 2, . . . , 10}.
This σ(i) is given for each Log IDi

(9) Now define the graceful labeling g on the set
{σ(1), σ(2), . . . , σ(10)}
g : {σ(i) : 1 ≤ i ≤ 10} −→ {0, 1, 2, . . . , q− 1, q}.
Suppose

g[user j ] =| g(σ (r))− g(σ (s)) |∈ {1, 2, . . . , q}
where 1 ≤ r, s ≤ 10, r �= s

(10) g : E(G) −→ {1, 2, . . . , q}
(11) g is kept secret, but g[user j ] is given for each

user j
(12) g[user j ] is called user-ID

(σ (r), σ(s)) are two Login IDs for the user j
(13) Entire Network is kept secret
(14) P : V(G) −→ {p1, p2, . . . , p10} where pi, 1 ≤ i ≤

10 are distinct odd primes with q < min{pi}, 1 ≤
i ≤ 10, q < pj ∀j (P is kept secret)

g[user j ] is known 1 ≤ j ≤ 15
(15) Define ej : (ej , (pr − 1)(ps − 1)) = 1 (ej kept

secret)

(16) Define mj ≡ (g[user j ])ej (mod prps)P[LogIDr] =
pr,P[Log IDs] = ps, 1 ≤ r, s ≤ 10, r �= s

(17) Decompose the user (edges) into subset of Non-
Conflict users (set of Independent Edges)

(18)

A = {user-2, user-5, user-9, user-11, user-13} :

user-2←→ {Log ID1, Log ID5}
user-5←→ {Log ID2, Log ID3}
user-9←→ {Log ID4, Log ID8}
user-11←→ {Log ID6, Log ID9}
user-13←→ {Log ID7, Log ID10}

B = {user-1, user-3, user-12, user-14} :

user-1←→ {Log ID1, Log ID2}
user-3←→ {Log ID5, Log ID4}
user-12←→ {Log ID6, Log ID8}
user-14←→ {Log ID7, Log ID9}

C = {user-4, user-7, user-8, user-15} :

user-4←→ {Log ID3, Log ID4}
user-7←→ {Log ID1, Log ID6}
user-8←→ {Log ID5, Log ID7}
user-15←→ {Log ID8, Log ID10}

D = {user-6, user-10} :

user-6←→ {Log ID2, Log ID10}
user-10←→ {Log ID3, Log ID9}

(19) Define congruences equations for the set A, B, C
and D as follows

x ≡ m2 (mod p1p5)

x ≡ m5 (mod p2p3)

x ≡ m9 (mod p4p8)

x ≡ m11 (mod p6p9)

x ≡ m13 (mod p7p10)

x has a unique solution (mod p1p2 · · · p10)

Thus x is the common secret shared by the
group A Non-Conflict users

y ≡ m1 (mod p1p2)

y ≡ m3 (mod p4p5)

y ≡ m12 (mod p6p8)

y ≡ m14 (mod p7p9)

y has a unique solution (mod p1p2p4p5p6p7p8p9)
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Thus y is the common secret shared by the
group B Non-Conflict users

z ≡ m4 (mod p3p4)

z ≡ m7 (mod p1p6)

z ≡ m8 (mod p5p7)

z ≡ m15 (mod p8p10)

z has a unique solution (mod p1p3p4p5p6p7p8p10)

Thus z is the common secret shared by the group
C Non-Conflict users

w ≡ m6 (mod p2p10)

w ≡ m10 (mod p3p9)

w has a unique solution (mod p2p3p9p10)

Thus w is the common secret shared by the
group D Non-Conflict users

4. Conclusion
In the proposed system we only focused on protecting the
group key information broadcasted from the Dealer to all
the share holders in the group and the group guarantees the
confidentiality authentication of the key generated. This
confirms that the protocol is secure for both inside and
outside attack. In this paper, an algorithm is proposed for
secure key sharing. This method can be used for factor-
ization of positive integer N . The proposed tool is more
efficient key distribution algorithm used for a secret code,
since it involves more number of prime numbers. The tech-
nique used in this paper for secret sharing is to split the
secret into different primes and send it to the participat-
ing share holders in the network. Also it is not able to
decode the secret without the knowledge of all shares and
any attacker cannot identify if any one share is missing.
Hence forth one can use it for various network protocols

and it leads a opening of new developments in the field of
cryptosystems

Disclosure statement
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