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BEST PROXIMITY POINT RESULTS VIA SIMULATION

FUNCTIONS IN METRIC-LIKE SPACES

G. V. V. J. RAO1, H. K. NASHINE2∗, AND Z. KADELBURG3

Abstract. In this paper, we discuss the existence of best proximity points of certain
mappings via simulation functions in the frame of complete metric-like spaces. Some
consequences and examples are given of the obtained results.

1. Introduction

Khojasteh et al. introduced in [13] the notion of simulation function in order to
unify several fixed point results obtained by various authors. These functions were
later utilized by Karapinar and Khojasteh in [9] to solve some problems concerning
best proximity points.

On the other hand, spaces more general than metric and fixed point and related
problems in them have been lately a wide field of interest of huge number of mathe-
maticians. Among them, metric-like spaces, introduced by Amini-Harandi in [2], took
a prominent place.

In this paper, we are going to extend these investigations to best proximity points of
mappings acting in complete metric-like spaces, using conditions involving simulation
functions. The results will be illustrated by several examples, showing the strength
of these results compared with others existing in the literature.

2. Preliminaries

Throughout the paper, R and R
+, R+

0 will denote the set of real numbers, the set
of positive real numbers and the set of nonnegative real numbers, respectively. Also,
N0 and N will denote the set of nonnegative, resp. positive integers.

Key words and phrases. Z-contraction, best proximity point, simulation function, admissible
mapping.
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We shall first recall some basic definitions and some results from [1,5, 13].

Definition 2.1 ([13]). A simulation function is a mapping ζ : R+
0 ×R

+
0 → R satisfying

the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn =

l ∈ (0,∞), then lim supn→∞
ζ(tn, sn) < 0.

Note that, according to the axiom (ζ2), each simulation function ζ satisfies ζ(t, t) < 0
for all t > 0. The family of all simulation functions will be denoted by Z.

Example 2.1 (See, e.g., [1,5,7,13]). For i = 1, 2, . . . , 6, define mappings ζi : R+
0 ×R

+
0 →

R, as follows.

(i) ζ1(t, s) = φ1(s)−φ2(t) for all t, s ∈ R
+
0 , where φ1, φ2 : R+

0 → R
+
0 are continuous

functions, with φi(t) = 0 if and only if t = 0 and φ1(t) < t ≤ φ2(t) for all t > 0.

(ii) ζ2(t, s) = s− f(t,s)
g(t,s)

t for all t, s ∈ R
+
0 , where f, g : R+

0
2

→ R
+
0 are two functions,

continuous with respect to each variable and such that f(t, s) > g(t, s) for all
t, s > 0.

(iii) ζ3(t, s) = s − φ(s) − t for all t, s ∈ R
+
0 , where φ : R+

0 → R
+
0 is a continuous

functions, with φ(t) = 0 if and only if t = 0.
(iv) If ϕ : R+

0 → [0, 1) is a function such that lim supt→r+ ϕ(t) < 1 for all r > 0, let

ζ4(t, s) = sϕ(s) − t, for all t, s ∈ R
+
0 .

(v) If η : R+
0 → R

+
0 is an upper semi-continuous function such that η(t) < t for all

t > 0 and η(0) = 0, let

ζ5(t, s) = η(s) − t, for all t, s ∈ R
+
0 .

(vi) If φ : R+
0 → R

+
0 is a function such that

∫ ǫ
0 φ(u) du > ǫ for each ǫ > 0, let

ζ6(t, s) = s−
∫ t

0
φ(u) du, for all t, s ∈ R

+
0 .

It is clear that each function ζi, i = 1, 2, . . . , 6, is a simulation function.

Definition 2.2 ([2]). Let X be a nonempty set, and a mapping σ : X ×X → R
+
0 is

such that, for all x, y, z ∈ X,

(σ1) σ(x, y) = 0 implies x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

Then (X, σ) is said to be a metric-like space.

As is well known, each partial metric space is an example of a metric-like space.
The converse is not true. The following example illustrates this statement.
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Example 2.2. Take X = {1, 2, 3} and consider the metric-like σ : X ×X → R
+
0 given

by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2

3
,

σ(2, 1) = σ(1, 2) =
9

10
, σ(1, 3) = σ(3, 1) =

7

10
, σ(2, 3) = σ(3, 2) =

4

5
.

Since σ(2, 2) 6= 0, σ is not a metric and since σ(2, 2) > σ(2, 1), σ is not a partial
metric.

Every metric-like σ on X generates a topology τσ whose base is the family of all
open σ-balls

{Bσ(x, δ) : x ∈ X, δ > 0 },

where Bσ(x, δ) = { y ∈ X : |σ(x, y) − σ(x, x)| < δ }, for all x ∈ X and δ > 0.

Definition 2.3 ([2]). Let (X, σ) be a metric-like space, let {xn} be a sequence in X

and x ∈ X. Then

(i) {xn} is said to converge to x, w.r.t. τσ, if limn→∞ σ(xn, x) = σ(x, x);
(ii) {xn} is called a Cauchy sequence in (X, σ) if limn,m→∞ σ(xn, xm) exists (and

is finite);
(iii) (X, σ) is called complete if every Cauchy sequence {xn} in X converges with

respect to τσ to a point x ∈ X such that

lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, x) = σ(x, x);

(iv) a function f : X → X is continuous if for any sequence {xn} in X such that
σ(xn, x) → σ(x, x) as n → ∞, we have σ(fxn, fx) → σ(fx, fx) as n → ∞.

Note that the limit of a sequence in a metric-like space might not be unique.

Lemma 2.1 ([11]). Let (X, σ) be a metric-like space. Let {xn} be a sequence in X

such that xn → x where x ∈ X and σ(x, x) = 0. Then for all y ∈ X, we have

lim
n→∞

σ(xn, y) = σ(x, y).

Ψ will denote the family of non-decreasing functions ψ : R+
0 → R

+
0 satisfying the

following conditions:

(i) ψ(t) < t, for any t ∈ R
+;

(ii) ψ is continuous at 0.

Let (X, σ) be a metric-like space, and U and V be two non-empty subsets of X.
Recall the following standard notation:

σ(U, V ) := inf{σ(u, v) : u ∈ U, v ∈ V },

U0 := {u ∈ U : σ(u, v) = σ(U, V ) for some v ∈ V },

V0 := {v ∈ V : σ(u, v) = σ(U, V ) for some u ∈ U}.
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Consider now a non-self mapping T : U → V and the equation Tu = u (u ∈ U). As
is well known, a solution of this equation, if it exists, is called a fixed point of T . If
such solution does not exist, an approximate solution u∗ ∈ U have the least possible
error when σ(u∗, Tu∗) = σ(U, V ). In this case, u∗ is called a best proximity point of
the mapping T : U → V .

Finally, recall the following useful notions.

Definition 2.4 ([6]). Let U and V be nonempty subsets of a metric-like space (X, σ),
and α : U × U → R

+
0 be a function. We say that the mapping T is α-proximal

admissible if

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ α(u, v) ≥ 1,

for all x, y, u, v ∈ X.

If σ(U, V ) = 0, then T reduces from α-proximal admissible to α-admissible.

Definition 2.5 ([8, 10]). Let T : X → X be a mapping and α : X × X → R
+
0 be a

function. We say that the mapping T is triangular weakly-α-admissible if

α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1.

3. Main Results

Definition 3.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, ψ ∈ Ψ, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is an α-ψ-ζ-

contraction if T is α-proximal admissible and
(3.1)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), ψ(σ(x, y))) ≥ 0,

for all x, y, u, v ∈ U .

Definition 3.2. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is an α-ζ-contraction if

T is α-proximal admissible and
(3.2)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), σ(x, y)) ≥ 0,

for all x, y, u, v ∈ U .

Notice that Definition 3.2 is not a special case of Definition 3.1 since the function
ψ(t) = t does not belong to Ψ.

The following lemma provides a standard step in proving that the given sequence
is Cauchy in a certain space.

Lemma 3.1 (See, e.g., [14]). Let (X, σ) be a metric-like space and let {xn} be a

sequence in X such that σ(xn+1, xn) is non-increasing and that limn→∞ σ(xn+1, xn) = 0.

If {xn} is not a Cauchy sequence, then there exist an ǫ > 0 and two sequences {mk}
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and {nk} of positive integers such that the following four sequences tend to ǫ when

k → ∞:

σ(xmk
, xnk

), σ(xmk+1, xnk+1), σ(xmk−1, xnk
), σ(xmk

, xnk−1).

Now we present the main results of this article.

Theorem 3.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X, α : X ×X → R
+
0 , ψ ∈ Ψ and ζ ∈ Z is non-decreasing with respect to its second

argument. Suppose that T : U → V is an α-ψ-ζ-contraction and

(1) T is triangular weakly-α-admissible;

(2) U is closed with respect to the topology τσ;

(3) T (U0) ⊂ V0;

(4) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and α(x0, x1) ≥ 1;

(5) T is continuous.

Then, T has a best proximity point, that is, there exists z ∈ U such that σ(z, Tz) =
σ(U, V ).

Proof. Take x0, x1 ∈ U given as in (4). Taking (3) into account, we conclude that
Tx1 ∈ V0 which implies that there exists x2 ∈ U such that σ(x2, Tx1) = σ(U, V ).
Since α(x0, x1) ≥ 1 and T is α-proximal admissible, we conclude that α(x1, x2) ≥ 1.
Recursively, a sequence {xn} ⊂ U can be chosen satisfying

(3.3) σ(xn+1, Txn) = σ(U, V ) and α(xn, xn+1) ≥ 1, for all n ∈ N0.

If xk = xk+1 for some k ∈ N0, then σ(xk, Txk) = σ(xk+1, Txk) = σ(U, V ), meaning
that xk is the required best proximal point. Hence, we will further assume that

(3.4) xn 6= xn+1, for all n ∈ N0.

Using relations (3.3) and (3.4), we get that σ(xn, Txn−1) = σ(xn+1, Txn) = σ(U, V ),
for all n ∈ N. Furthermore, by (3.1)

(3.5) ζ(α(xn−1, xn)σ(xn, xn+1), ψ(σ(xn−1, xn))) ≥ 0, for all n ∈ N,

since T : U → V is an α-ψ-ζ-contraction. Regarding (3.4) and (ζ2), the inequality
(3.5) implies that

σ(xn, xn+1) ≤ α(x, y)σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) < σ(xn−1, xn), for all n ∈ N.

Thus, {σ(xn, xn+1)} is a non-increasing sequence bounded from below and there exists
L ∈ R

+
0 such that σ(xn, xn+1) → L as n → ∞. We shall prove that L = 0. Suppose,

on the contrary, that L > 0. Taking the upper limit in (3.5) as n → ∞, regarding
(ζ3), property (i) of ψ ∈ Ψ and that ζ is non-decreasing with respect to the second
argument, we deduce

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), ψ(σ(xn, xn−1)))

≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), σ(xn, xn−1)) < 0,

which is a contradiction. We conclude that limn→∞ σ(xn, xn+1) = 0.
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We shall now prove that the sequence {xn} is Cauchy. Suppose that it is not. Then,
there exist ǫ > 0 and subsequences {xmk

} and {xmk
} of {xn}, so that nk > mk > k

and

(3.6) σ(xmk
, xnk

) ≥ ǫ and σ(xmk
, xnk−1) < ǫ.

By Lemma 2.1, we have

lim
k→∞

σ(xmk
, xnk

) = lim
k→∞

σ(xnk−1, xmk−1) = ǫ.

Since T is triangular weakly-α-admissible, from (3.3), we get that

α(xn, xm) ≥ 1, for all n,m ∈ N0 with n > m.

Hence,
(3.7)
α(xmk

, xnk
) ≥ 1 and σ(xmk

, Txmk−1) = σ(xnk
, Txnk−1) = σ(U, V ), for all k ∈ N.

Since T is an α-ψ-ζ-contraction, the obtained relations (3.7) yield the following in-
equality:

0 ≤ ζ(α(xn, xn−1)σ(xmk
, xnk

), ψ(σ(xmk
, xnk

))), for all k ∈ N.

Letting k → ∞, using (3.6) and (ζ3), and regarding properties of ψ ∈ Ψ and that ζ is
non-decreasing with respect to the second argument, we obtain

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xmk
, xnk

), ψ(σ(xmk−1, Txnk−1)))

≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xmk
, xnk

), σ(xmk−1, Txnk−1)) < 0,

which is a contradiction. Thus, we conclude that the sequence {xn} is Cauchy in U .
Since U is a closed subset of a complete metric-like space (X, σ), there exists z ∈ U

such that

(3.8) lim
n→∞

σ(xn, z) = 0.

Since T is continuous, we deduce that

(3.9) lim
n→∞

σ(Txn, T z) = 0.

From (3.3), using the triangle inequality together with (3.8) and (3.9), we find that

σ(U, V ) = lim
n→∞

σ(xn+1, Txn) = σ(z, Tz).

Thus, z ∈ U is a best proximity point of the mapping T . �

The continuity hypothesis in Theorem 3.1 can be omitted if we assume the following
additional condition on U :

(P ) if a sequence {un} in U converges to u ∈ U and is such that α(un, un+1) ≥ 1
for n ≥ 1, then there is a subsequence {un(k)} of {un} with α(un(k), u) ≥ 1 for
all k.
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Theorem 3.2. Let all the conditions of Theorem 3.1 hold, except that the condition

(5) is replaced by

(5’) (P ) holds.

Then T has a best proximity point.

Proof. As in the proof of Theorem 3.1 we conclude that there exists a sequence {xn}
in U0 which converges to z ∈ U0. Using (3), we note that Tz ∈ V0 and hence

σ(u1, T z) = σ(U, V ), for some u1 ∈ U0.

Notice that from (P ), we have α(xnk
, z) ≥ 1 for all k ∈ N. Since T is α-proximal

admissible and

(3.10) σ(u1, T z) = σ(xnk+1, Txnk
) = σ(U, V ),

we obtain that α(xnk+1, u1) ≥ 1 for all k ∈ N and

ζ(α(xnk+1, u1)σ(u1, xnk+1), ψ(σ(z, xnk
))) ≥ 0.

Then, (ζ2) implies that

σ(u1, xnk+1) ≤ α(xnk+1, u1)σ(u1, xnk+1) ≤ ψ(σ(z, xnk
)) < σ(z, xnk

)

and so limk→∞ σ(u1, xnk+1) → 0. Thus, u1 = z and by (3.10) we have σ(z, Tz) =
σ(U, V ). �

Theorem 3.3. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X, ζ ∈ Z and α : X × X → R
+
0 . Suppose that T : U → V is an α-ζ-contraction

and that conditions (1)-(4) of Theorem 3.1 are satisfied, as well as

(5′′) T is continuous or (P) holds.

Then, T has a best proximity point.

Proof. By following the lines in the proof of Theorem 3.1, we easily construct a
sequence {xn} in U which converges to some z ∈ U , moreover

(3.11) lim
n→∞

σ(xn, z) = 0.

Suppose first that T is continuous. Then

(3.12) lim
n→∞

σ(Txn, T z) = 0.

From (3.3), the triangle inequality together with (3.11) and (3.12) imply

σ(U, V ) = lim
n→∞

σ(xn+1, Txn) = σ(z, Tz).

In other words, z ∈ U is a best proximity of the mapping T .
Suppose now that (P) holds. Regarding (3), we note that Tz ∈ V0 and hence

σ(u1, T z) = σ(U, V ), for some u1 ∈ U0.

Notice that from (P ), we have α(xnk
, z) ≥ 1 for all k ∈ N. Since T is α-proximal

admissible, and
σ(u1, T z) = σ(xnk+1, Txnk

) = σ(U, V ),
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we get that α(xnk+1, u1) ≥ 1 for all k ∈ N and

(3.13) ζ(α(xnk+1, u1)σ(u1, xnk+1), σ(z, xnk
)) ≥ 0.

Then, (ζ2) implies that σ(u1, xnk+1) ≤ α(xnk+1, u1)σ(u1, xnk+1) ≤ σ(z, xnk
) and so

lim
k→∞

σ(u1, xnk+1) → 0.

Thus, u1 = z and by (3.13) we have σ(z, Tz) = σ(U, V ) and the proof is completed. �

Notice that Theorem 3.3 cannot be obtained by combining Theorems 3.1 and 3.2,
since the function ψ(t) = t does not belong to Ψ. Furthermore, in Theorems 3.1 and
3.2, we have an additional condition that ζ is non-decreasing in its second argument.

Definition 3.3. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is a generalized α-ζ-

contraction if T is α-proximal admissible and
(3.14)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), r(x, y)) ≥ 0,

for all x, y, u, v ∈ U with x 6= y, where

r(x, y) = max

{

σ(x, y),
σ(x, u)σ(y, v)

σ(x, y)

}

.

Theorem 3.4. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X and α : X × X → R
+
0 , ζ ∈ Z. Suppose that T : U → V is a generalized

α-ζ-contraction and conditions (1)-(5) of Theorem 3.1 are satisfied. Then T has a

best proximity point.

Proof. As in the proof of Theorem 3.1, we can construct a sequence {xn} in X

satisfying conditions (3.3) and (3.4). Combining these relations with (3.14), we get
that σ(xn, Txn−1) = σ(xn+1, Txn) = σ(U, V ) for all n ∈ N and

ζ(α(xn−1, xn)σ(xn, xn+1), r(xn−1, xn)) ≥ 0, for all n ∈ N.

Here,

r(xn−1, xn) = max

{

σ(xn−1, xn)σ(xn, xn+1)

σ(xn−1, xn)
, σ(xn−1, xn)

}

= max {σ(xn, xn+1), σ(xn−1, xn)} .

Suppose that for some n ∈ N

max {σ(xn, xn+1), σ(xn−1, xn)} = σ(xn, xn+1).

Since σ(xn, xn+1) > 0, using the property (2) of the simulation function, we obtain

ζ(α(xn−1, xn)σ(xn, xn+1), σ(xn, xn+1)) < 0,

which is a contradiction. It follows that r(xn−1, xn) = σ(xn−1, xn) for all n ∈ N,
implying that

(3.15) ζ(α(xn−1, xn)σ(xn, xn+1), σ(xn−1, xn)) ≥ 0, for all n ∈ N.
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Using (ζ2), the inequality (3.15) yields that

σ(xn, xn+1) ≤ σ(xn−1, xn), for all n ∈ N.

Hence, {σ(xn, xn+1)} is a non-increasing sequence, bounded from below, converging
to some L ≥ 0. Suppose that L > 0. Taking the upper limit as n → ∞ in (3.15),
using (ζ3), we get

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), ψ(σ(xn−1, xn))) < 0,

which is a contradiction. Hence, we conclude that limn→∞ σ(xn, xn+1) = 0.
In order to prove that {xn} is a Cauchy sequence, suppose the contrary. Then, as

in the proof of Theorem 3.1, there exist ǫ > 0 and subsequences {xmk
} and {xmk

} of
{xn}, so that for nk > mk > k we have

σ(xmk
, xnk

) ≥ ǫ and σ(xmk
, xnk−1) < ǫ.

Also, in the same way, the following inequalities hold:

lim
k→∞

σ(xmk
, xnk

) = lim
k→∞

σ(xnk−1, xmk−1) = ǫ,(3.16)

lim
k→∞

σ(xmk−1, xnk
) = lim

k→∞

σ(xnk−1, xmk
) = ǫ.

Since T is triangular weakly-α-admissible, we derive that

α(xn, xm) ≥ 1, for all n,m ∈ N0 with n > m.

Thus, we have

(3.17) α(xmk
, xnk

) ≥ 1 and σ(xmk
, Txmk−1) = σ(xnk

, Txnk−1) = σ(U, V ),

for all k ∈ N. Since T is a generalized α-ζ-contraction, the obtained relations (3.17)
imply

0 ≤ ζ(α(xmk−1, xnk−1)σ(xmk
, xnk

), r(xmk−1, xnk−1)), for all k ∈ N.

Since

(3.18) r(xmk−1, xnk−1) = max

{

σ(xmk−1, xmk
)σ(xnk−1, xnk

)

σ(xmk−1, xnk−1)
, σ(xmk−1, xnk−1)

}

,

taking limits of both sides of (3.18), we conclude that limk→∞ r(xmk−1, xnk−1) = ǫ.
Letting k → ∞ and keeping (3.16) and (ζ3) in mind, we get

0 ≤ lim sup
n→∞

ζ(α(xmk−1, xnk−1)σ(xmk
, xnk

), r(xmk−1, xnk−1)) < 0,

which is a contradiction. Thus, we conclude that the sequence {xn} is Cauchy in U .
The final step of the proof is the same as for Theorem 3.1. �
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4. Corollaries and Examples

Using Example 2.1, it is possible to get a number of consequences of our main
results by choosing the simulation function ζ and α(x, y) in a proper way. We skip
making such a list of corollaries since they seem clear. We just state the following one
as a sample

Corollary 4.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X and α : X × X → R
+
0 , ψ ∈ Ψ. Suppose that T : U → V is a given α-proximal

admissible mapping such that

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ α(x, y)σ(u, v) ≤ ψ(σ(x, y))),

for all x, y, u, v ∈ U . Suppose also

(a) T is triangular weakly-α-admissible;

(b) U is closed with respect to the topology induced by τσ;

(c) T (U0) ⊂ V0;

(d) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and α(x0, x1) ≥ 1;

(e) T is continuous or (P) holds.

Then, T has a best proximity point.

In particular, if the given space (X, σ) is also endowed with a partial order �, by
taking

α(x, y) ≥ 1 ⇔ x � y,

one can get standard variations of the given results in a partially ordered space.
The following illustrative examples show how our results can be used for certain

mappings acting in metric-like spaces.

Example 4.1. Consider X = {a, b, c, d} equipped with σ : X ×X → R
+
0 defined by

σ(a, a) =
1

2
, σ(b, b) = 0, σ(c, c) = 2, σ(d, d) =

1

3
, σ(a, b) = 3,

σ(a, c) =
5

2
, σ(a, d) =

3

2
σ(b, c) = 2, σ(b, d) =

3

2
, σ(c, d) =

5

2
,

and σ(x, y) = σ(y, x) for x, y ∈ X. It is clear that (X, σ) is a complete metric-like
space. Take U = {b, c} and V = {c, d}. Consider the mapping T : U → V defined
by Tb = d, and Tc = c. Remark that σ(U, V ) = σ(b, d) = 3

2
. Also, U0 = {b} and

V0 = {d}. Note that T (U0) ⊆ V0. Take ψ(t) = 5
6
t, and ζ(t, s) = 3

4
s− t for all t, s ≥ 0.

Define α : X ×X → R
+
0 by

α(x, y) =







1, x, y ∈ U,

0, otherwise.

Let x, y, u, v ∈ U be such that

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) =
3

2
.
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Then, necessarily, we have x = y = u = v = b. So, α(u, v) ≥ 1, that is, T is α-proximal
admissible.

We need to prove that T is an α-ψ-ζ contraction. By the previous conclusion, the
only case to be checked is when x = y = u = v = b. Then we have

ζ(α(b, b)σ(b, b), ψ(σ(b, b))) = ζ(1 · 0, ψ(0)) = 0.

Thus, all the conditions of Theorem 3.1 are satisfied. So T has a best proximity point
(which is z = b). On the other hand, e.g., Corollary 2.2 (with k = 2) of [4] is not
applicable for the standard metric.

Example 4.2. Consider the set X = {a, b, c, d} equipped with the following complete
metric-like σ:

σ(a, a) = σ(b, b) =
1

4
, σ(c, c) = σ(d, d) = 2,

σ(a, b) = σ(c, d) =
1

2
, σ(a, c) = σ(b, d) = 1, σ(a, d) = σ(b, c) =

3

2
,

and σ(x, y) = σ(y, x) for all x, y ∈ X. Let U = {a, b} and V = {c, d}; then σ(U, V ) =
1, U0 = U and V0 = V . Consider, further, the mappings T : U → V given by Ta = c,
Tb = c, α : X ×X → [0,+∞) given by

α(x, y) =







1, if x, y ∈ U,

0, otherwise,

and ζ ∈ Z given by ζ(t, s) = s − 2+t
1+t

t. Let us check that the mapping T is a
generalized α-ζ-contraction. Let x, y, u, v ∈ U be such that x 6= y, α(x, y) ≥ 1,
σ(u, Tx) = σ(v, Ty) = 1. Then it must be u = v = a and either x = a, y = b or x = b,
y = a. In both cases, it is α(u, v) ≥ 1. In order to check condition (3.14), it is enough
to consider the case x = a, y = b, u = v = a (the other is treated symmetrically).
Then,

ζ(α(x, y)σ(u, v), r(x, y)) = ζ

(

1 ·
1

4
,max

{

1

2
,

1
4

· 1
2

1
2

})

= ζ

(

1

4
,
1

2

)

=
1

2
−

2 + 1
4

1 + 1
4

·
1

4
=

1

20
> 0,

and the condition is satisfied. All other conditions of Theorem 3.4 are fulfilled, hence,
we conclude that the mapping T has a best proximity point (which is z = a).

5. Application to Best Proximity Results on a Metric-like Space with
a Graph

Throughout this section, (X, σ) will denote a metric-like space and
G = (V (G), E(G)) will be a directed graph such that its set of vertices V (G) = X

and the set of edges E(G) contains all loops, i.e., ∆ := {(x;x) : x ∈ X} ⊆ E(G). We
need in the sequel the following hypothesis:
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(PG) if a sequence {un} in X converges to u ∈ A such that (un, un+1) ∈ E(G), then
there is a subsequence {un(k)} of {un} with (un(k), u) ∈ E(G) for all k.

Definition 5.1. Let U and V be two non-empty subsets of X and α : X ×X → R
+
0 .

We say that T : U → V is a G-proximal mapping if

(5.1)
(x, y) ∈ E(G), α(x, y) ≥ 1,
σ(u, Tx) = σ(v, Ty) = σ(U, V )

}

⇒ (u, v) ∈ E(G),

for all x, y, u, v ∈ U .

Definition 5.2 ([8,10]). Let U and V be two non-empty subsets of X, let T : U → V

be a mapping and α : X × X → R
+
0 be a function. We say that T is triangular

weakly-G-admissible if

α(x, y) ∈ E(G) and α(y, z) ∈ E(G) ⇒ α(x, z) ∈ E(G).

Corollary 5.1. Let U and V be two non-empty subsets of X and ψ ∈ Ψ. Suppose

that T : U → V is a mapping such that

σ(Tx, Ty) ≤ ψ(σ(x, y)),

for all x, y ∈ U such that (x, y) ∈ E(G). Suppose also:

(a) T is triangular weakly-G-admissible;

(b) T (U0) ⊂ V0;

(c) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and (x0, x1) ∈ E(G);
(d) T is continuous or (RG) holds.

Then, T has a best proximity point.

Proof. It suffices to consider α : X ×X → R
+
0 such that

α(x, y) =

{

1, if (x, y) ∈ E(G),
0, if not.

All the hypotheses of Corollary 4.1 are satisfied. �

In this way, we can derive all results and consequences of the paper [15], extending
them to partially ordered metric-like spaces. Similarly, we can extend the frame of
several other existing results from, e.g., [3, 10,12,16].

Acknowledgements. The authors are thankful to the referee for his/her careful
reading of the article.
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