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ABSTRACT 
The main object of this paper is to steady the Bio-mathematical analysis for the stagnation point flow over a non-linear stretching sheet with the 
velocity slip and Casson fluid model. Analysis for the both titanium and titanium alloy within the pure blood as taken as the base fluid. The 
governing non-linear partial differential equations are transformed into ordinary which are solved numerically by utilizing the fourth order Runge-
Kutta method with shooting technique. Graphical results have been presented for dimensionless stream function, velocity profile, shear stress, 
temperature profile for various physical parameters of interest. It was found that the velocity profile of the nanofluids decreases and increases with 
the increasing the first-order and second-order slips respectively. Comparisons with previously published work are performed and the results are 
found to be excellent agreement.   
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1. INTRODUCTION 
A study of boundary layer behavior over a stretching sheet problems 
has attracted the attention of its extensive industrial applications, such 
as aerodynamic extrusion of plastic sheets, extrusion of a polymer sheet 
from a dye, condensation process of metallic plates in cooling baths and 
some engineering applications, such as paper production, metal 
spinning, manufacture of foods, aerodynamic extrusion of plastic and 
rubber sheets etc. The viscous flow over a nonlinearly stretching sheet 
was developed by Vajravelu (2001). Elbashbeshy (1998) demonstrated 
heat transfer over a stretching surface with variable surface heat flux. 
Thirupathi et al. (2017) numerically investigated the heat source/sink 
effects on dissipative magnetic nanofluid flow from a non-linear 
inclined stretching/shrinking sheet. Bhatti et al. (2018) examined the 
irrotational flow of an MHD viscous fluid over a permeable shrinking 
sheet. Seth et al. (2018) proposed the 2D viscoelastic fluid past over a 
stretching surface. Many researchers (Idrees et al. 2018; Hamad and 
Ferdown, 2012; Mahapatra and Gupta, 2002; Ali, 1994; Bala Anki 
Reddy and Vijaya Sekhar, 2013; Cortell, 2007; Srinivas et al., 2014; 
Rana and Bhargava, 2017; Pop et al., 2004; Sharma and Singh, 2009; 
Thumma et al. 2017) investigated the different flow problems over a 
stretching sheet. In the past, there has been a number of studies to 
examine the heat transfer in blood vessels. Charm et al. (1968) 
experimentally investigated heat transfer in small tubes of diameter 0.6, 
in a water bath. Victor and shah (1975) computed the heat transfer for 
uniform heat flux and uniform wall temperature cases for fully 
developed flow and in the entrance region. Li and Huang (1976) 
explored the effect of steady spatially varying magnetic field on blood 
flow and heat transfer through a stenosed artery. In their research, blood 
is considered as a non-Newtonian fluid and the model concerns the 
effect of varying viscosity and electrical conductivity on blood flow. 

The steady of non-Newtonian fluids has a verity of applications in 
engineering and industry especially in extraction of crude oil form 
petroleum procedures as well as biological fluids such as lubricating 
greases, multi-grade oils, printer inks, paints, gypsum pastes, ceramics, 
liquid detergents, blood, fruit juices etc. Casson fluid models are a 
preferred rheological model for many fluids including blood and 
chocolate, the behavior of these models exhibits a yield stress. Some 
researchers examined the flow and heat transfer analysis of Casson 
fluid can be found in Refs. (Li and Huang, 2010; Gireesha et al., 2015; 
Dash et al., 1996; Nadeem et al., 2012; Bala Anki Reddy, 2016; 
Nadeem et al., 2013; Thumma et al. 2018). 3D Casson fluid flow past a 
porous linearly stretching sheet with convective boundary condition 
was analyzed by Mahanta and Shaw (2015). Mustafa et al. (2011) 
proposed the temperamental limit layer stream of a Casson liquid due to 
an indiscreetly began moving level plate. MHD stream of a Casson 
liquid over an exponentially contracting sheet was researched by 
Nadeem et al. (2012). 

Nano particle examination is in the blink of an eye a region of 
effective experimental enthusiasm because of a gigantic scope of 
potential applications in electronic, biomedical and optical fields. 
Nanofluid is define as the combination of the base fluid with 
nanoparticles that have unique physical and chemical properties. It is 
used to enhance the rate of heat transfer of microchips in computers, 
microelectronics, transportation, biomedicine, food processing, fuel 
cells, solid state lightening and manufacturing. The nanoparticles are 
mostly found in the metals such as nitrides, non-metals or carbides 
(carbon nanotubes, Graphite). The word nanofluid was firstly 
introduced by choi (1995). Mustafa et al. (2011) examined the 
stagnation-point flow of a nanofluid towards a stretching sheet. The 
Cheng–Minkowycz problem for natural convective boundary-layer 
flow over a porous medium saturated by a nanofluid was discussed by 
Nield and Kuznetsov (2009). Hayat (2016) studied the Homogeneous-
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heterogeneous reactions in the stagnation point flow of carbon 
nanotubes with Newtonian heating. 

The motivation behind the present examination is to inspect the 
significance of nanofluid over a non-linear stretching sheet with the 
velocity slip (the first-order and second-order velocity slips) using the 
Ti and Ti-alloy nanoparticles on blood (as the base fluid).  

2. MATHEMATICAL FORMULATION 
Consider two-dimensional stagnation point flow of nanofluid by an 

impermeable nonlinear stretching or shrinking sheet. The sheet is 
stretched with non-linear velocity ( )  m

wu x cx , where c is a constant 
for which 0c  corresponds to the stretching sheet and 0c  for 
shrinking sheet and m is a power index and wall mass suction velocity 
is ( ) wv v x  with 0wv  for suction and 0wv for injection 
respectively. The pressure gradient and external forces are neglected. 
By keeping the origin is fixed and the x-axis is taken along the 
stretching sheet in the direction of the motion and the y-axis is 
perpendicular to the sheet in the outward direction towards the fluid of 
ambient temperature T∞ as y→∞.  A non-uniform transverse magnetic 
field of strength (m 1) / 2

0(x) B B x  is applied in the transverse direction, 
where B0 is the constant related to magnetic field and ( 1) m  is a 
power law exponent. The thermophysical properties of the nanofluids 
are given in Table 1. The rheological equation for incompressible flow 
of a Casson fluid is given by 
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Here   ij ije e  and ije  are the  , th
i j  component of the deformation 

rate, B is the plastic dynamic viscosity of the non-Newtonian  fluid, 

yp  is the yield stress of the fluid,   is the product of the component of 
deformation rate with itself and  c  is a critical value of this product 
based on the non-Newtonian model. 

2.1 Flow analysis 
The governing equations of the flow are given by 
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With the boundary conditions 
 U , , 0, ,      m m

slip w eu cx v v at y u u x c x at y          (3) 
Where (x, y)  denotes the Cartesian coordinates along the sheet. u and v 
are the velocity components of the nanofluid along the x and y axes 
respectively, nfv  is the kinematic viscosity of nanofluid, nf  is the 
effective density of the nanofluid,   is the Casson fluid parameter 

 2 /   B yp ,   p nf
c is the heat capacitance of the nanofluid, 

eu is the free stream velocity,   is the effective electrical conductivity. 
These nanofluid quantities are defined as 
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where   is the solid volume fraction, nf  is the effective dynamic 
viscosity, nf is the effective density, nfk  is the thermal conductivity of 
nanofluid,  f  is the dynamic viscosity,  f  and s  are the densities, 

fk  and sk   are the thermal conductivities. It should be noted that  
f

 

and  
s
denotes the basic fluid and nanoparticles respectively. 

Uslip  is consider in the form (Wu [39]) 

 
3 2 2

4 2 2
2 2

2 3 3 1 1 2 1
3 2 4

m
slip m m

m n n

l l u u
U l l

K y K y

  


      
           

 

2
* *

2Uslip

u u
A C

y y

 
 

 
                    (5) 

Where m is the molecular mean free path, m is the momentum 
accommodation coefficient with 0 1m  , nK is the Knudsen number 

and 1min ,1
n

l
K

 
  

 
. Based on the definition of ,l it is noticed that for 

any given value of ,nK we have 0 1l  . The mean free path of 
molecular is always positive it results that *C is a negative number. 
To convert the nonlinear partial differential equations into ordinary 
nonlinear differential equations, we introduce the self-similarity 
variables in the following form are given by  
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Where   is the similarity variable, ( )f is the dimension less stream 
function, ( )   is the dimensionless temperature.   is the stream 
function which is defined by /  u y  and /  v x . The above 
expression also satisfies the continuity Eq. (1). By using Eqs. (4) -(6), 
the Eq. (2) reduced to: 
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and the transformed boundary conditions are: 
(0) , (0) 1 (0) (0), ( )f S f f f f A           as               (8) 

Where 0   and 0   are the first order and second order velocity 
slips, respectively, 2

0M /  fB c  is the magnetic parameter, 
2/ Re xRi Gr  is the Richardson number,   3 2/  f w fGr g T T x is 

the local Grashof number, Re /x w fxu is the local Reynolds number 
based on the stretching/shrinking velocity wu , /A c c  is the ratio of 
free stream velocity c to stretching/shrinking velocity c, 

( 1) / 2 2 / ( 1)   m

w fS v x c m v  ( 0S corresponds to the suction 

and 0S corresponds to blowing parameter).  

2.2 Heat transfer analysis 
The boundary layer energy equation is given by 
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Thermal radiation is simulated using the Rosseland diffusion 
approximation and in accordance with this, the radiative heat flux rq  
is given by 

44 *
3 *
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
T

qr k y
 
                                  (10) 

Where *k  is the Rosseland mean absorption coefficient and * is the 
Stefan–Boltzmann constant. If the temperature differences within the 
mass of blood flow are sufficiently small, then Eq. (10) can be 
linearized by expanding 4T  into the Taylor’s series about T , and 
neglecting higher-order terms, we get 

4 3 44 3  T T T T                                                                  (11)
 Therefore Eq. (9) becomes 
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With the corresponding boundary conditions 
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wT T x c x at y  and  T T at y                     (13) 
Where WT  is the wall temperature.by using self-similarity 
transformations of Eqs. (4) and (6) the Eq. (12) reduced to: 
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and the transformed boundary conditions are: 
(0) 1, ( ) 0    as                                                               (15) 
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the radiation conduction parameter,   2 /  w w p f
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Eckert number,  0 /  w p f
Q xQ u c  is the heat source parameter. In 

this study, the quantities of practical interest are skin friction coefficient 
fC and local Nusselt number Nu, which are defined as 
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Dimensionless skin fraction coefficient and local Nusselt number are 
expressed as follows: 
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3. NUMERICAL PROCEDURE 
Equations (8) and (15) along with boundary conditions (9) and (16) 

form a two-point boundary value problem. These equations are solved 
using the fourth order Runge-Kutta method along with shooting 
technique, by converting them to an initial value problem. For this we 
transform the non-linear ordinary differential equations (8) and (15) to a 
system of first order differential equations as follows: 
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The boundary conditions (9) and (16) becomes 
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In order to integrate (20) -(21) as initial value problem, we require 
values of p(0) i.e., f ˊˊ(0), q(0) i.e., θˊ(0). But no such values are given 
at the boundary. So the suitable guess values for fˊˊ(0) and θˊ(0) are 
chosen and then integration is carried out. The most important factor of 
this package is to choose an appropriate finite value of  . In order to 
determine  for the boundary value problem, start with some initial 
guess values for some particular set of physical parameters to obtain 
fˊˊ(0) and θˊ(0). The solving procedure is repeated with another value 
of until two successive values of f ˊˊ(0) and θˊ(0) differ only by the 
specified significant digit. The last value of  is finally chosen to be 
the most appropriate value of the for that particular set of 
parameters. The value of  may change for another set of physical 
parameters. Once the finite value of  is determined, then the 
integration is carried out. Compare the calculated values for f ˊ and θ at 
η=30 (say) with the boundary conditions fˊˊ(30=0) and θˊ(30)=0 and 
adjust the estimated values, f ˊˊ(0) and θˊ(0) to give better 
approximation to the solution. We take the series values for f ˊˊ(0) and 
θˊ(0). The above procedure is repeated until to get the results up to 
desired degree of accuracy 10-6. 

4. RESULTS AND DISCUSSIONS 
The present section, we examine the stagnation point flow over a 

non-linear stretching sheet with the velocity slip and Casson fluid 
model. Numerical solution for dimensionless stream function, velocity 
profile, shear stress, temperature, local skin friction coefficient and 
local Nusselt number profile is obtained. Based on this numerical 
solution, we deliberate the possessions of numerous physical 
parameters such as magnetic parameter (M), Richardson number (Ri), 
ratio parameter (A), mass suction/blowing parameter (S), the first order 
velocity slip (  ), second order velocity slip ( ), volume fraction 
parameter ( ),  Casson fluid parameter ( ) , radiation conduction 
parameter (Nr), Eckert number(Ec) and the heat source parameter (Q) 
on the dimensionless stream function ( ( ))f , velocity profile ( ( ))f , 
shear stress ( ( )),f  temperature ( ( )),  local skin friction coefficient 
and local Nusselt number profiles. For numerical results, we considered 
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These values are conserved as common unless specifically pointed out 
in the appropriate graphs. 

Figs. 1-4 depict the dimensionless stream function, velocity profile, 
shear stress, temperature profiles for various values of ratio parameter 
(A). ( )f  increase with the increase of ratio parameter. Whereas the 
reverse trend is observed in ( ).  Here we noticed that velocity profile 
and boundary layer thickness increase with an increase in ratio 
parameter (A > 1) and for A < 1 the boundary layer thickness has in 
opposite effects. It is also noticed that is fluid and sheet move with the 
same velocity at A = 1. At A = 0.8 and 0.9 the nanofluid flow is 
decreasingly negative for shear stress with greater ratio. The effect of 
magnetic parameter on the dimensionless stream function, velocity 
profile, shear stress, temperature profiles of the nanoparticles (Ti, Ti 
alloy) are illustrated in Figs. 5-8. It is observed that increase of 

( ), ( ) f f and ( )  decrease uniformly over the entire domain for 
both nanofluids. Whereas the reverse trend is observed in ( ).f  Due to 
behind that Lorentz magnetohydrodynamic drag force which acts 
perpendicular to the magnetic field. For the large values of magnetic 
parameter, the graph of ( )f and ( )f reaches very rapidly to the 
 and 0 , respectively. 

Figs. 9-12 illustrate the dimensionless stream function, velocity 
profile, shear stress, temperature profiles for various values of first 
order velocity slip (  ). From these figures, we noticed that 

 f ( ), f ( ) and ( )  increase with increase the first order velocity slip 
and opposite phenomena is observed in ( ).f  The combined effects of 
Casson fluid parameter on the dimensionless stream function, velocity 
profile, shear stress, temperature profiles are displayed in Figs. 13-
16. ( ), ( ), ( )f f    decrease and ( )f  increase with increasing the 
Casson fluid parameter. Physically it makes sense because plasticity of 
fluid is higher as Casson fluid parameter goes higher and fluid 
experiences a resistance and also blood is non-Newtonian fluid. 

The influence of Richardson number on the dimensionless stream 
function, velocity profile, shear stress, temperature profiles for both 
nano fluids cases are shown in Figs. 17-20. At the Richardson number 
Ri > 0, Ri < 0 and Ri = 0 represents the heating, cooling and absence of 
free convection currents respectively. f ( ) and f ( ) decreases with 
increase the Richardson number and opposite phenomena is observed 
for ( ).f  and ( ).  Here we observed that Ti-alloy-pure blood 
nanofluid is highly influenced when compared with Ti-pure blood. 

Figs. 21-24 depict the dimensionless stream function, velocity 
profile, shear stress, temperature profiles for various values of 
suction/blowing parameter for both nano fluids cases. From these 
figures, it is seen that ( )f increase with increase the suction/blowing 
parameter. An increasing in the suction/blowing parameter the velocity 
increases with in the interval 0 0.4  after that a slight decrease in 
velocity have been observed. Whereas the reverse trend is observed in 
shear stress. An increase of suction/blowing parameter leads to declines 
the temperature profile. For the large values of suction/blowing 
parameter, the graph of f ( ) and ( )f reaches very rapidly to the 

0.  The effect of second order velocity slip on the dimensionless 
velocity profile and shear stress parameter of the nanoparticles (Ti, Ti 
alloy) are illustrated in Figs. 25-26. It is concluded that the velocity and 
thermal boundary layer thickness are higher for large values of second 
order velocity slip parameter for both nanoparticles. f ( ) decrease 
for higher values of second order slip parameter. 

Fig. 27. Shows the variation of heat source parameter on temperature 
profile. An increase of heat source parameter leads to enhance the 
temperature profile due to the energized the nanofluids. The effect of 
radiation parameter on temperature is displayed in Fig. 28. It is noticed 
that the enhance temperature with higher values of radiation parameter.  

Fig. 29 Illustrate the influence of Eckert number on temperature profile. 
As Eckert number increases enhances the wall temperature due to heat 
addition by frictional heating. Due to internal friction heating between 
molecules of the fluid, mechanical energy is converted to thermal 
energy which heats the fluid in sheet. The temperature is lower when Ec 
= 0 because the term of viscous dissipation can be ignored in the 
expression of energy.  

In order to investigate the impact of emerging parameters namely 
magnetic parameter, Casson fluid parameter, suction parameter (S > 0), 
first order velocity slip parameter, ratio parameter, radiation conduction 
parameter, heat source parameter on the local skin friction coefficient 
and local Nusselt number, graphical results are constructed in figs 30-
32. Fig. 30 shows the behavior of Casson fluid, first order velocity slip, 
suction, and ratio parameter on local skin friction coefficient. Higher 
values of suction parameter result in the enhancement of local skin 
friction coefficient while it decreases for large values of ratio 
parameter. Whereas the reverse trend is observed in Casson fluid and 
first order velocity slip parameters. The effect of magnetic, Casson and 
ratio parameters on the local skin friction coefficient has been plotted in 
Fig. 31. When the nanoparticle volume fraction is in the range of 
0 0.2.   It is found that an increase in the Casson fluid parameter 
and ratio parameter leads to increasing effect of absolute local skin 
friction coefficient. Whereas the reverse trend is observed in magnetic 
parameter. 

Fig. 32 depicts the variation of local Nusselt number for various 
values of radiation conduction parameter and the heat source parameter. 
The local Nusselt number decrease with increase of radiation 
conduction parameter and the heat source parameter. The rate of heat 
transfer is higher in Ti-alloy-pure blood nanofluid when compared with 
the Ti-pure blood nanofluid. 

 
 
 

 
 

Fig. 1 Effect of A on dimensionless stream function  

Fig. 2 Effect of A on velocity profile  



Frontiers in Heat and Mass Transfer (FHMT), 10, 13 (2018)

DOI: 10.5098/hmt.10.13

Global Digital Central

ISSN: 2151-8629

  5 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 

Fig. 3 Effect of A on shear stress 

Fig. 4 Effect of A on temperature profile 

Fig. 5 Effect of M on dimensionless stream function  

Fig. 6 Effect of M on velocity profile  

Fig. 7 Effect of M on shear stress 

Fig. 8 Effect of M on temperature profile 
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Fig. 9 Effect of   on dimensionless stream function  

Fig. 10 Effect of   on velocity profile  

Fig. 11 Effect of   on shear stress 

Fig. 12 Effect of   on temperature profile 

Fig. 13 Effect of   on dimensionless stream function  

Fig. 14 Effect of   on velocity profile  
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Fig. 15 Effect of   on shear stress 

Fig. 16 Effect of   on temperature profile 

Fig. 17 Effect of Ri on dimensionless stream function  

Fig. 18 Effect of Ri on velocity profile  

Fig. 19 Effect of Ri on shear stress 

Fig. 20 Effect of Ri on temperature profile 
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Fig. 21 Effect of S on dimensionless stream function  

Fig. 22 Effect of S on velocity profile  

Fig. 23 Effect of S on shear stress 

Fig. 24 Effect of S on temperature profile 

Fig. 25 Effect of   on velocity profile  

Fig. 26 Effect of   on shear stress 
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Fig. 31 The variation of skin friction coefficient against 
magnetic, Casson fluid, volume fraction and ratio parameters. 

Fig. 27 Effect of Q on temperature profile 

Fig. 28 Effect of Nr on temperature profile 

Fig. 29 Effect of Ec on temperature profile 

Fig. 30 The variation of skin friction coefficient against first order 
velocity slip, Casson fluid, suction, ratio parameters.  

Fig. 32 The variation of Nusselt number against heat source, 
volume fraction and radiation conduction 
parameter 
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For the accuracy and validity, we compared the present numerical 

values corresponding to the ( )f   with that of Hamad and ferdows 
(2012), Mahapatra and gupta (2002) (Table 2). Moreover, Table 3 
presents the numerical values corresponding to m compared with the 
previously published numerical results of Cortell (2007).  
 
Table 1 numerical values of thermo physical properties of base fluid 
and nanoparticles. 
 

Physical 

properties 

Base fluids Nanoparticles 

 Pure Blood Ti Ti-alloy 

 3/ kg m  1063 4510 4420 

 /pC J kg K  3594 540 526.3 

 /k W m K  0.492 20.9 6.7 

 510 1 / K   0.18 0.90 0.89 

 
Table 2 Comparison of (0)f  with Mahapatra and gupta (2002) and 
Hamad and ferdows (2012) for various values of A when 

5.0, , 0, / 2.pr Nr M Ri Q and                 
 

A Mahapatra 

and gupta 

(2002) 

Present 

Results 

 

m Hamad and 

ferdows 

(2012) 

(0)f   

Present 

Results 

0.1 0.9694 0.969386 0.5 0.889544 0.889544 

0.2 0.9181 0.918107 1.0 1.000000 1.000000 

0.5 0.6673 0.667264 3.0 1.148593 1.148593 

 
Table 3 Comparison of   with Cortell (2007) for various values of 
m when 5.0, , 0pr Nr M S Ri Q               and 

/ 2.   
m  (0)   

Pr = 1, Ec = 0 

(0)   

Pr = 1, Ec = 0.1 

Cortell 

(2007) 

Present 

Results 

Cortell 

(2007) 

Present 

Results 

0.75 1.252672 1.252701 1.219985 1.219940 

1.5 1.439393 1.439375 1.405078 1.405184 

7.00 1.699298 1.699318 1.662506 1.662599 

5. CONCLUSION 
Recently, many investigators are attracted to study of the effects of 

heat and chemical reactions on the blood from the theoretical and 
experimental point of view because the quantitative prediction of blood 
flow rate and heat generation are of importance for the non-invasive 
measurement of blood glucose and for diagnosing blood circulation 
illness. The motivation behind the present examination is to inspect the 
significance of nanofluid over a stretching sheet with the first-order and 
second-order velocity slips using the Ti and Ti-alloy nanoparticles on 
blood (as the base fluid). 

 The velocity profiles are increased with increasing values of 
ratio parameter, first order velocity slip parameter, second 
order velocity slip parameter and suction/blowing parameter 
for both Ti-pure blood and Ti-alloy-pure blood cases. 

 The velocity profiles are decrease with increasing the values 
of Richardson number, Casson fluid parameter and magnetic 
parameter for both cases. 

 An increasing in the suction/blowing parameter the velocity 
increases at certain interval after that a slight decrease in 
velocity. 

 The rate of heat transfer is higher in Ti-alloy-pure blood 
nanofluid when compared with the Ti-pure blood nanofluid 
due to the additives of alumina and vanadium in Ti-alloy. 

 An increase in the Casson fluid parameter and ratio parameter 
leads to increasing the effect of local skin friction coefficient. 

 Higher values of suction parameter result in the enhancement 
of local skin friction coefficient while it decreases for large 
values of ratio parameter. 

 The local Nusselt number decrease with increase of radiation 
conduction parameter and the heat source parameter.  
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