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Abstract

Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo syndrome type A, is a severe, progressive disease that affects the
central nervous system (CNS). MPS IIIA is inherited in an autosomal recessive manner and is caused by a deficiency in the
lysosomal enzyme sulfamidase, which is required for the degradation of heparan sulfate. The sulfamidase is produced by the N-
sulphoglucosamine sulphohydrolase (SGSH) gene. InMPS IIIA patients, the excess of lysosomal storage of heparan sulfate often
leads to mental retardation, hyperactive behavior, and connective tissue impairments, which occur due to various
known missense mutations in the SGSH, leading to protein dysfunction. In this study, we focused on three mutations (R74C,
S66W, and R245H) based on in silico pathogenic, conservation, and stability prediction tool studies. The three mutations were
further subjected to molecular dynamic simulation (MDS) analysis using GROMACS simulation software to observe the
structural changes they induced, and all the mutants exhibited maximum deviation patterns compared with the native protein.
Conformational changes were observed in the mutants based on various geometrical parameters, such as conformational stability,
fluctuation, and compactness, followed by hydrogen bonding, physicochemical properties, principal component analysis (PCA),
and salt bridge analyses, which further validated the underlying cause of the protein instability. Additionally, secondary structure
and surrounding amino acid analyses further confirmed the above results indicating the loss of protein function in the mutants
compared with the native protein. The present results reveal the effects of three mutations on the enzymatic activity of
sulfamidase, providing a molecular explanation for the cause of the disease. Thus, this study allows for a better understanding
of the effect of SGSHmutations through the use of various computational approaches in terms of both structure and functions and
provides a platform for the development of therapeutic drugs and potential disease treatments.
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Introduction

Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo
syndrome type A, is a neurodegenerative lysosomal storage dis-
order caused by a deficiency in the enzyme N-sulfoglucosamine
sulfohydrolase (SGSH, EC:3.10.1.1), which is involved in the

degradation of heparan sulfate. There are four different subtypes
of MPS type III (type A – OMIM #252900, type B – OMIM
#252920, type C – OMIM #252930, and type D – OMIM
#252940) based on the enzyme deficiencies of SGSH,
NAGLU, HGSNAT, and GNS, respectively. Each of the MPS
III types is inherited in an autosomal recessive pattern with var-
iations in the severity of phenotypes (Neufeld and Muenzer
1995). The genes encoding these four different enzymes have
been characterized, and several mutations associated with these
genes have been reported. The signs and symptoms of all four
types are similar. Degeneration of the central nervous system,
which results in mental retardation and hyperactivity, is the pri-
mary characteristic of MPS III, which commences in childhood
(Fedele 2015). Other symptoms that are associated with theMPS
III include delayed speech, behavioral problems, progressive de-
mentia, macrocephaly, inguinal hernia, seizures, movement dis-
orders, hearing loss, and sleep disturbances (Buhrman et al.
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2014). The initial symptoms of the disease generally appear in
the first to the sixth year of life, and death usually occurs in the
early twenties (Valstar et al. 2010). The incidences of these sub-
types are unevenly distributed. The estimated combined frequen-
cy of all four types varies between 0.28 and 4.1 per 100,000 live
births. The incidence of MPS IIIA ranges from 0.68 per 100,000
to 1.21 per 100,000 in European countries (Baehner et al. 2005;
Héron et al. 2011). MPS IIIA and MPS IIIB are more common
thanMPS IIIC andMPS IIID (Valstar et al. 2008), whereasMPS
IIIA is more severe than MPS IIIB (Buhrman et al. 2013).

The gene encoding sulfamidase (SGSH), which was identi-
fied in 1995, is localized on chromosome 17q25.3. The 502
aminoacid sulfamidase protein contains five potential N-
glycosylation sites (Scott et al. 1995). It spans 11 kb and contains
eight exons (Karageorgos et al. 1996). Until now, 115mutations,
including missense/nonsense, deletions, insertions, and splicing,
have been recorded for the SGSH protein according to the
HGMD database (http://www.hgmd.cf.ac.uk/ac/all.php).

Proteins play a vital role in the regulation of various cellular
functions, depending on their proper conformation in the cel-
lular environment (Dill and MacCallum 2012). DNAvariants
known as single nucleotide polymorphisms (SNPs) have been
known to introduce changes in the function of a gene (Cargill
et al. 1999). A distinct class of such SNPs, known as
nonsynonymous single nucleotide polymorphisms (nsSNPs),
present in coding regions lead to amino acid changes that may
cause alterations in protein function and account for vulnera-
bility to disease. SNPs that do not affect the function of the
protein are known as tolerated SNPs. Therefore, it is essential
to distinguish the deleterious nsSNPs from the tolerant
nsSNPs to understand the molecular genetic basis of human
disease as well as to assess and understand the pathogenesis of
the disease (Wang et al. 2009). Alterations and misfolding in
protein structures due to nsSNPs lead to severe impairments
that cause various diseases in humans (Chandrasekaran and
Rajasekaran 2016; Thirumal Kumar et al. 2018a; Thirumal
Kumar et al. 2018b; Valastyan and Lindquist 2014).
Although most genetic variations in protein sequences are
predicted to have very little or no effect on the function of
the protein, some nsSNPs are known to be associated with
the disease. These disease-related nsSNPs have adverse ef-
fects on the catalytic activity, stability, and interactions of the
protein with other molecules. Thus, the identification of
disease-associated nsSNPs is essential, and it will facilitate
the elucidation of molecular mechanisms underlying a given
disease (Sneha et al. 2017a; Zaki et al. 2017a). In subsequent
years, the field of computational biology has emerged with
advancements in automated methods to analyze the biological
impact of nsSNPs based on the available information from
modeled protein structures or structures derived from phylo-
genetic studies and comparative genomics (Chasman and
Adams 2001; Sunyaev et al. 1999; Ng and Henikoff 2001).
The experimental approach would be highly time-consuming

to analyze the likely impact on protein function due to non-
synonymous SNPs as well as to understand the association
between these nsSNPs and the disease (Zhernakova et al.
2009). Information about the protein sequence and structure
as well as the biochemical severity of the amino acid substi-
tution, which are bioinformatics-based approaches, facilitates
understanding of the phenotypic prediction. In recent years,
various computational approaches have been developed that
predict the effect of nsSNPs using various machine learning
algorithms, such as the Hidden Markov model (Shihab et al.
2013), naïve Bayes classifier (Adzhubei et al. 2010), support
vector machines (Acharya and Nagarajaram 2012; Capriotti
et al. 2008), and neural network (Bromberg and Rost 2007),
etc. In the present study, we performed an in silico analysis
using various computational algorithms to explore the possi-
ble relationships between genetic mutations and phenotypic
variations similar to our previous reports (Agrahari et al.
2018a; Agrahari et al. 2018b; Mosaeilhy et al. 2017a;
Mosaeilhy et al. 2017b; Zaki et al. 2017b). To increase in
prediction accuracy of disease causing variants, we used Meta-
SNP server (Capriotti et al. 2013) that integrates four existing
methods: PANTHER, SIFT, PhD-SNP, and SNAP to predict a
mutation either disease (affecting the protein function) or neutral
(having no impact). Further, a combination of these in silico
tools and molecular dynamics studies in mutational analysis
has been conf i rmed to be a dominant approach
in understanding macromolecule behaviors and their microscop-
ic interactions, allowing insights into the impact of mutations
(Agrahari et al. 2019; Ali et al. 2017a; Ali et al. 2017b;
Nagarajan et al. 2015; Sneha et al. 2018a; Sneha and George
Priya Doss 2016; Sneha et al. 2018b; Thirumal Kumar et al.
2019). Molecular dynamics (MD) aid in understanding the sig-
nificant changes in the macromolecular structures of proteins
due to mutations at an atomic level. Various studies have been
performed that show the influence of MDS in analyzing the
effects of nsSNPs on protein structure (George Priya Doss and
NagaSundaram 2012; Nagasundaram and George Priya Doss
2013; Thirumal Kumar et al. 2018a; Thirumal Kumar et al.
2018b; Xu et al. 2018; George Priya Doss and Zayed 2017;
Mosaeilhy et al. 2017a, b; Sneha et al. 2017b; John et al. 2013).

Based on experimental studies (Esposito et al. 2000; Héron
et al. 2011; Knottnerus et al. 2017; Muschol et al. 2004;
Perkins et al. 1999; Sidhu et al. 2014; Trofimova et al. 2014;
Weber et al. 1997), the missense mutations R74C, S66W, and
R245H were subjected to prediction tools. The goal of this
study was to understand the impact of these deleterious
nsSNPs at the structural level. The models of the mutant pro-
teins were generated based on the crystal structure of the
SGSH protein. The native and mutant proteins were then sub-
jected to MD simulation analysis using GROMACS to ob-
serve the structural changes. Therefore, the present study dem-
onstrates the potential of using computational methods in re-
solving the effect of deleterious nsSNPs on protein structure.
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Materials and methods

Datasets

The protein sequence of the SGSH protein in FASTA format
was extracted from the UniProt database (UniProt ID:
P51688) (http://www.uniprot.org/) (UniProt: A hub for
protein information 2014). The PDB structure was retrieved
from the Protein Data Bank (Berman et al. 2000) for structural
analysis (PDB ID: 4MHX), and the literature study of the
mutations associated with Sanfilippo syndrome was conduct-
ed using the OMIM (Online Mendelian Inheritance in Man)
(Amberger et al. 2009) and NCBI PubMed databases.

Prediction methods

In recent years, various in silico prediction methods have been
developed to assess the effects of amino acid mutations on
proteins and their function. Some prediction methods are
based on the physicochemical properties of amino acids and
the nature of their side chains, and some incorporate available
annotations, e.g., Gene Ontology. There are classification
methods, which are usually based on machine learning tech-
niques such as neural networks, support vector machines,
Bayesian methods, and mathematical operations. The compu-
tationally derived information about the structure and function
of the protein and the properties of both the native and
substituted amino acid residues are combined and finally char-
acterize the mutation as disease-linked or neutral (Mueller
et al. 2015).

Pathogenic prediction of nsSNPs

The three mutants (R74C, S66W, and R245H) were subjected
to computational prediction using Meta-SNP server (http://
snps.biofold.org/meta-snp/index.html) (Capriotti et al. 2013).
Meta-SNP computes the results based on the random forest
binary classifier to discriminate between disease-related and
polymorphic non-synonymous SNPs. This prediction tool
comprises of other algorithm such as PANTHER (Mi et al.
2007), PhD-SNP (Capriotti et al. 2006), SIFT (Ng and
Henikoff 2003), SNAP (Johnson et al. 2008), and Meta-SNP
to predict the pathogenicity of the mutations. The scores range
between 0 and 1, the score > 0.5 for the mutation is predicted
to be disease.

PANTHER (Protein Analysis Through Evolutionary
Relationships)

PANTHER uses HMM-based statistical modeling methods
and multiple sequence alignments to perform evolutionary
analysis of coding nsSNPs. It estimates the likelihood of a
particular nsSNP, causing a functional impact on the protein.

The scores range between 0 and 1, the score > 0.5 for the
mutation is predicted to be disease.

PhD-SNP (Predictor of human Deleterious Single
Nucleotide Polymorphisms)

PhD-SNP is based a SVM-based classifier. This is devel-
oped to predict the pathogenicity based on a single SVM
trained and tested on protein sequence and profile informa-
tion. The scores range between 0 and 1, the score > 0.5 for the
mutation is predicted to be disease.

SIFT (Sorting Intolerant From Tolerant)

SIFT classifies whether a mutation affect the protein func-
tion based on sequence homology and the physical properties
of amino acids. This tool can be used to classify the naturally
occurring mutations and laboratory-induced missense muta-
tions. The values are in positive and the mutation score > 0.05
is predicted to be neutral.

SNAP (Screening for Non-Acceptable Polymorphisms)

SNAP is a method based on neural networks that applies an
advanced machine-learning approach to study the effects of
nsSNPs. The prediction about the loss or gain of a protein’s
function due to the amino acid substitution is depicted based
on the information about the sequence and structural compo-
nents, such as the secondary structure, solvent accessibility,
and residue conservation within sequence families. The scores
range between 0 and 1, the score > 0.5 for the mutation is
predicted to be Disease.

Stability prediction of nsSNPs

Prediction of protein stability changes resulting from single
amino acid variations helps in understanding the structure of
the protein. The stability analysis was performed using I-
Mutant 3.0 (Capriotti et al. 2008), MUpro (Cheng et al.
2006), and SDM (Topham et al. 1997) to analyze the impact
of deleterious variants on the SGSH protein.

I-Mutant 3.0

I-Mutant 3.0 (http://gpcr2.biocomp.unibo.it/cgi/predictors/
I-Mutant3.0/I-Mutant3.0.cgi) is a support vector machine
(SVM)-based tool that automatically predicts protein
stability changes upon single point mutations. This tool can
be used as a classifier to predict the sign of the protein stability
change following a mutation as well as a regression estimator
to predict the deltaDeltaG values. The output file depicts the
predicted free energy change (DDG), which is calculated from
the unfolding Gibbs free energy change of the mutated protein
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minus the unfolding free energy value of the native protein
(Kcal/mol). A value DDG > 0 shows increased stability, and
DDG< 0 shows decreased stability (Capriotti et al. 2008).

MUpro

The MUpro (http://mupro.proteomics.ics.uci.edu/) server
based on two machine learning programs (SVM and Neural
Networks) was used to predict protein stability changes for
single amino acid mutations. The output of the program is
the sign of the energy change (plus or minus). If the energy
change ΔΔG value is positive, the mutation increases
stability and is classified as neutral. If the ΔΔG value is
negative, the mutation is destabilizing and classified as
deleterious (Cheng et al. 2006).

SDM (Site Directed Mutator)

SDM (http://mordred.bioc.cam.ac.uk/~sdm/sdm.php) is a
statistical potential energy function that was developed by
Topham et al. (Topham et al. 1997) to predict the effect of
SNPs on the stability of proteins. It is a useful method for
guiding the design of site-directed mutagenesis experiments
or predicting the mutational impact on the protein structure.
SDM calculates a stability score analogous to the free energy
difference between the native and mutant proteins with the use
of environment-specific amino acid substitution frequencies
within homologous protein families. The method performs
comparably or better than other published methods in classi-
fying mutations as stabilizing or destabilizing (Worth et al.
2011).

Mutation structural analysis

Based on experimental studies and the results obtained
through computational analysis of nsSNPs using in silico
tools, the three mutations were subjected to structural analysis.
The mutations were induced based on the corresponding ami-
no acid positions in the crystallized structure of the protein
using the SWISS-PDB viewer (Guex and Peitsch 1997), and
energy minimization was performed using the same software
(Pettersen et al. 2004).

Evolutionary conservation analysis

The ConSurf server (http://consurf.tau.ac.il) (Glaser et al.
2003) was used to calculate the conservation pattern of the
SGSH protein to measure the degree of conservation at each
aligned position. It first identifies conserved positions using
multiple sequence alignment, then calculates the evolutionary
conservation rate using empirical Bayesian inference and pro-
vides the evolutionary conservation profiles of structure or the
sequence of the protein. The ConSurf score ranges from 1 to 9,

with 1 representing rapidly evolving sites, 5 depicting the
average, and 9 representing slowly evolving (evolutionary
conserved) sites. Along with the conservation profile, the ex-
posed and buried regions of the protein are also provided. This
tool also predicts the structural/functional impact of the amino
acid across the protein.

Physicochemical property analysis

NCBI-Amino Acid Explorer (https://www.ncbi.nlm.nih.gov/
Class/Structure/aa/aa_explorer.cgi) provides a detailed
explana t ion of proper t ies such as charge, s ize ,
hydrophobicity, hydrogen bonds, side-chain flexibility, etc.,
to evaluate the changes in the biophysical and chemical char-
acteristics of the native and mutant amino acids (Bulka 2006).

Salt bridge analysis

The energy-minimized structures of native and mutant pro-
teins (R74C, S66W, and R245H) obtained from the Swiss-
PDB viewer (Guex and Peitsch 1997) were used for the salt
bridge prediction using the ESBRI (Costantini et al. 2008)
web server. The server is based on a CGI script written in
Perl language that finds existing interactions between oppo-
sitely charged groups and recognizes at least one Asp or Glu
side-chain carboxyl oxygen atom and one side-chain nitrogen
atom of Arg, Lys or His within a distance of 4.0 Å.

Molecular dynamics

Molecular dynamics simulations were performed using the
GROMACS package (Pronk et al. 2013) with the
GROMOS96 43a1 force field (Schuler et al. 2001). The pro-
tein structure (PDB ID: 4MHX) was converted to a
GROMACS file using pdb2gmx, and the hydrogen atoms
were removed using the –ignh option. The models were cen-
tered in a cubical box of fixed volume filled with SPC/E water
molecules and placed at least 1.0 nm from the edge of the box.
The neutrality of the system was ensured by replacing the
chlorine ions with sodium ions using genion. To escape steric
clashes and an inappropriate geometry, energy minimization
of the system was performed for 50,000 steps with a maxi-
mum force of 1000.0 KJ/mol/nm. To constrain the bond
lengths, the steepest descent minimization algorithm was
used. Electrostatic interactions were calculated using the
Particle Mesh Ewald method (Darden et al. 1993; Essmann
et al. 1995; Kholmurodov et al. 2000). Then, the equilibration
process was carried out for the energy-minimized system
using NVT (constant number of particles, volume, and tem-
perature) and NPT (constant number of particles, pressure,
and temperature) ensembles with the temperature maintained
at 300 K and time constant at 1 ps using a Berendsen thermo-
stat (Berendsen et al. 1984). This equilibrated systemwas then
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subjected to MDS for 30 ns, and trajectories such as g_rms,
g_rmsf, g_hbond, g_gyrate, and g_sas utilities were used to
analyze the results. The graphs were plotted using GRACE
(Graphing, Advanced Computation, and Exploration).

Secondary structure and surrounding amino acid
changes between native and mutant proteins

To study the variations in secondary structure patterns, we
performed a secondary structure analysis of the native and
mutant proteins using the PDBsum database, which assigns
various secondary structure labels to the residues of the pro-
tein (Laskowski et al. 1997). The secondary structural ele-
ments such as alpha helices, beta strands, beta sheets, beta
bulges, strands, helices, helix-helix interactions, beta turns,
and gamma turns were calculated for both the native and mu-
tant solved structures of SGSH protein at the end of the 30ns
simulation. Additionally, the residue changes within the 4 Å
surroundings were also observed through PyMOL. The sur-
rounding amino acid changes for the native and mutant pro-
teins were identified from the point of the mutation.

Principal component analysis (PCA)

PCA, also known as Essential Dynamics (ED), is a method
that reduces the complexity of the data and explains the ob-
served motional changes in the protein throughout the simu-
lation (Amadei et al. 1993). For PCA, the rotational and trans-
lational movements were removed, and a variance/covariance
matrix was constructed using the g_covar command. Next, the
g_anaeig command was used to obtain the PCA of the protein,
maintaining the covariance matrix as a starting point. The
eigenvalues and eigenvectors, and their projection along with
the first two principal components were calculated. A set of
eigenvalues and eigenvectors was then identified by diagonal-
izing the matrix. The eigenvalue is a measure of distortion
induced by the transformation, and eigenvectors elucidate this
distortion. The trajectory files were analyzed, and the graph
was plotted using the GRACE Program.

Results

Pathogenicity and stability predictions

The pathogenicity and stability predictions were made using
different tools to predict the impact of mutations on the struc-
ture and function of the protein. The mutations R74C, S66W,
and R245H were subjected to pathogenic prediction tools
(Meta-SNP) and stability prediction tools (SDM, MUpro, I-
Mutant 3.0). Mutations S66Wand R74C were predicted to be
“Disease” by all the prediction tools whereas, the mutation
R245H was predicted to be “Neutral” by PhD-SNP and

SIFT (Table 1). Considering the lower Reliability Index (RI)
for R245Hmutation, all the three mutations were further taken
for stability analysis. From the stability analysis, all the three
mutations were found to possess destabilizing effect.
(Table 1).

Conservation analysis

The conservation pattern reveals the importance of a residue
that helps to maintain the structure and function of a protein.
ConSurf evaluates the degree of conservation at each aligned
position, which represents the localized evolution (Glaser
et al. 2003). It first identifies the conserved positions using
Multiple Sequence Alignment and then measures the evolu-
tionary conservation rate using an empirical Bayesian inter-
face. The level of conservation of amino acids at positions
R74, S66, and R245 were assessed using the ConSurf tool.
A mutation in a more conserved position may affect the func-
tion of the protein. The results are shown in the figure, which
shows that arginine at positions 74 and 245 as well as serine at
position 66 displayed a conservation score of 9, thus
predicting a highly conserved region across the species
(Fig. 1). Therefore, mutations at positions R74, S66, and
R245 might have deleterious effects on the protein. The sol-
vent accessibility property of each amino acid was also
assessed using the ConSurf results, which predicted all amino

Table 1 Pathogenicity and stability prediction

Mutation S66W R74C R245H

PANTHER Disease Disease Disease

Score# 0.938 0.985 0.666

PhD-SNP Disease Disease Neutral

Score# 0.559 0.757 0.387

SIFT Disease Disease Neutral

Score# 0 0 0.08

SNAP Disease Disease Disease

Score# 0.75 0.865 0.67

Meta-SNP Disease Disease Disease

Score# 0.814 0.902 0.627

RI* 6 8 3

SDM Destabilizing Destabilizing Destabilizing

DDG$
−0.63 −1.82 −1.15

MuPro Destabilizing Destabilizing Destabilizing

DDG$
−0.467 −0.584 −1.068

I-mutant 3.0 Destabilizing Destabilizing Destabilizing

DDG$
−0.34 −0.72 −1.71

*RI - Reliability Index between 0 and 10; # For PANTHER, PhD-SNP,
SNAP, and Meta SNP tools: the score ranges between 0 and 1. If > 0.5
mutation is predicted Disease; for SIFT the score is Positive Value If >
0.05 mutation is predicted Neutral; $A value with DDG > 0 shows in-
creased stability, and DDG< 0 shows decreased stability
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acid positions 74, 66, and 245 to be in exposed regions, which
might have functional effects.

Analysis of physicochemical properties

The physicochemical effects due to amino acid substitu-
tions lead to local and global changes in the protein
based on changes in size, charge, hydrophobicity, side-
chain flexibility, hydrogen bonds, etc. These physico-
chemical properties were compared between the native
and mutant proteins using the NCBI-Amino Acid
Explorer tool (Table 2). The results demonstrate that
the mutation of arginine to cysteine at position 74 result-
ed in an alteration of the side chain flexibility from high
to low. The mode of interaction in arginine was found to
consist of ionic and hydrogen bonds and van der Waals
interactions, whereas cysteine contributed to covalent di-
sulfide bonds and van der Waals interactions. There was
a loss of hydrogen bonds, an increase in hydrophobicity,
and a reduction in molecular weight. In the case of the
mutation S66W, the side-chain flexibility was modified
from low to moderate. The mode of interactions in serine
consisted of hydrogen bonds and van der Waals interac-
tions, whereas tryptophan resulted in hydrogen bonds,
aromatic stacking, and van der Waals interactions.
There was a loss of hydrogen bonds, an increase in hy-
drophobicity, and an increase in molecular weight. There
was a change in polarity from polar to non-polar and
aliphatic to aromatic properties. Mutation of arginine to
histidine at position 245 resulted in the alteration from

high to moderate side-chain flexibility. The interaction
modes were ionic and hydrogen bonds and van der
Waals interactions in both the native and mutant proteins,
with the addition of aromatic stacking in the mutant pro-
tein. There was a decrease in hydrogen bonds, an in-
crease in hydrophobicity, reduction in molecular weight,
and conversion from aliphatic to aromatic properties
(Table 2).

Salt bridge analysis

The number of salt bridges formed was calculated using the
ESBRI online server by providing the atomic coordinates of
the solved structures of the native and mutant proteins as in-
put. Salt bridge formation is significantly influenced by the
environment of the protein and depends on the ionization
properties of the amino acids. The results indicated that 33
salt bridges were formed in the native and S66W mutant,
whereas mutants R74C and R245H formed 30 and 32 salt
bridges, respectively (Table 3).

Protein structure conformational flexibility
and stability analysis

MDS studies were performed for 30 ns to analyse the atomic
level changes in SGSH protein concerning the time scale.
Root Mean Square Deviation (RMSD) evaluated the overall
changes in protein stability due to the mutation. The backbone
RMSD for all atoms from the initial structure was calculated,
as it is considered the primary criterion to measure the

Fig. 1 Conservation analysis of
the protein sequence of SGSH
using ConSurf. The positions
R64, S66, and R245, are highly
conserved with a score of 9 and
present in exposed regions of the
protein
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convergence of the protein system. The backbone RMSDs
were calculated for both the native and mutant models from
the trajectory files. The native and mutant structures showed
deviations between ~0.07 nm and ~0.28 nm, achieving equi-
librium after 20 ns. A significant structural deviation was ob-
served in the mutant proteins R74C, S66W, and R245H when
compared to the native protein structure. Among all four tra-
jectories, the native protein showed the least deviation and the
least RMSD value converging at ~0.21 nm. Mutants S66W
and R245H showed higher deviating patterns when compared
to mutant R74C. The mutant proteins S66W and R245H ex-
hibited a deviation range from approximately ~0.25 to
~0.27 nm, whereas mutant R74C showed convergence with
an RMSD value of ~0.24 nm (Fig. 2). These variations in the
deviation range between the native and mutant models explain
the impact of the substituted amino acid on the protein struc-
ture and thus provide a basis for further analyses. To under-
stand the effect of the mutants on the dynamic behavior of the
residues, RMSF of the native and mutant structures was also
calculated (Fig. 3). From the RMSF calculation, native resi-
dues fluctuated within the range from ~0.05–0.3 nm within
the entire simulation period. We observed fluctuations that are
more significant in the mutant S66W (up to ~0.7 nm), follow-
ed by the R74C and R245H mutant complexes, which exhib-
ited fluctuations of up to ~0.45 nm. In agreement with the
RMSD analysis, RMSF of all the mutants notably deviated
from the native structure in the entire simulation. For further
validation of the above results, native and mutant proteins
were subjected to the radius of gyration (Rg) analysis to mea-
sure the level of compactness. The Rg plot (Fig. 4) showed
native proteins with the smallest Rg value of ~2.13 nm.
Mutant R245H exhibited an Rg value of ~2.18 nm, whereas
mutants R74C and S66W had almost similar Rg patterns with
a maximum deviation of approximately ~2.19 nm. The results
thus predicted that all three mutants, which displayed higher
deviation patterns in the RMSD analysis, also showed the
highest radius of gyration values compared with the native
protein, indicating a loss of compactness.

Effects of mutations on hydrogen bonds and solvent
accessible surface area

Hydrogen bonds are one of the most critical interactions in bio-
logical processes, which help in maintaining the stability of the
protein. These nsSNPs can affect the normal function of the
protein by altering hydrogen bond formation (Zhang et al.
2010). The results showed a considerable difference in the num-
ber of hydrogen bonds formed between native and mutant pro-
teins (Fig. 5). The average number of hydrogen bonds per time
frame was found to be 382.530 for native, 379.147 for R74C,
378.896 for S66W, and 380.366 for R245H, respectively.
Overall, it must be noted that fewer hydrogen bondswere formed
in all the mutants when compared to the native protein. TheT
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reduced number of hydrogen bonds in mutant proteins might be
due to the substitution of deleterious amino acids, which destroys
the ability of SGSHprotein to form hydrogen bonds, thus leading
to its destabilization. Furthermore, the solvent-accessible surface
area (SASA) was also calculated. The protein surface in contact
with the surrounding solvent is referred to as the solvent acces-
sible surface area. The solvation effect during protein folding
determines the stability and rearrangement of the protein. Thus,
SASAvalues of native and mutant proteins were calculated. The
native protein had a SASA ranging from ~103 nm2 to ~118 nm2,

whereas the mutant structures showed variations in the values of
SASA. R74C, S66W, and R245H had SASAs ranging from
~105 nm2 to ~122 nm2, ~107 nm2 to ~119 nm2, and ~104 nm2

to ~122 nm2 (Fig. 6). These differences in SASA values in mu-
tant protein thus indicated a potential repositioning of amino acid
residues from accessible to buried regions or vice versa. The
overall analysis of our study indicated that mutations R74C,
S66W, and R245H had a strong influence on the structural con-
formation and dynamic behavior of the protein, revealing their
association with the disease.

Table 3 Number of salt bridges
formation in the native and
mutant proteins (R74C, S66W,
and R245H)

Salt Bridges Distance between residues of native and mutant proteins (Å)

Residue 1 Residue 2 Native R245H R74C S66W

ND1 HIS A 178 OD2 ASPA 31 2.91 2.89 2.89 2.90

ND1 HIS A 429 OD1 ASPA 426 2.84 2.82 2.82 2.82

ND1 HIS A 429 OD2 ASPA 426 3.92 3.94 3.94 3.95

ND1 HIS A 84 OD1 ASPA 477 3.98 3.99 3.99 3.99

ND1 HIS A 84 OD2 ASPA 477 3.76 3.77 3.78 3.78

NE2 HIS A 181 OD2 ASPA 32 3.96 3.93 3.93 3.93

NE2 HIS A 245 OD2 ASPA 179 – 3.56 – –

NE2 HIS A 383 OD1 ASPA 440 – 3.99 3.99 4.00

NH1 ARG A 150 OD1 ASPA 179 2.62 2.72 2.74 2.71

NH1 ARG A 169 OD2 ASPA 135 3.98 – – –

NH1 ARG A 182 OD1 ASPA 235 3.01 3.03 3.03 3.03

NH1 ARG A 182 OD2 ASPA 235 3.27 3.23 3.22 3.24

NH1 ARG A 282 OD2 ASPA 32 3.08 3.07 3.07 3.08

NH1 ARG A 304 OE1 GLU A 355 3.62 3.58 3.58 3.58

NH2 ARG A 160 OE1 GLU A 256 3.80 3.82 3.82 3.82

NH2 ARG A 169 OD2 ASPA 167 3.28 3.27 3.27 3.27

NH2 ARG A 182 OD1 ASPA 235 3.80 3.87 3.87 3.84

NH2 ARG A 182 OD2 ASPA 235 2.85 2.89 2.89 2.88

NH2 ARG A 245 OD1 ASPA 179 2.98 – 2.97 2.97

NH2 ARG A 245 OD2 ASPA 179 3.77 – 3.83 3.81

NH2 ARG A 282 OD2 ASPA 399 2.59 2.75 2.75 2.71

NH2 ARG A 304 OE1 GLU A 355 2.75 2.76 2.76 2.75

NH2 ARG A 377 OD1 ASPA 477 2.90 2.94 2.94 2.93

NH2 ARG A 377 OD2 ASPA 477 3.27 3.37 3.37 3.35

NH2 ARG A 414 OD1 ASPA 410 3.93 3.93 3.93 3.93

NH2 ARG A 435 OD1 ASPA 484 3.41 3.36 3.36 3.38

NH2 ARG A 456 OD2 ASPA 454 2.73 2.76 2.76 2.75

NH2 ARG A 74 OD1 ASPA 31 2.93 2.97 – 2.96

NH2 ARG A 74 OD2 ASPA 273 3.14 3.12 – 3.12

NH2 ARG A 74 OD2 ASPA 31 3.86 3.92 – 3.91

NZ LYS A 123 OD1 ASPA 31 3.22 3.27 3.27 3.26

NZ LYS A 123 OD2 ASPA 31 2.86 2.91 2.91 2.90

NZ LYS A 124 OE1 GLU A 129 2.96 2.98 2.97 2.98

NZ LYS A 156 OD1 ASPA 209 3.60 3.61 3.61 3.60

NZ LYS A 156 OD2 ASPA 209 2.90 2.92 2.92 2.91

Total no. of salt bridges 33 32 30 33
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Analysis of secondary structures and surrounding
amino acid changes

Structural information plays an essential role in elucidating the
molecular mechanism that leads to the disease phenotype.
Since the substitution of an amino acid may induce changes
at the structural level, changes in the secondary structural el-
ements induced by mutations were analyzed using the
PDBsum database. The contribution of each amino acid to
the formation of secondary structure was first identified using
the PDBsum database. It was observed that position S66 con-
tributed to the formation of beta turns, whereas R74 and R245
contributed to the formation of alpha helices (Fig. 7). Figure 8
displays the changes in the number of secondary structural
elements such as alpha helices, beta hairpins, beta sheets, beta

bulges, strands, helix-helix interactions, gamma turns and beta
turns calculated for both native and mutant structures of
SGSH protein obtained at the end of the 30ns simulation.
The variations were found in almost all elements of the sec-
ondary structure, except helix-helix interactions and disulfide
bonds. There was a slight decrease in the number of beta-
sheets in the R245H mutation. The native and mutant R74C
& S66W proteins exhibited five beta sheets, whereas mutant
R245H had four beta sheets. The number of beta-hairpins and
strands decreased in mutants S66W and R245H when com-
pared to the native protein and mutant R74C. A slight increase
in helices was observed in R74C in comparison to the native
protein and mutants S66W & R245H. The number of beta
turns was 65 in the native protein, which increased to 69 in
mutant S66Wand decreased to 64 & 62 in mutants R74C and

Fig. 3 Root Mean Square Fluctuation (RMSF) graph for the 30ns MDS
of native and mutant proteins. Color scheme: (a) native (black), (b) R74C
(red), (c) S66W (yellow), and (d) R245H (violet)

Fig. 2 Backbone Root Mean Square Deviation (RMSD) graph for the
30ns MDS of native and mutant proteins. Color scheme: (a) native
(black), (b) R74C (red), (c) S66W (yellow), and (d) R245H (violet)

Fig. 5 Hydrogen bond graph for the 30ns MDS of native and mutant
proteins. Color scheme: (a) native (black), (b) R74C (red), (c) S66W
(yellow), and (d) R245H (violet)

Fig. 4 Radius of gyration (Rg) graph for the 30ns MDS of native and
mutant proteins. Color scheme: (a) native (black), (b) R74C (red), (c)
S66W (yellow), and (d) R245H (violet)
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R245H, respectively. The native had nine gamma turns, which
decreased to 8 and 6 inmutants R74C and S66W, respectively,
whereas it increased to 22 in the R245Hmutant. These drastic
changes in secondary structural elements further confirmed
that these alterations might induce an overall change in the
secondary structure of the protein. Furthermore, the amino
acid residue changes within 4Å surrounding the point of the

mutational position at the end of the simulation were also
visualized using PyMOL. Loss or gain of surrounding amino
acids was observed to analyze the impact of mutations
(Fig. 9A-C). Native S66 was found to interact with 11 neigh-
boring residues (LEU316, LEU315, SER314, PHE64,
THR65, VAL67, LEU285, SER364, GLY363, PHE362, and
TRP471), whereas mutant S66W interacted with 14 neighbor-
ing residues (LEU316, LEU315, SER314, PHE64, THR65,
VAL67, LEU285, SER364, GLY363, PHE362, TRP471,
THR344, ASP317, and PRO82), showing a gain of 3 residues
(THR344, ASP317, and PRO82). Native R74 interacted with
17 neighboring residues (SER71, PRO72, VAL126, ALA75,
SER76, SER73, LEU77, LEU78, TYR174, ASP273, LEU29,
ALA176, ALA30, PHE 177, ASP31, LYS123, and CA601).
A loss of 8 residues (ASP273, LEU29, ALA176, ALA30,
PHE177, ASP31, LYS123, and CA601) and gain of 3 residues
(HIS125, ASN274, and SER69) were observed in mutant
R74C. In native R245, there were 16 interacting residues
(ILE52, ILE207, ARG150, PHE197, CYS194, GLU195,
THR241, THR242, ASP179, VAL243, GLY244, ASP247,
MET246, GLN248, GLY249, and TRP210), whereas in mu-
tant R245H, a loss of 5 residues (ILE152, ILE207, PHE197,
CYS194, and GLU195) and gain of 3 residues (PHE177,
THR211, and GLN213) were observed. These changes in
the surrounding amino acid residues further confirmed the

Fig. 7 The contribution of each
amino acid in SGSH protein to
secondary structure elements
obtained using the PDBsum
database

Fig. 6 SASA graph for the 30ns MDS of native and mutant proteins.
Color scheme: (a) native (black), (b) R74C (red), (c) S66W (yellow),
and (d) R245H (violet)
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impact of the amino acid substitutions on the structural stabil-
ity of the protein.

Principal component analysis

Principal Component Analysis (PCA) or Essential Dynamics
(ED) was conducted to understand the variations in move-
ments during the 30ns simulations. Initially, the covariance
matrix was constructed using the eigenvalues and eigenvec-
tors, which facilitates the PCA analysis and further represents
the motional changes in the protein. These overall motions of
protein atoms are associated with protein stability and aid in
the function of the protein (Theobald and Wuttke 2008). PCA
examines the collective motion distribution along the first two
eigenvectors in the essential subspace over the entire simula-
tion. The mutant proteins were found to cover a larger confor-
mational space when compared to the native protein, indicat-
ing an overall increase in flexibility of the mutants (Fig. 10).

Discussion

Prediction of the phenotypic consequences of nsSNPs using in
silico algorithms might provide a significant understanding of
the genetic differences in susceptibility to disease and re-
sponse to drugs. Understanding the molecular basis of the
disease at a structural level by experimental methods requires
a large amount of effort and time. Since these methods have
their limitations, there is a niche for in silico methods, which
can analyze functional SNPs with greater accuracy and speed
(Adzhubei et al. 2010; Calabrese et al. 2009; PS et al. 2017b).
The combination of various structure and sequence-based pre-
diction methods, which use multiple algorithms, serves as a
powerful tool and provides accurate and reliable predictions in

identifying mutants as deleterious or neutral. Various patho-
genic prediction tools, such as PANTHER, SIFT, SNAP, PhD-
SNP, and Meta-SNP and stability prediction tools, such as I-
Mutant 3.0, MUpro, and SDM, were used in our study to
identify the deleterious nature of the variants (Table 1).
Despite variations in the input and output of these methods
and limitations in making predictions, the ultimate result is the
differentiation of deleterious SNPs from neutral ones. The
assimilation of these techniques together increases their over-
all power of prediction. However, supportive evidence is nec-
essary for validation of these prediction methods. Based on
experimental studies (Esposito et al. 2000; Héron et al. 2011;
Knottnerus et al. 2017; Muschol et al. 2004; Perkins et al.
1999; Sidhu et al. 2014; Trofimova et al. 2014; Weber et al.
1997), we selected three mutants R74C, S66W, and R245H
for our prediction analysis. As predicted by the multiple sul-
fatase sequence alignment, R74 is the analogous residue in the
SGSH protein. The residual activity levels of the mutant pro-
tein were found to be reduced to less than 1% of wild type
SGSH protein (Yogalingam and Hopwood 2001). The re-
placement of a basic positively charged arginine residue with
a non-polar cysteine residue would disturb the ionic interac-
tion of the native protein. The mutant residue is smaller and
more hydrophobic. This difference in size and hydrophobicity
between the native and mutant protein would remove a stabi-
lizing hydrogen bond, which is vital for hydrolysis of the
sulfate ester present at the non-reducing end of the substrate.
Thus, this mutation is likely to abolish the enzyme function,
thus reflecting its deleterious nature. The reduced specific ac-
tivity and increased susceptibility to degradation may be due
to the destabilization of the active site (Perkins et al. 1999).
The evolutionary stability studies and mutational resistance of
protein-coding genes have demonstrated that arginine, leu-
cine, and serine are the primary amino acids affecting protein

Fig. 8 Various secondary
structural elements present in the
SGSH protein after the 30-ns
simulation
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Fig. 9 Variations in the surrounding amino acid residues in the SGSH
protein by the substitution with a deleterious amino acid. (a) Native
arginine (green) at position 74 with its surrounding amino acid residues
and cysteine (red) with its surrounding amino acid residues. (b) Native

serine (green) at position 66 with its surrounding amino acid residues and
tryptophan (red) with its surrounding amino acid residues. (c) Native
arginine (green) at position 245 with its surrounding amino acid residues
and histidine (red) with its surrounding amino acid residues
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stability in the mutants (Prosdocimi Francisco 2007). Arginine
is a hydrophilic amino acid and located in the exposed region,
as shown in Fig. 1. Reports suggest that proteins have evolved
to place arginine residues at their surfaces to help stabilize
their structures (Strub et al. 2004). Arginine is considered
the most favored amino acid due to its capacity to interact in
different conformations, its side chain length, and its ability to
produce good hydrogen-bonding geometries (Luscombe and
Thornton 2002). Thus, the substitution of arginine with cyste-
ine could cause adverse effects on the protein conformation
and significantly change the structure and function of the ac-
tive site of the SGSH protein.

The amino acid residue S66 is not conserved between
SGSH protein and other sulfatases. It lies near the CSPSR
motif and is therefore in the coordination sphere for the cys-
teine residue, which is post-translationally modified in the
active site of eukaryotic sulfatases (Hopwood and Ballabio
2001; Schmidt et al. 1995). Reports have shown a rapid deg-
radation and reduced activity of the S66W mutagenized form
of SGSH. The substitution of the small polar serine with the
non-polar bulkier tryptophan might distort the active site,
resulting in lower specific enzyme activity and stability of
the protein (Weber et al. 1997). Based on sequence compari-
son with arylsulfatase B following superimposition, amino
acid residue R245 has been hypothesized to lie near the sur-
face of the protein on α-helix 7 of arylsulfatase B, away from
the coordination sphere forming the active site. The R245H
mutation will, therefore, possibly affect the stability of
sulfamidase without changing the specific activity of the pro-
tein. The size difference between the native and mutant resi-
due may alter the hydrogen bond as the native did and desta-
bilize the local structure and packing. The difference in charge
will disturb the ionic interactions of the native protein, causing
a loss of interactions with other molecules and in turn leading

to a possible loss of external interactions (Perkins et al. 1999;
Perkins et al. 2001).

To validate the accuracy of our prediction tools, the mu-
tants were then subjected to studies of the behavior of the
protein. In silico analysis techniques in our study, including
stability changes, pathogenic effects, and evolutionary conser-
vation analysis, predicted that these three mutations (R74C,
S66W, and R245H) had stability and functional impacts on the
protein. The evolutionary analysis derives some essential fea-
tures from predicting the impact of nsSNPs. The role of func-
tional SNPs within the evolutionarily conserved regions has
been validated in various studies. Deleterious mutations are
more likely to correlate to protein sequences that are evolu-
tionarily conserved due to their functional importance (Aly
et al. 2006; Doniger et al. 2008; Tavtigian et al. 2008).
Consequently, in our study, arginine at positions 74 and 245
and serine at position 66 were predicted to be highly con-
served, functional, and exposed residues with a score of 9
based on the conservation scale of the Consurf server, illus-
trating the deleterious nature of mutations creating an impact
on protein function (Fig. 1). The number of salt bridges
formed was also compared between the native and mutant
structures. Since salt bridges are dynamic and mostly exposed
to the surface, they experience large thermal fluctuations and
continuously break and reform. The formation of salt bridges
governs the flexibility of the protein, and these salt bridge
interactions are considered an essential factor in the stability
of the protein (Jelesarov and Karshikoff 2009). We observed
33 salt bridges in native and mutant S66W, whereas mutants
R74C and R245H had 30 and 32 salt bridges, respectively.
The reduction in salt bridge formation in the mutants thus
indicates the deleterious impact on protein structure and
function.

Serine is a hydrophilic amino acid with hydrogen binding
potential. It actively participates in hydrogen bond formation.
The decrease in hydrogen bonds in mutant S66W could have
been due to its substitution with a hydrophobic amino acid,
tryptophan, with different physicochemical properties. Polar
amino acids are commonly located in exposed regions of the
protein, and any mutation in this region interferes with the
functionality of the protein (Sudhakar et al. 2016). As S66 is
present in the exposed region (Fig. 1), its contribution to sol-
vent accessibility was reduced due to its substitution with
tryptophan. Mutant S66W showed less solvent accessibility
than the other two mutants, R74C and R245H, thus losing its
contact with the surrounding solvent, as evidenced in the
SASA analysis. Similarly, in the case of mutations R74C
and R245H, arginine is a hydrophilic amino acid and is locat-
ed in the exposed region of the protein (Fig. 1). Reports sug-
gest that the replacement of hydrophobic residues with argi-
nine at protein surfaces stabilizes the protein (Strub et al.
2004). Arginine interacts with the solvent and increases sta-
bility. Thus, the substitution of arginine with a hydrophobic

Fig. 10 Principle component analysis graph for the 30ns MDS. Color
scheme: (a) native (black), (b) R74C (red), (c) S66W (yellow), and (d)
R245H (violet)

Metab Brain Dis (2019) 34:1577–1594 1589



amino acid cysteine might decrease stability and lead to a
destabilization of the protein, consistent with the results ob-
tained in the RMSD, hydrogen bond, and Rg analyses.
Arginine, which has a positive charge, is larger than cysteine
with a neutral charge. This difference in size and charge be-
tween the native and mutant residue might disrupt interactions
with metal CA, as observed in the surrounding amino acids
where the interaction with CA was lost. The difference in
charge would also alter ionic interactions of the native protein,
as validated by salt bridge analysis where three salt bridges
were lost (Table 3). In mutant R245H, histidine is smaller than
arginine. There was a decrease in the number of hydrogen
bonds formed in all the mutants, as evidenced in the hydrogen
bond analysis of the MDS (Fig. 4). The stability difference
caused by the mutations was further studied by analyzing the
changes in secondary structural elements between the native
and mutant proteins using the PDBsum database. The muta-
tional positions R74, S66, and R245 in SGSH protein were
initially located. Position S66 contributed to the formation of
beta turns, whereas R74 and R245 were present in the alpha-
helical region of the protein (Fig. 7). The mutational positions
in the secondary structure of the proteins play an essential role
in identifying structural alterations in the protein (Mosaeilhy
et al. 2017a;Mosaeilhy et al. 2017b; Sneha et al. 2018a; Sneha
et al. 2018b; Thirumal Kumar et al. 2016; Yagawa et al. 2010;
Zaki et al. 2017a). Alpha helices and beta strands are stabi-
lized by hydrogen bonds (Schneider and Kelly 1995).
Mutations that occur in alpha helix regions and beta sheets
of the protein create a deleterious impact on the protein
(Sneha et al. 2017a; 2017b; Mosaeilhy et al. 2017a;
Mosaeilhy et al. 2017b), whereas mutations in turns or loops
have minimal effects on the structural integrity of the protein
(Yagawa et al. 2010). Thus, these mutations in alpha helices
and beta turns could affect hydrogen bond formation and exert
a deleterious impact on the protein, as validated by the hydro-
gen bond analysis.

Stability is a fundamental criterion that strengthens the bio-
molecular functions, regulation, and activity of the protein
(Chen and Shen 2009). Deleterious nsSNPs can alter the nor-
mal function of a protein by changing the geometric con-
straints and hydrophobicity and disrupting hydrogen bonds
and salt bridges (Rose and Wolfenden 1993; Shirley et al.
1992). To understand the stability and dynamic behavioral
changes at an atomistic level, MDS analysis was carried out
to study the behavior of the native protein and mutants R74C,
S66W, R245H. Different parameters, such as RMSD, RMSF,
hydrogen bond numbers, the radius of gyration, and SASA,
were calculated from the simulation trajectory. Molecular sta-
bility and flexibility changes were observed based on the
RMSD and RMSF analyses, respectively. The results of the
SGSH protein stability analysis indicated that all the mutants
(R74C, S66W, and R245H) exhibited different RMSD values
when compared to the native protein. Higher deviations were

observed in all mutants in comparison to the native protein. A
high or reduced deviation indicates a decrease or increase in
the stability of the molecule (Yun and Guy 2011). Since higher
deviations led to an increase in protein rigidity, the stability
analysis revealed that the mutant structures resulted in in-
creased rigidity of the protein due to the substitution of dele-
terious amino acids, which was also correlated with the re-
duced number of hydrogen bonds in all mutants (Fig. 2a and
b). Mutant S66W showed the greatest fluctuations followed
by mutants R74C and R245H, thus increasing the rigidity of
the protein. Thus, consistent with the RMSD analysis, the
flexibility changes observed by RMSF revealed that the native
protein had minimum fluctuations. As hydrogen bonds are
responsible for stabilizing the structure of the protein, the de-
termination of hydrogen bonds provides a robust and reliable
indicator of the stability of the protein (Gerlt et al. 1997).
Thus, the mutants showed a loss of stability by the formation
of fewer hydrogen bonds than the native structure, which
showed the largest number of hydrogen bonds. The reduction
in a number of hydrogen bonds in the mutant structures might
be due to the loss of surrounding amino acids. In the case of
S66W, serine, a polar amino acid, participates in hydrogen
bond formation. Serine substitution with tryptophan results
in fewer hydrogen bonds, thus leading to reduced stability of
the protein. Furthermore, the compactness of the protein was
studied using Rg. The graph shows that the native protein had
superior compactness to the mutant proteins, as evidenced by
the RMSD stability analysis. The loss of surrounding amino
acids in mutants could have been a reason for this loss of
compactness. The SASA values were also calculated for
the native and mutant structures. The observed changes in
SASA values indicated the occurrence of amino acid resi-
due repositioning from buried to accessible or accessible to
buried regions. S66W had reduced solvent accessibility
than mutants R74C and R245H, which indicated a poten-
tially reduced chance of their interaction with other mole-
cules. Thus, the SASA analysis suggested how the incor-
poration of deleterious amino acids introduced changes in
hydrophilic and hydrophobic regions of the protein.
Furthermore, based on our PCA analysis, the mutants had
greater flexibility than the native protein. Greater motional
changes make a protein less stable. The PCA results indi-
cated the least stability in all mutant structures compared
with the native protein, which is consistent with the results
of the RMSD and hydrogen bond analyses. These motional
changes indicate a loss of stability of the mutant proteins,
including changes in their physicochemical properties.
Therefore, the present results correlate well with experi-
mental studies of the severity of the disease. The overall
results indicated a loss of stability and functionality of the
protein due to the deleterious impact of the amino acid
substitutions, which might adversely affect the enzymatic
activity of the protein to lead to neurodegeneration.
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Conclusion

MPS IIIA is a genetic metabolic disorder characterized by pro-
gressive neurodegeneration and behavioral problems.
Understanding the relationship between genotype and phenotype
based on single nucleotide polymorphisms was the most critical
part of this research. Experimental methods are time consuming
and laborious. Therefore, computational methods were adapted
to achieve rapid and accurate predictions. In the present study, a
series of in silico tools were used to predict three mutations
(R74C, S66W, and R245H), which were prioritized based on
the experimental studies. Furthermore, MDS along with distinct
geometric tools, were adapted to study the influence of these
mutations on the structural stability and compactness of the pro-
tein. The impact of these mutations was further explored through
various computational studies to determine the stability of the
protein structure. From the overall analyses, mutants R74C,
S66W, andR245Hwere predicted to be responsible for structural
differences compared with the native protein that may lead to a
loss of stability and thus result in neurodegenerative disorder.
Our study also emphasizes the importance of these computation-
al approaches for the classification and interpretation of mutants
that can make the process of designing personalized medicine
less complicated for treatment of the disease caused by a partic-
ular mutation. Computational biology in recent years has devel-
oped the potential to speed up the drug discovery process.
Identifying deleterious nsSNPs may also help in elucidating the
pattern of the disease and drug response.
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