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Brain tumour segmentation from MRI using superpixels based spectral clustering 

Abstract 

The automated brain tumour segmentation method is becoming challenging in the field of medical 

research as a brain tumour emerges with diverse size, shape and intensity. In this paper, spectral 

clustering is used for segmentation of brain tumour tissues from Magnetic resonance images (MRI) 

as it creates high-quality clusters. Spectral clustering suffers from dense similarity matrix 

construction for massive data. To overwhelm the drawback of spectral clustering, the proposed 

method performs the brain tumour segmentation by (i) identifying the tumorous region labelled as 

Region of Interest (ROI) using superpixel based spectral clustering. (ii) brain tumour tissues are 

then segmented by performing spectral clustering over the obtained ROI of MRI. The identification 

of ROI alleviates the computational burden of spectral clustering.  The segmentation of ROI using 

spectral clustering produces high-quality clustering results for brain tumour segmentation. The 

observational results are taken out on BRATS 2012 dataset and evaluated using dice score, 

sensitivity and specificity metrics. The proposed method outperforms the other clustering methods 

with competitive dice score values  for segmentation of edema and Tumor Core (TC) regions from 

MRI images. 

Keywords: Brain tumour, Region of Interest, Segmentation, Superpixels, Spectral clustering, MRI  

1. Introduction  

A brain tumour is an uncontrolled growth of cells in the brain (Gordillo et al.,  2013). The death of 

people due to a brain tumour is increasing in last few decades.  A tumour can be classified as the 

malignant or benign. A cyst with no cancer cells is called as benign. They can be deleted entirely 

and do not reproduce after their removal. Benign tumours are less aggressive and do not intrude on 

the nearby tissues. A tumour with cancer cells is called as malignant, which is more aggressive and 

they rise rapidly with increasing pressure in the head. They invade the nearby tissues in the 

brainand other parts of the body, such as spinal cord beyond where it has grown. Magnetic 

Resonance Imaging (MRI) technique is widely applied in the medical field due to its high spatial 

resolution, soft tissue contrast and non-invasive characteristics. MRI provides rich information for 

brain tumour diagnosis and treatment planning (Bauer et al., 2013). As a brain tumour varies in 

shape, size and intensity, makes tumour segmentation process more tedious. The four slices of MRI 

are T1, T2, T1 contrast and FLAIR images (shown in Fig.1) are used for the extraction of brain 

tumours. The blood barrier disruption is acquired from T1 weighted imaging with contrast 

enhancement. The necrotic area can be observed by hypo-intense part of the Tumor Core (TC) in 

the T1contrast image. The T2-weighted (T2) and the Fluid-Attenuated Inversion Recovery (FLAIR) 

MRI are utilised for finding the extension of a tumour and edema (Yuhong, 2016).  Nevertheless, 

MRI images are also affected by intensity inhomogeneity (Xiaofei, 2015) and weak radio frequency 

(GeethuMohan and MonicaSubashini, 2018) that might affect the accuracy of segmentation 

technique.  The brain tumour segmentation is a process of identifying affected tumour tissues and 

protects healthy tissues from damage by destroying identified tumour tissues in the brain. In clinical 

practice, this undertaking of identifying tumour tissues is performed with manual annotations. As 

the manual process is a time-consuming process, development of automatic segmentation becomes 

exciting and vital research domain in recent years (Angulakshmi and Lakshmipriya, 2017).   



  

 

              

Fig.  1 a. FLAIR image b. T1 image c. T1 contrast image d. T2 image 

In general, the automatic brain tumour segmentation methods are classified as supervised and 

unsupervised segmentation techniques (Gordillo et al., 2013). The supervised method demands 

massive datasets with the valid ground truth. Whereas, gathering labelled dataset manually is 

challenging and time-consuming task.  On the other hand, unsupervised method does not depend on 

any training dataset and can be applied to the dataset of different imaging protocols. We have 

investigated that unsupervised clustering methods can be used to reduce complexity and to promote 

execution speed without loss of accuracy for segmentation. As spectral clustering obtains an 

optimal global solution among other clustering techniques, we focus on spectral clustering for 

segmentation of a brain tumour. The spectral clustering performs grouping of data (clusters) using 

the graph Laplacian of the data.  Eigenvectors and Eigenvalues of the Laplacian matrix furnish the 

vital information of the connected components of the given data. The set of Eigenvalues of 

Laplacian matrix is called as "Spectrum" of the graph. So it gains the name "Spectral Clustering". 

The primary limitation of Spectral clustering is dense affinity matrix construction for eigen 

decomposition (Donghui et al., 2009). 

In this paper, the ROI based segmentation using spectral clustering is proposed for brain tumour 

segmentation. To segment tumour tissues from the MRI images, the spectral grouping of 

superpixels is performed to identify the tumorous region (ROI) in the image. The superpixels are 

generated by estimating the central tendency value (mean or median or mode value) of the equal 

sized blocks of the image. These superpixels incorporate local neighbourhood spatial information in 

the clustering task to increase the noise immunity. The size of the image is scaled down to the 

tumorous region, labelled as ROI for segmentation. Finally, ROI is segmented by spectral clustering 

method to produce the high-quality clustering accuracy for segmenting brain tumour tissues.  Fig. 2. 

shows the flow diagram of the proposed work.  The rest of the paper is organised as follows.  

Related works are discussed in Section 2. Basic concepts are overviewed in Section 3. The 

proposed method is presented in section 4. Experimental results and discussions are carried into 

section 5, and finally, the conclusion is discussed in section 6. 



  

 

 

Fig. 2. Flow diagram of proposed work 

2. Related works  

As this paper focuses on unsupervised method, few related unsupervised techniques are discussed in 

this section. Unsupervised methods for performing brain tumour segmentation include Graph Cut 

(Corso et al., 2008), Fuzzy-C-Means (FCM) (Emblem et al., 2009), Gaussian Mixture Model 

(GMM) (Liang et al. 2012), and K-means (Tuhin et al., 2012). In the paper (Phillips et al., 1995), 

the authors have used initially the fuzzy technique for brain tumour segmentation. Later, it was 

combined with the knowledge-based methods for more reliable performance (Emblem et al., 2009). 

The clustering scheme utilises the pixels of the image to produce clusters algorithmically. The FCM 

method is likewise blended with other techniques to provide better segmentation results (Zexuan et 

al., 2012; Yogita et al., 2016; AnithaVishnuvarthanan et al. 2017). 

The K-means clustering is another popularly used clustering technique for brain tumour 

segmentation (Tuhin et al., 2012; Madhukumar and Santhiyakumari, 2015). The K- means 

algorithm suffers from initial seed point selection during clustering task and thus non-deterministic. 

The GMM is often employed for modelling unsupervised brain tumour segmentation method (Liang 

et al. 2012; Menze et al., 2015). The GMM works by finding the maximum likelihood parameter of 

the Gaussian mixture for fitting the input information. The Expected maximization (EM) is applied 

for solving the optimization problem in GMM. In the paper (Juan-Albarracín et al., 2015), the 

GMM is used to produce competitive results with state of the art unsupervised algorithms for brain 

tissue segmentation. The conventional unsupervised clustering algorithms include local information 

into the clustering task. The local spatial data of each pixel is taken to involve values, as the mean 

or median of the neighbours, within a specified window around it. In the paper (Sauwen et al., 

2016), the authors have addressed the conventional FCM, K means, and GMM as the non-convex 

methods as they produce the optimal local solution. Recently, many researchers (Jeetashree et al., 

2016) have incorporated the spatial information into the conventional clustering algorithms to 

improve the performance of image segmentation.  



  

 

In the last few years, graph cut is also popularly used method for image segmentation (Corso et al., 

2008), as it produces the globally optimal solution. The spectral clustering is one of the graph-cut 

based clustering methods (Jianbo and Jitendra, 2000; Andrew et al., 2001). The method is 

successful because it can produce an approximately global optimal solution in polynomial time. 

Spectral clustering makes no assumption about the shape of the cluster or the density distribution of 

data points. The intertwined spiral can also be generated using spectral clustering.   However, graph 

cut-based method often needs to work out a generalized eigenvector problem and may tolerate from 

the heavy computational load when the data set is massive. 

To overcome the drawback of spectral clustering, Nystrom method performs the Low-rank 

approximation of large affinity matrix (Fowlkes et al., 2004). The technique produces better 

segmentation accuracy. Nevertheless, the accuracy of segmentation result is affected, due to the 

heavy dataset and the non-orthogonal eigenvectors. In the fast approximate spectral clustering 

(Donghui et al., 2009) method, the clustering on the set of representative points is performed on the 

original image. According to this method, the pixels are clustered into k groups using the K - means 

algorithm in the preprocessing stage. Only the centroids of k clusters are considered for further 

segmentation using spectral clustering.  However, the geometrical structures were not efficiently 

captured by representative data points.  

The superpixel was initially suggested by (Xiaofeng and Jitendra, 2003) represents a coherent local 

region that keeps most of the features necessary for image mining. The estimation of the superpixels 

can dramatically shorten the number of nodes in the graph and speed up the graph partition while 

maintaining the image data. The superpixels also incorporate local spatial data for clustering to 

increase noise immunity. The brain tumour segmentation is also performed successfully using 

spectral clustering (Yang and Grigsby, 2010; Padole and Chaudhari, 2012). In the paper (Po et al., 

2013) have generated superpixels using K-means clustering followed by segmentation of 

superpixels by spectral clustering for brain tumour segmentation. Motivated by the successful 

application of spectral clustering and superpixels in the segmentation process, we have proposed 

spectral clustering of superpixels for ROI based segmentation of brain tumours.  The main 

contributions of this paper are summarized as follows       

• A new method is suggested to reduce down the size of MRI brain tumour image to ROI 

(tumorous region) using superpixels. The ROI extraction  reduces the dense similarity 

matrix formation of spectral clustering. 

• The segmentation of ROI using spectral clustering finds a global anatomical relationship 

between pixels to develop the high quality global optimal solution for brain tumour 

segmentation. 

The proposed method can also be used for indexing the large brain tumour database. The indexing 

also helps the physician to retrieve large images for diagnosis and treatment planning of tumour 

disease. 

3. Basic Concepts  

In this section, description about Non-Local Mean (NLM) filter and spectral clustering are 

specified. 



  

 

3.1 Non Local Mean Filter  

The denoising methods deal with the removal of noises from MRI images. The Non-Local Mean 

(NLM) filtering technique by (Buades et al. 2005), is found to function well with Gaussian and 

Rician distribution of noise in MRI images. No assumption is made on the location of the pixel for 

filtering a pixel of interest. The NLM filter utilized the advantage of the high degree of redundancy 

in the image. The NLM filter works by restoring all pixels in the given image with a weighted 

average of neighbouring pixel value using similarity measures. Let discrete grid of pixels is 

represented byG .  For the given image }{ iuu = , where Gi ∈ , the restored weight of a pixel i is 

calculated using the weighted average of all pixel of the image u. It is denoted as )( iuNLM  and 

calculated using the Eq (1) 

∑
=

=

Gj

ji ujiwuNLM ),()(                                                                                                       (1) 

  G  denotes discrete grid of pixels.  The symbol ju  is original the intensity at the pixel j. Where

),( jiw  is the weight allotted to ju  in intensity restoration at the pixel i. It depends on the similarity 
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where )(iZ  stands for normalizing factor and  h   stands for degree of filtering or smoothening 

factor. Let the two similarity patch windows, centered at the pixel i and pixel j is given by the term 

ji LandL respectively.  The term )( iLu  represents the vector of adjacent image intensity squared 

neighbourhood in patch window iL . The term )( jLu  represents the vector of adjacent image 

intensity squared neighbourhood in patch window jL .   The similarity is evaluated with the aid of 

the decreasing function of the weighted Euclidian distance and denoted as (
2

,2
.

a
) and shown in the 

Eq (3) to measure the similarity between two patch windows ji LandL .   
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 Where a  denotes the standard deviation of the Gaussian kernel.  The similar pixels have larger 

weights on average. 

3.2 Spectral Clustering   

One of the popular unsupervised clustering techniques based on the graph is spectral clustering 

(Jianbo and Jitendra, 2000; Andrew et al., 2001). The spectral clustering performs grouping of data 

(clusters) by decomposing eigenvectors and eigenvalues of Laplacian matrix. The vital data of the 

connected components of the passed information is furnished by the eigenvectors and eigenvalues 



  

 

of the Laplacian matrix. Given an image }...,{ 21 nIIII =
dR∉ , where nIII .., 21 denotes pixels in the 

image. The image is represented as a weighted graph },{ EVG =  where  V  represents set of nodes 

in the graph and E   denote the relationship between nodes. The graph is represented as similarity 

matrix  S  where  thi  and  thj  row of similarity matrix is given by the equation Eq (4)  
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 where ),( ji IId  denotes the Euclidian distance between node  iI and jI . The symbol  σ  =1 for the 

weighted graph that controls the level of the intensity of the neighborhood. Later similarity matrix is 

converted to a normalized Laplacian matrix for eigenvector decomposition. Finally, the largest  k  

eigenvectors are clustered using the K-means algorithm to get clusters of original information.  

4. The Proposed method  

In the proposed method, the ROI that contains information of tumorous tissue is segmented using 

spectral clustering rather than considering the whole image.  The data reduction is performed using 

superpixels. The superpixels are generated using the Central Tendency Value (CTV) of blocks of 

the image. These superpixels are considered as nodes for spectral clustering to identify ROI. As the 

result of segmentation of superpixels, tumor superpixel and non-tumour superpixels are obtained. 

The original block of tumour superpixel in the image is denoted as tumour block. The adjacent 

blocks similar to the tumour block are extracted using Local Binary Pattern (LBP) feature extraction 

techniques to form ROI. Lastly, the ROI is segmented using spectral clustering to represent various 

tumour tissues. The proposed method is explained in the following sections.  

4.1 Preprocessing  

The preprocessing step is performed to make the images suitable for processing in Computer Aided 

Design (CAD) system by suppressing unwanted distortions or enhancing some image features 

important. As unsupervised segmentation has no references or manual labelled model, artifacts such 

noise and intensity inhomogeneity are high during the processing of images. Due to this factor, the 

results of clustering may be affected during segmentation. To reduce the impact of unwanted 

distortion, pre-processing techniques that involve NLM filtering (Buades et al. 2005) method and 

N4ITK Bias field correction (Tustison et al. 2010) are performed for images in the proposed 

method.  In the proposed study, bias correction is applied to T1c image modularity. After pre-

processing the image, ROI identification is carried out. The explanation for ROI identification is 

employed in the succeeding section. 

 4.2. Region of Interest (ROI) Identification   

The size of the image is scaled down to ROI which is smaller than the original image. The ROI in 

the proposed method represents an abnormal region, which holds in a tumour.  Due to ROI 

identification, the non-tumours part in the given image is removed for tumour segmentation. Only 

the essential tumorous region is examined for further processing. The spectral clustering is then 

performed on ROI, and the dense similarity matrix construction for spectral clustering is reduced 



  

 

with no loss in the high quality of spectral clustering accuracy. The process of ROI identified has 

the following steps and explained in following subsections. 

  

• Computation of superpixels   

• Segmentation of superpixels.     

• Identification of tumour block. 

• Identification of  adjacent blocks  

 

Fig. 3. Segmentation result of the proposed method for two patient images(a) and (b).  

(a)-(b): T1 contrast brain tumour image.  (c)-( d): Segmentation results of superpixels.  

(e)-(f) : ROI.  (g)-(h): TC  

 

4.2.1. Computation of superpixels. 

In the proposed method, the image is partitioned into small equal sized blocks. The Central 

Tendency Value (CTV) usually denotes the tendency of data to organize the group around some key 

value. In the proposed method, the CTV of each block is calculated using mean, median, mode and 

used as the superpixel value of the corresponding block. The mean value of a block is estimated by 

taking the mean of all pixel values in a block.  .  

Let mBBB .., 21   represents the blocks of the image I , where m denotes the number of the blocks. Let 

us consider the pixel intensity values as nPPP .., 21 , where  n  represents the number of pixels in a 

block. CTV computed using mean iM  represents the mean value of the thi block iB  and given in 

Eq. 5. 
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 Where  blocksofnomi ,...2,1= of the image .I  i

jP is the thj  pixel value of thi the block iB   in the 

given image I . Where blockiinpixelsofnonj
th,...2,1=  of the image I . 

CTV computed using median  iMed  represents the median value of  thi   block iB  and calculated as 

follows  

Step1: Sort the pixel values of thi  block iB  of the given image I .  

Step2:  After sorting the pixel values in the block iB  , the CTV calculated using the median iMed     

is given in Eq.6. 
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The CTV calculated using mode iMode represents the mode value of the thi block iB  of the  image 

I and given in Eq.7.  

=iMode Most frequently occurring pixel value iP   in thi  the block iB  of the image I                (7) 

where mi ...3,2,1=  and m is a number of blocks of the image .I The whole image is now presented 

using superpixels of blocks estimated using CTV. These superpixels are segmented using spectral 

clustering. The details for the segmentation of superpixels are described in the next subsection.  

4.2.2. Segmentation of superpixels  

The spectral clustering is performed on the superpixels values of blocks of the image. The 

segmentation of superpixels is performed to obtain tumour superpixels and non-tumour superpixels.  

The result of segmentation of superpixels is given in Fig 3 (c-d). The black colour specifies non-

tumour superpixels and the white colour point represent tumour superpixels. 

4.2.3. Identification of tumour block  

 The block of the image to which a tumour superpixel belongs to is identified in the original image. 

Since a tumour can extend across the tumour block, the adjacent blocks that have features similar to  



  

 

tumour block are chosen from the original image to represent ROI.  The Local Binary Pattern (LBP) 

based feature extraction technique is employed for recognition of adjacent blocks that possess 

similar characteristics as the tumour block (T). 

4.2.4. Identification of adjacent blocks  

LBP is a popular feature extraction technique (Ojala et al., 2002) which plays a vital role in various 

applications like texture classification, segmentation of image, phase recognition and retrieval of 

images. The LBP operator gives the local spatial relation between the pixel and neighbouring 

pixels. It also describes the gray tone contrast. In the LBP feature extraction technique, the image is 

divided into small equal sized cells. Every pixel in the cell has eight neighbour pixels. The center 

pixel value is compared with the eight neighbouring pixel values. The neighbour, whose pixel value 

is greater than center pixel values is labelled as 1, else labelled as 0.  Lastly, for every pixel, the 

eight-bit binary value is received. The obtained binary values are converted to decimal value and 

stored in LBP mask. The binary value is transformed to the decimal value in Eq (8). 
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                                                                             (8)  

where rsLBP ,  is  s  neighbors on a circle of radius r for a pixel yx, . ),( yxf is the gray value of the 

symmetric neighborhood pixel and ),( pp yxf  represent the gray value of the center pixel.  The 

function g(w) gives the thresholding function and shown in Eq.9. 
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where w = ),(),( pp yxfyxf − . Then, the histogram is computed over decimal values of the blocks. 

The histogram is optimally normalized. The histograms of the blocks are concatenated to represent 

the feature vector. In the proposed method, the LBP histogram of the tumour block and eight 

neighbour blocks of the tumour block are compared to form ROI.  The tumour block )(T

determined in the previous step is considered as the center block. The center block has eight 

neighbour blocks 821 ..., NNN .  The similarity between the histogram of the tumour block(T) and the 

neighbouring blocks is determined using Bhattacharya similarity metric (Aherne et al., 1997) and 

specified in the following Eq.10.   

)(*)()(),(( ∑= ii NHTHNHTHBC
                                                                                           (10)    

Where )(TH is the histogram of the tumour block T and )( iNH representing the histogram of the 

thi neighbourhood block N ,  .8....2,1=i  

The large BC coefficient represents similar histograms and vice versa. If the regions are similar, 

then the new region is labeled as a Tumor region. The operation of adjacent or neighbor blocks 

identification is repeated until no similarity exists between adjacent blocks and tumour block.  

Lastly, an obtained region is labelled as ROI. The ROI is given  in Fig. 3(e-f). The algorithm for 

identifying tumours region called ROI is given below.  



  

 

Algorithm for identification of ROI   

Input: Input an MRI tumour image   

Output: ROI  

Step 1: Perform partitioning of the image into equal sized  n  blocks nbbb ..., 21 . 

Step 2: Compute superpixel value S of each block using Central Tendency Value    

         )(ii CTVS =  Where ni ......2,1= . n is the number of blocks.        

           CTV   is Central Tendency Value of the block, calculated using Eq.5.Eq.6.and Eq.7. 

Step 3: Perform spectral clustering on superpixels iS  where   erpixelsofnoi sup......2,1=     to get    

           clusters ( 1c =Tumor superpixels (white colour) and  2c = Non-Tumor superpixels(black     

           colour)). 

Step 4:  Find the corresponding block of tumour superpixels  )( 1c  in the image and label the  

            block as tumour block(T).  

Step 5.  Find adjacent blocks similar to tumour block (T) using LBP feature extraction to form ROI.  

The segmentation of tumour tissues from ROI is reported in the succeeding sections. 

4.3. Segmentation of ROI   

The spectral clustering is directly applied on ROI that increases the speed of processing and the 

accuracy of segmentation. All the pixel value in ROI are considered for similarity matrix 

construction for spectral clustering. Since the size of ROI is small, the large similarity matrix 

formation can be avoided. No approximation is performed on similarity matrix construction to 

avoid dense similarity matrix formation. This serves to extend the high-quality accuracy of spectral 

clustering in the segmentation of tumour. The result of segmentation of TC from ROI is given in 

Fig. 3(g-h).   

5. Experimental results and discussion  

For experimental evidence, images are taken from the BRATS 2012 challenge dataset (Multimodal 

BRATS, 2012). The dataset contains  80 patient images. The details of the dataset are presented in 

Table 1. The MATLAB15a version running under the Windows-8 operating system with Intel R-

core (TM) i5-4500U CPU 2.30GHZ, and 8 GB of memory (RAM) is employed for implementing, 

the proposed system. The sensitivity, specificity and dice score are used to evaluate the performance 

of segmentation and are given in Eq. 11, Eq. 12 and Eq. 13. The pixel by pixel comparison is made 

between ground truth and the segmented region in the proposed method. 

 

 



  

 

Table 1.  Description of BRATS 2012 dataset 

 Synthetic  

images  

Real patient 

images 

High grade  25 20 

Low grade 25 10 

FNTP

TPySensitivit
+

=                                                                                                           (11) 

FPTN

TN
ySpecificit

+
=

                                                                                                       (12) 

Dice score
FP(TP)FN

(TP)

++
=

2

2
                                                                                           (13)  

Where TN is True Negative that counts the number of correctly segmented negative case pixels in 

the segmented region.   TP is True Positive that counts the number of correctly segmented positive 

case pixels in the segmented region. FN is False Negative that counts the number of incorrectly 

segmented negative case pixels in the segmented region. FP is False Positive that counts the number 

of incorrect segmented positive case pixels in the segmented region. 

In the proposed method, 3D images from the dataset are preprocessed for bias correction using 3D 

Slicer. The 3D bias corrected image is converted to 2D and resized to 256*256 gray level image. 

The 2D segmentation of each slice is performed individually on the selected slice, and they are 

overlapped to produce the final result. Nonetheless, the slice may contain edema, Tumor Core (TC), 

necrotic, White matter, Gray matter, Cerebrospinal fluid (CSF) as various levels of the abnormal 

brain. As ground truth is available for edema and TC in the given dataset itself, the proposed 

method identifies edema and TC of the brain. From the experimental analysis, it is observed that the 

edema is extracted well from FLAIR images, where TC is extracted from T1 contrast image. 

However, to segment tumour tissue, spectral clustering is performed by considering n=2, where n is 

the number of cluster for edema and TC.  To compare the obtained segmentation result with the 

ground truth, the size of ground truth is taken down to ROI. 

In the proposed method, each image is partitioned into various block sizes. For each block, the CTV 

namely mean median and mode values are computed to produce  the set of superpixels, where these 

superpixels act as the source for identifying the tumour blocks that constitute ROI. The 

segmentation of edema from ROI for synthetic high-grade FLAIR images is used to measure the 

efficiency of CTV and the selection of optimal block size. When smaller block size such as 2, 3, 4, 

and 5 are considered, the number of superpixels is increased.  Thus the computational burden is 

increased. When the block size of 8 is considered, the number of tumour and the non-tumour pixels 

included in the ROI is optimal. When the block size of 16 and 32 are chosen, the number of tumour 

and the non-tumour pixels included in the ROI have been more and do not fulfil the intent of the 

proposed method. Hence, the optimal solution is obtained for block size 8 for which the number of 

superpixels is 32. It is observed from Fig. 4.a, that the mean and median provide almost the same 

dice score value for all block sizes, compared to that of a mode for segmentation of ROI. In addition 

to this, the execution time of the proposed work per image with regard to various block size for 



  

 

segmentation of ROI is shown in Fig. 4.b. The mean and median requires little lesser processing 

time compared to that of the mode. The labelled tumour pixels can be useable in a block having 

non-tumour superpixel value in some instances.  Those tumour pixels are available side by side to 

any of the segmented superpixel (segmented) block. Such tumour pixel blocks are identified by 

finding the adjacent blocks similar to tumour superpixel block using LBP feature extraction 

techniques for extracting ROI. The proposed method can also apply to tumour images were grade is 

not known to extract brain tumour tissues.  

For diagnosing the MRI images using NLM filter, the parameters such as the ratio of search is set to 

5, the ratio of similarity window is set to 2 and sigma (degree of filtering) is set as 3 experimentally.  

In the proposed work for segmenting ROI using spectral clustering, the k-nearest neighbors are set 

as 20 for the similarity matrix construction, and the sigma is set to 0.5 for Gaussian similarity 

distance metric. 

 

                                   a              b  

Fig. 4.  Comparison of proposed method for different block sizes and CTV values.   a.  

Comparison of dice score values for segmentation of ROI.   b.   Comparison of execution time 

per image for segmentation of ROI. 

 The normalized Laplacian matrix is applied in the proposed method and the eigenvectors of 

Laplacian matrix are clustered using K means ++. This algorithm is employed for the cluster 

centroid specification. In this algorithm, initially, cluster centers are selected arbitrarily. The 

subsequent centers are selected based on the closest point's probability, relative to the squared 

distance from the existing cluster. The method is executed by 10 times as K means ++ is also not 

deterministic. Among 10 results obtained, the result with best objective function is required for 

clustering.  

The KASP (Donghui et al., 2009) and Nystrom method (Fowlkes et al., 2004) are utilized for 

comparison of accuracy in the proposed method. The aim of KASP, Nystrom and the proposed 

method is to cut down the computation burden of dense similarity construction of spectral 

clustering. In the case of segmentation using Nystrom method, the original similarity matrix is not 

generated for spectral clustering as they randomly select pixel points from the given original matrix.  

In case of KASP method, cluster centers of K-means clustering have used for the expression of the 

similarity matrix.  Hence, both the methods approximate the original similarity matrix and the  



  

 

Table 2. Comparison of the dice score values  of the proposed method with spectral clustering 

based methods. 

 

 

accuracy of segmentation for less computation burden. To compare the proposed method with 

KASP (Donghui et al. 2009) and Nystrom method ( Fowlkes et al. 2004), the codes available in the 

website for KASP(Wen-Yen, 2011) Nystrom method (Michael, 2004) has been reused and tested 

for BRATS 2012 challenge dataset. The results of the comparison of the dice score of the proposed 

method with KASP and Nystrom methods are listed in Table 2  for synthetic images (high grade 

and low grade) and real patient images (high grade and low grade). The proposed method yields 

better dice scores in both events, as all pixels in the ROI are considered for the similarity matrix 

construction for block size 8.  Also the Fig 5. and Fig 6., shows the comparison of sensitivity and 
specificity values of the proposed method with KASP and Nystrom method. The extraction of 

edema and the TC of the proposed method are depicted in Fig 7. 
 

 
Fig 5. Comparison of sensitivity and specificity values  of the proposed method with spectral 

clustering based methods for synthetic images.    a. Edema – Synthetic high-grade images.      

b. TC -Synthetic high grade images. c. Edema - Synthetic low grade images.  d. TC - Synthetic 

low grade images. 

Methods Synthetic images (dice score)   Real patient  images (dice score) 

 High grade Low grade   High grade    Low grade 

Edema  TC edema TC Edema TC edema TC 

Nystrom method. 

(Fowlkes.et.al 

2004) 

0.48                 0.79  0.42 0.61                   0.51                  0.28   0.26                 0.33 

KASP(Donghui.et.

al 2009)  

0.58   0.80  0.55 0.69    0.56   0.32   0.27  0.35 

Proposed 0.87 0.92 0.76 0.86   0.72 0.58  0.35 0.58 



  

 

 

 

Fig 6. Comparison of sensitivity and specificity values  of the proposed method with spectral 

clustering based methods for real patient images.  a. Edema – Real patient high-grade images   

b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  TC – Real 

patient low grade images. 

The comparison of the dice score values of the proposed method with other conventional clustering 

methods such as K-means, FCM and GMM for synthetic images and real patient images 

respectively are shown in Table 3. It is understood from Table 3, that the proposed method shows 

better dice score  compared to the other clustering methods. This is because of the similarity matrix 

construction of SC, which is based on the distance metric, can quickly model the data with 

interpolation pattern and complex cluster configuration. The proposed method has produced better 

dice score than GMM for both real patient and synthetic images. As the complex pattern of a 

tumour has less intensity overlap and fewer artifacts in synthetic images, GMM is capable of 

producing dice score nearer to spectral clustering for synthetic images in the BRATS 2012 dataset. 

As GMM makes the solid assumption of Gaussian within-class data distribution cannot cope up 

with the example of complex cluster configuration with high-intensity overlap found in real images.  

So it produces less dice score for real patient images when compared with proposed method.   The 

K-means algorithm and FCM produced less dice score due to its non-deterministic nature.  The 

comparison of sensitivity and specificity values of the proposed method with K-means, FCM and 

GMM are presented in Fig 8 and Fig 9 for synthetic and real images respectively. 

 

 



  

 

 

 

Fig. 7.  Segmentation results of the proposed method for four patient images (FLAIR images 

(a)-(d) and T1 contrast images (i)-(l)).  (e)-(h): Segmentation of edema (white colour) from 

ROI of FLAIR images. (m)-(p): Segmentation of TC(white colour) from ROI of T1 contrast 

images. (q) -(t): Overlap of edema (gray) and TC (white colour) as the final output images. (u) 

-(x):  Ground truth images (reduced to the size of ROI). 

Table 3. Comparison of dice score values of proposed method with conventional 

clustering methods 

 

Methods Synthetic images(dice score)   Real patient images (dice score) 

High Grade Low Grade High Grade Low Grade 

edema TC edema TC edema TC edema TC 

Kmeans  0.72 0.64 0.51  0.60 0.55                0.21 0.19                 0.22 

FCM   0.76   0.82 0.74 0.78 0.61   0.29 0.23  0.25 

GMM  0.83 0.86 0.71 0.82 0.69  0.30 0.25 0.28 

Proposed   0.87  0.92 0.76 0.86 0.72  0.58 0.35 0.58 



  

 

 

Fig. 8. Comparison of sensitivity and specificity values  of proposed method with conventional 

clustering methods for synthetic images.    a. Edema – Synthetic high grade images.   b. TC -

Synthetic high grade images.    c. Edema - Synthetic low grade images.    d. TC - Synthetic low 

grade images.  

 

Fig.  9. Comparison of sensitivity and specificity values of proposed method with conventional 

clustering methods for real patient images.    a  Edema – Real patient high grade images.        

b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  TC – Real 

patient low grade images. 



  

 

The comparision of dice score  of the proposed work with Classification Forest (Darko et al., 2012) 

and Tumor-cut (Andac and Gozde, 2012) methods of BRATS 2012 challenge are shown in Table 4. 

The dice score values of these methods are taken from BRATS 2012 proceedings. The 

segmentation results of synthetic images and segmentation of edema of high-grade real images of 

proposed method are better compared to the other two methods. The low dice score is obtained for 

the low-grade real patient images as there was intense overlap between edema and the TC.  

  Table 4. Comparisons of dice score values of proposed method with BRATS 2012 challenge 

methods 

In the paper (Darko.et.al, 2012), the authors have performed segmentation of a brain tumour as 

classification task using classification forest (CF). The inputs to classification forest are initial tissue 

probabilities, calculated using GMM and non-local context-sensitive features. The discriminative 

power of context-sensitive features, together with initial tissue probabilities as additional input 

increased the amount of context-sensitive information for the classifier. Thus obtained better dice 

score for critical cases (i.e.) for real patient images for (i) segmentation of edema and TC from low-

grade real images and (ii) segmentation of TC from high-grade real images. However, the method 

takes more time for training the classifier when compared with the proposed method. In the paper 

(Andac and Gozde, 2012), the authors have performed multimodal brain tumour segmentation using 

Tumour–cut method. The multimodal image information increased the information for 

segmentation. Thus obtained better dice score for critical cases (i.e.) for real patient images. As 

proposed method used only region- level homogeneous cues (superpixels) as input to spectral 

clustering, we obtained less dice score for (i) segmentation of edema and TC from low-grade real 

images and (ii) segmentation of the TC of high-grade real images. Moreover, real patient images 

have high-intensity overlap. Therefore, multiple features must be extracted from the image to gain 

the better result.   In future, to obtain better dice score , features such as texture and edge features 

can be integrated for segmentation of tumour using spectral clustering. Thus, the additional 

information in the image will increase segmentation accuracy.  

Methods  Synthetic images(dice score) Real patient images (dice score) 

 High grade Low Grade  High Grade     Low Grade 

  edema  TC edema  TC edema TC edema TC 

Classification  

forest (Darko 

et.al ,2012)   

0.65 0.90 0.55 0.71 0.70 0.71  0.44 0.62 

Tumor cut 

(Andac and 

Gozde, 2012) 

0.43 0.80 0.14  0.55 0.56 0.73 0.38 0.71 

Proposed 0.87 0.92 0.76 0.86 0.72 0.58 0.35 0.58 



  

 

 

Fig. 10. Comparison of sensitivity and specificity value of proposed method with BRATS 2012 

challenge methods for synthetic images.    a. Edema – Synthetic high grade images.   b. TC -

Synthetic high grade images.    c. Edema - Synthetic low grade images.    d. TC - Synthetic low 

grade images.  

 

Fig. 11. Comparison of sensitivity and specificity value of proposed method with BRATS 2012 

challenge methods for real patient images.    a. Edema – Real patient high grade images         

b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  TC – Real 

patient low grade images. 



  

 

The comparison of sensitivity and specificity value of the proposed method with BRATS 2012 

challenge methods (taken from BRATS 2012 proceedings) are presented in Fig 10 and Fig 11 for 

synthetic and real images respectively.  

Table 5.  Overall execution time per patient in seconds for BRATS 2012 dataset  

Methods Time in seconds 

Nystrom  24 

KASP 26 

K-Means 12 

FCM 31 

GMM 45 

Proposed method 20 

 

The execution time for BRATS 2012 dataset for the Nystrom, KASP, K-means, FCM, GMM and 

proposed method are given in Table 5. The execution time includes preprocessing time and the 

segmentation time for tumour tissues from T1 contrast image and FLAIR image of a single patient. 

These methods are evaluated on same set of images and run on same platform. The execution time 

of Classification Forest (Darko et.al, 2012) and Tumour-cut (Andac and Gozde, 2012) methods are 

not considered as they run on different platforms. From the Table 5, it is observed that K-means 

runs faster compared to other methods. Yet, it brings forth non -deterministic results and hard to get 

good clusters. The execution time of the proposed method is less compared to other methods. 

However, more focus will be made in future to obtain high dice score for real patient images.  

6. Conclusion 

In this paper, a method for automatic segmentation of brain tumour from the MRI images over ROI 

is proposed. The ROI (tumorous region) is identified using the superpixels based spectral clustering 

on the image. The superpixels are computed using the central tendency values of blocks of the 

image. Lastly, the ROI is segmented using the spectral clustering to segment tumour tissues. The 

dense similarity matrix construction is limited to the size of ROI for the spectral clustering, which 

in turn sustains the high-quality spectral clustering accuracy. The proposed method is used to 

segment tumour from the MRI images with the dice score of 0.8 and 0.9 for edema and TC 

respectively, for the high-grade synthetic images and dice score of 0.7 and 0.8 for edema and TC 

respectively for the low-grade synthetic images. In case of real patient images, the proposed method 

archives dice score of 0.7, 0.5 for edema and TC respectively for high grade images  and dice score 

of 0.3, 0.5 for edema and TC respectively for low grade images.  Our future work will focus on 

extracting multiple features from ROI for increasing segmentation accuracy.  
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Captions for figures 

Fig.1.  a. FLAIR image b. T1 image c. T1 contrast image d. T2 image 

Fig. 2.  Flow diagram of the proposed work.  

Fig. 3. Fig. 3. Segmentation result of the proposed method for two patient images (a) and (b).  

(a)-(b): T1 contrast brain tumour image.  (c) -( d): Segmentation results of superpixels.  

(e)-(f) : ROI   (g)-(h): TC 

 

Fig. 4.  Comparison of proposed method for different block sizes and CTV values.   a.  

Comparison of dice score values for segmentation of ROI.   b.   Comparison of execution time 

per image for segmentation of ROI. 

Fig 5. Comparison of sensitivity and specificity values of the proposed method with spectral 

clustering based methods for synthetic images.    a. Edema – Synthetic high-grade images.   b. 

TC -Synthetic low grade.    c. Edema - Synthetic high-grade images.    d. TC - Synthetic low-

grade images. 

Fig 6. Comparison of sensitivity and specificity values of the proposed method with spectral 

clustering based methods for real patient images a. Edema – Real patient high grade images   

b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  TC – Real 

patient low grade images. 

 Fig. 7.  Segmentation results of the proposed method for four patient images (FLAIR images 

(a)-(d) and T1 contrast images(i)-(l)).  (e)-(h): Segmentation of edema (white colour) from ROI 

of FLAIR images. (m)-(p): Segmentation of TC(white colour) from ROI of T1 contrast 

images. (q) -(t): Overlap of edema (gray) and TC (white colour) as the final output images. (u) 

-(x):  Ground truth images (reduced to the size of ROI).  

Fig 8. Comparison of sensitivity and specificity values of proposed method with conventional  

Clustering methods for synthetic images.    a. Edema – Synthetic high-grade images.   b. TC -

Synthetic high grade images.    c. Edema - Synthetic low grade images.    d. TC - Synthetic low 

grade images   

Fig. 9. Comparison of sensitivity and specificity values of the proposed method with 

conventional  clustering methods for real patient images.  a. Edema – Real patient high grade 

images.   b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  

TC – Real patient low grade images. 

Fig. 10. Comparison of sensitivity and specificity values of proposed method with BRATS 

2012 challenge methods for synthetic images.    a. Edema – Synthetic high-grade images.   b. 

TC -Synthetic high grade images.    c. Edema - Synthetic low grade images.    d. TC - 

Synthetic low grade images.  

Fig. 11. Comparison of sensitivity and specificity values of proposed method with BRATS 

2012 challenge methods for real patient images.  a. Edema – Real patient high-grade images.           

b. TC-Real patient high grade images.    c. Edema - Real patient low grade images.  TC – Real 

patient low grade images. 




