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The buckling of elastic circular plates with an internal elastic ring support and elastically restrained

edges against rotation and simply supported is concerned. The classical plate theory is used to derive the

governing differential equation. This work presents the existence of buckling mode switching with

respect to the radius of internal elastic ring support. The plate may buckle in an axisymmetric mode in

general, but when the radius of the ring support becomes small, the plate may buckle in an asymmetric

mode. The cross-over ring support radius varies from 0.09891 to 0.1545 times the plate radius,

depending on the rotational stiffness of the elastic restraint at the edges and elastic restraint of the ring.

The optimum radius of the internal elastic ring support for maximum buckling load is also determined.

Extensive data is tabulated so that pertinent conclusions can be arrived at on the influence of rotational

restraint, translational restraint of internal elastic ring support, Poisson’s ratio, and other boundary

conditions on the buckling of uniform isotropic circular plates. The numerical results obtained are in

good agreement with the previously published data
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I. Introduction. Buckling of plates is an important topic in structural engineering. The prediction of buckling of

structural members restrained laterally is important in the design of various engineering components. In particular, circular

plates with an internal elastic ring support find applications in aeronautical (instrument mounting bases for space vehicles),

rocket launching pads, aircrafts (instrument mounting bases for aircraft vehicles) and naval vessels (instrument mounting bases).

Based on Kirchhoff’s theory, the elastic buckling of thin circular plates has been extensively studied by many authors after the

pioneering work published by Bryan [1]. Since then, there have been extensive studies on the subject covering various aspects

such as different materials, boundary and loading conditions. Also the buckling of circular plates was studied by different

authorsWolkowisky [2] and Brushes [3]. However, these sources only considered axisymmetric case, which may not lead to the

correct buckling load. Introducing an internal elastic ring supports may increase the elastic buckling capacity of in-plane loaded

circular plates significantly. Laura et al. [4] investigated the elastic buckling problem of the aforesaid type of circular plates, who

modeled the plate using the classical thin plate theory. In their study only axisymmetric modes are considered.

Kunukkasseril and Swamidas [5] are probably the first to consider elastic ring supports. They formulated the equations

in general, but presented only the case of circular plate with a free edge. Wang andWang [6] studied the fundamental frequency

of the circular plate with internal elastic ring support. They have considered the four basic boundary conditions.

Although the circular symmetry of the problem allows for its significant simplification, many difficulties very often

arise due to complexity and uncertainty of boundary conditions. This uncertainty could be due to practical engineering

applications where the edge of the plate does not fall into the classical boundary conditions. It is accepted fact that the condition

on a periphery often tends to be part way between the classical boundary conditions (free, clamped and simply supported) and
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may correspondmore closely to some form of elastic restraints, i.e., rotational and translational restraints Kim andDickinson [7],

Wang et al. [8], Wang andWang [9], Ashour [10], Rdzanek et al. [11], and Zagrai and Donskoy [12]. In a recent study, Wang et

al. [8] showed that when the ring support has a small radius, the buckling mode takes the asymmetric mode. Wang andWang [9]

showed that the axisymmetric mode assumed by the previous authors might not yield the correct buckling load. In certain cases,

an asymmetric mode would yield a lower buckling load. But they have studied only the circular plate with rigid ring support and

elastically restrained edge against rotation. Recently, Wang [13] studied the buckling of a circular plate with internal elastic ring

support by considering only the classical boundary conditions. The purpose of the present work is to complete the results of the

buckling of circular plates with an internal elastic ring support and elastically restrained edge against rotation and simply

supported by including the asymmetric buckling modes, thus correctly determining the buckling loads.

II. Definition of the Problem. Consider a thin circular plate of radius R, uniform thickness h, Young’s modulus E and

Poisson’s ratio � and subjected to a uniform in-plane load, N along its boundary, as shown in Fig. 1. The circular plate is also

assumed to be made of linearly elastic, homogeneous and isotropic material. The edge of the circular plate is elastically

restrained against rotation and simply supported and supported by an internal elastic ring support, as shown in Fig. 1. The

problem at hand is to determine the elastic critical buckling load of a circular plate with an internal elastic ring support and

elastically restrained edge against rotation and simply supported.

III. Mathematical Formulation of the Problem. The plate is elastically restrained against rotation and simply

supported at the edge of radius R and supported on an internal elastic ring of smaller radius bR as shown in Fig. 1. Let subscript I

denote the outer region b r� �1and the subscript II denote the inner region 0 � �r b. Here, all lengths are normalized byR. Using

the classical Kirchhoff’s plate theory, we get the following fourth-order differential equation for buckling in polar coordinates

( , )r � :

D w N w� � � �
4 2

0, (1)

wherew is the lateral displacement,N is the uniform compressive load at the edge. After normalizing the lengths by the radius of

the plate R, Eq. (1) can be written as
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Fig. 1. Buckling of a circular plate with an internal elastic ring support and elastically restrained edge

against rotation and simply supported.
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u r C J kr C r
II n

n
( ) ( )� �

5 6
, (5)

where the top form of Eq. (4) is used for n � 0and the bottom form is used for n � 0,C C C C C C
1 2 3 4 5 6
, , , , , are constants, J

n
(. )

andY
n
(. )are the Bessel functions of the first and second order n, respectively. Substituting Eqs. (4) and (5) into Eq. (3) yields the

following:
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w r
II
( , � �) [ ( ) ]cos( )� �C J kr C r n

n

n

5 6
. (7)

The boundary conditions at the outer region of the circular plate in terms of rotational stiffness ( )K
R1

is given by the

following expressions:

M r K u r
r R I
( ) ( )� �

1
, (8)

u r
I
( ) � 0. (9)

The radial moment at the outer edge is defined as follows:

� �M r
D

R

u r u r n u r
r I I I
( ) ( ) ( ( ) ( ))� 	 �� � � 	

3

2
� . (10)

Equations (8) and (10) yield the following:

� ��� � � 	 � 	 �u r u r n u r
K R

D
u r

I I I

R

I
( ) ( ( ) ( )) ( )�

2 1

2

. (11)

Therefore, the boundary conditions are as follows:

� ��� � � 	 � 	 �u r u r n u r R u r
I I I I
( ) ( ( ) ( )) ( )�

2

11
, (12)

u r
I
( ) � 0, (13)

where R
K R

D

R

11

1

2

� .

Apart from the elastically restrained edge against rotation and simply supported edge, there is an internal elastic ring

support constraint and the continuity requirements of slope and curvature at the support, i.e., at r b� ,

u b u b
I II
( ) ( )� , (14)

� � �u b u b
I II
( ) ( ), (15)
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( ) ( ), (16)
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I II II
( ) ( ) ( )

22
, (17)

whereT
K R

D

T

22

2
� . The prime ( ' ) denotes the differentiation with respect to r. Non-trivial solutions to Eqs. (12), (13), (14)–(17)

are sought. The lowest value of k is the square root of the normalized buckling load. From Eqs. (4), (5), (12), (13) and (14)–(17),

we get the following:
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The top forms of Eqs. (17)–(23) are used for n � 0 (axisymmetric buckling) and the bottom forms are used for n � 0

(asymmetric buckling).

IV. Solution. For the given values of n R T b, , , ,�
11 22

the above set of equations gives the exact characteristic equation

for non-trivial solutions of the coefficientsC C C C C C
1 2 3 4 5 6
, , , , , . For non-trivial solution, the determinant of [ ]C

x6 6
must be

removed. The value of k calculated from the characteristic equation by a simple root search method. Using Mathematica,

computer software with symbolic capabilities, we solve this problem.

V. Results and Discussions. The influence of the rotational spring stiffness parameter on the buckling load for the

given translational spring stiffness parameters of an elastic ring support is shown in Figs. 2–5. Figures 2–5 show the variations of

the buckling load parameter k, with respect to the internal elastic ring support radius b, for various values of rotational spring

stiffness parameters ( , . , , , )R
11

0 05 10 100� # by keeping the translational spring stiffness parameter of an internal elastic ring

support constant ( )T
22

100000� . It is observed from Figs. 2–5 that for a given value of R
11

and constant T
22
, the curve is

composed of two segments. This is due to the switching of buckling modes. For a smaller internal elastic ring support radius b,

the plate buckles in an asymmetric mode (i.e., n �1). In this segment (as shown by the dotted lines in Figs. 2–5) the buckling load
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decreases with b. For larger internal elastic ring support radius b, the plate buckles in an axisymmetric mode (i.e., n � 0). In this

segment (as shown by the continuous lines in Figs. 2–5) the buckling load increases as b decreases up to a peak point

corresponding to the maximum buckling load and thereafter decrease with b.

The cross over radius varies from b � 009891. forR
11

0� andT
22

100000� to b � 01545. forR
11

� # andT
22

100000� as

shown in Figs. 2 and 5, respectively. The major interest in the design of supported circular plates is the optimal location of the

internal elastic ring support for the maximum buckling load. The optimal solutions for this case are presented in Table 1. It is

observed that the optimal ring support radius parameter decreases with increase in the rotational spring stiffness parameter and
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Fig. 2. Buckling load parameter k versus internal elastic ring

support radius b for R
11

� 0.5, T
22

100000� .

Fig. 3. Buckling load parameter k versus internal elastic ring

support radius b for R
11

� 10, T
22

100000� .
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Fig. 4. Buckling load parameter k versus internal elastic ring

support radius b for R
11

� 100, T
22

100000� .

Fig. 5. Buckling load parameter k versus internal elastic ring

support radius b for R
11

� #, T
22

100000� .

R11 = 100, T22 = 100000 (n = 0)
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R11 = #, T22 = 100000 (n = 1)

TABLE 1. Optimal location of internal elastic ring support b
opt

, corresponding buckling load

parameter k
opt

, and percentage increase in buckling load parameter

Parameter T
22

100000�

R
11

0 0.5 10 100 #

b
opt

0.4998 0.4010 0.3001 0.2982 0.2966

k
opt

5.3669 5.4571 6.4333 6.9313 6.9989

% 161.95 135.52 84.39 82.71 82.66



also the optimal buckling load capacity increases with the rotational spring stiffness parameter. Introducing internal elastic ring

support in the optimal position increases the elastic buckling capacity significantly, and the percentage of increase in buckling

loads is presented in Table 1. It is observed that the percentage increase in the buckling load parameter decreases with increase in

R
11
. This because the amount of increase in the buckling load without elastic ring support with R

11
is more than that of increase

in the buckling load with elastic ring support with R
11
.

The influence of translational spring stiffness parameter of an elastic ring support on the buckling load for a given

rotational spring stiffness parameter is shown in Figs. 6–8. Figures 6–8 show the variations of the buckling load parameter kwith

respect to the internal elastic ring support radius b for various values of the translational spring stiffness parameter of the internal

elastic ring support ( ,T
22

1000 100000� , # ) by keeping rotational spring stiffness parameters constant ( )R
11

1000� . It is

observed from Figs. 6–8 that for a given value ofT
22

and constant R
11
, the curve is composed of two segments. This is due to the

switching of buckling modes. For a smaller internal elastic ring support radius b, the plate buckles in an asymmetric mode (i.e.,

n �1). In this segment (as shown by the dotted lines in Figs. 6–8) the buckling load decreases with b. For larger internal elastic

ring support radius b, the plate buckles in an axisymmetric mode (i.e., n � 0). In this segment (as shown by the continuous lines in

Figs. 6–8) the buckling load increases as b decreases up to a peak point corresponding to the maximum buckling load and

thereafter decrease with b.

The cross over radius varies from b � 02333. forT
22

1000� and R
11

1000� to b � 01518. forT
22

� # and R
11

1000� as

shown in Figs. 6 and 8, respectively. The optimal solutions for this case are presented in Table 2.

Introducing internal elastic ring support in the optimal position increases the elastic buckling capacity significantly, and

the percentage of increase in the buckling loads is presented in Table 2.
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Fig. 6. Buckling load parameter k versus internal elastic ring

support radius b for T
22

1000� , R
11

1000� .

R11 = 1000, T22 = 1000 (n = 0)
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R11 = 1000, T22 = 1000 (n = 1)

Fig. 7. Buckling load parameter k versus internal elastic ring

support radius b for T
22

100000� , R
11

1000� .

Fig. 8. Buckling load parameter k versus internal elastic ring

support radius b for T
22

� #, R
11

1000� .

R11 = 1000, T22 = 100000 (n = 0)
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486

TABLE 2. Optimal locations of internal elastic ring support b
opt

, corresponding buckling load

parameter k
opt

, and percentage increase in buckling load parameter

Parameter R
11

1000�

T
22

1000 100000 #

b
opt

0.2999 0.2987 0.2984

k
opt

6.9857 6.9898 6.9901

% 82.49 82.60 82.61

TABLE 3. Comparison of buckling load parameter b
opt

withWang et al. [17] for various rotational

stiffness parameters R
11

and Poisson’s ratio = 0.3

R
11

0 0.1 5 10 100 #

Wang et al. 4.198 4.449 10.462 12.173 14.392 14.682

Present 4.19766 4.44864 10.46134 12.17242 14.39200 14.6814

TABLE 4. Comparison of buckling load parameter k with Laura et al. [4], Wang et al. [17], and

Bhaskara Rao and Kameswara Rao [16] for rotational stiffness parameter R
11

0� and � � 03.

Ring support radius, b Laura et al. [4] Wang et al. [17]
Bhaskara Rao and

Kameswara Rao [16]
Present

0.1 4.5244 4.5235 4.52341 4.52341

0.2 4.7718 4.7702 4.77018 4.77018

0.3 5.0725 5.071 5.07091 5.07091

0.4 5.3301 5.3296 5.32964 5.32964

0.5 5.3666 5.3666 5.36659 5.36659

0.6 5.1284 5.1261 5.12606 5.12606

0.7 4.7789 4.7727 4.77266 4.77266

0.8 4.4249 4.4215 4.42141 4.42141

0.9 4.1122 4.1063 4.10629 4.10629



The results of this kind were scarce in the literature. However, the results are compared with the following cases:

(i) for any value of R
11

and asT
22

$ # and b $1, all the curves converge to k � 383165. , which is of the clamped plate,

and this is in agreement with Wang et al. [9];

(ii) as R
11

$ # and T
22

10� , or clamped support with internal elastic ring support, the optimum location is at radius

b � 0290. , with buckling load k � 4 20875. , and also as b $1, the buckling load k � 383163. , which is in good agreement with

Wang [6];

(iii) as R
11

0$ andT
22

10� , or simply supported edge plate with internal elastic ring support, the optimum location is

at radius b � 0417. , with buckling load k � 269104. , and also as b $1, the buckling load k � 204882. , which is in good agreement

with Wang [6];

(iv) Table 3 presents the buckling load parameters k for a circular plate with simply supported edge and rotational

restraint with T
22

0� (i.e., with no ring support), against those obtained by Wang et. al. [15];

(v) as R
11

$ # andT
22

$ #, or rotationally restrained and simply supported circular plate with internal rigid support,

the optimum location is at radius b � 0265. , with buckling load k � 701554. , which is in agreement with Wang et al [15];

(vi) Tables 4 and 5 present the buckling load parameters k for a circular plate with an internal ring support (T
22

$ #,

i.e., rigid ring support) and elastically restrained edge against rotation and simply supported, against those obtained by Laura et

al. [4], Wang et al. [17] and Bhaskara Rao and Kameswara Rao [16].

VI. Conclusions. The buckling problem for thin circular plates with an internal elastic ring support and elastically

restrained edge against rotation and simply supported has been solved. The buckling loads are given for various rotational

restraints [R
11
] and translational restraints of internal ring support [T

22
]. It is observed that the buckling mode switches from an

asymmetric mode to an axisymmetric mode at a particular ring support radius. The cross-over radius is determined for different

values of rotational restraints and translational restraints of elastic ring support. The optimal ring support is affected by the

rotational stiffness parameters and translational spring stiffness parameters of the internal elastic ring support. The optimum

location increases with decreasing T
22
, whereas the bucking load decreases with T

22
. The optimum location increases with

decreasing R
11
, whereas the bucking load decreases with R

11
. However, it is observed that the influence of the rotational

restrains on the buckling load is more predominant than that of the translational restraints of the internal elastic ring support. In

this paper, the characteristic equations are exact; therefore the results can be calculated to any accuracy. These exact solutions

can be used to check numerical or approximate results. The tabulated buckling results are useful to designers in structural design

and vibration control.
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TABLE 5. Comparison of buckling load parameter k with Laura et al. [4] and Bhaskara Rao and

Kameswara Rao [16] for rotational stiffness parameter R
11

� # and � � 03.

Ring support radius, b Laura et al. [4] Bhaskara Rao and Kameswara Rao [16] Present

0.1 6.772 6.50105 6.50105

0.2 6.9649 6.95592 6.95592

0.3 6.9964 6.99485 6.99485

0.4 6.6693 6.66257 6.66257

0.5 6.0852 6.07454 6.07454

0.6 5.4845 5.4755 5.4755

0.7 4.9588 4.95263 4.95263

0.8 4.5277 4.51266 4.51266

0.9 4.1509 4.14357 4.14357



Nomenclature:

w r( , )� — Transverse deflection of the plate;

h— Thickness of the plate;

R—Radius of the plate;

b—Non-dimensional radius of the ring support;

�— Poisson’s ratio;

E—Young’s modulus of the material;

D— Flexural rigidity of the material;

K
T 2

— Translational spring stiffness of internal elastic ring;

K
R1

— Rotational spring stiffness;

R
11

— Non-dimensional rotational spring stiffness parameter;

T
22

— Non-dimensional translational spring stiffness parameter of internal elastic ring;

N —Uniform in-plane compressive load;

k —Non-dimensional buckling load parameter.
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