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ABSTRACT
A height-balanced tree is a desired data structure for performing opera-
tions such as search, insert and delete, on high-dimensional external data
storage. Its preference is due to the fact that it always maintains logarith-
mic height even in worst cases. It is a rooted binary tree in which for every
vertex the difference (denoted as balance factor) in the heights of the sub-
trees, rooted at the left and the right child of the vertex, is at most one. In
this paper, we consider two subclasses of height-balanced trees X and Y .
A tree in X is such that all the vertices up to (a predetermined) level t has
balance factor one and the remaining vertices have balance factor zero. A
tree in Y is such that all the vertices at alternate levels up to t has balance
factor one and the remaining vertices have balance factor zero. We prove
that every tree in the classesX and Y is a subtree of the hypercube.
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1. Introduction

1.1. Embedding

The problem of efficiently implementing parallel algorithms on parallel computers has been studied
as a graph embedding problem. Let the computational structure of a parallel algorithm A be repre-
sented by a graph GA and the interconnection network of a parallel computer N be represented by
a graph HN . An embedding of GA into HN describes the working of the parallel algorithm A when
implemented on N. A formal definition of embedding is as follows:

Definition 1.1: An embedding φ of a graph G = (VG, EG) into a graph H = (VH , EH) is an injection
φ : VG → VH (not necessarily onto) such that every edge (u, v) ∈ EG is mapped to a shortest path
connecting φ(u) and φ(v) inH.

An extensive survey of embedding various graphs into interconnection networks such as hyper-
cubes, meshes and tori is given in [2–4, 14, 16]. Two of the parameters that measure the quality of an
embedding φ are dilation and expansion.

• The dilation dil(φ) of an embedding φ is defined as, max{dil(u, v) : (u, v) ∈ EG} where dil(u, v)
is defined to be the length of a shortest path connectingφ(u) andφ(v) inH for an edge (u, v) ∈ EG.

• The expansion(φ) is defined to be the ratio |VH|/|VG|.

The dil(φ) is used to estimate the computational running time and the expansion(φ) is used to
estimate the number of unutilized processors in N. If dil(φ) = 1 , then G is isomorphic to (denoted
by � ) a subgraph of H; we write G ⊆ H. Additionally if expansion(φ) = 1 , then G is a spanning

CONTACT Indhumathi Raman indhumathi.r@vit.ac.in

© 2016 Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d 

by
 [

17
6.

10
.1

04
.2

40
] 

at
 0

8:
29

 0
7 

Ju
ne

 2
01

6 

http://www.tandfonline.com
mailto:indhumathi.r@vit.ac.in


2 I. RAMAN

subgraph of H. An embedding with dilation 1 and expansion 1 is the one with least communication
delay and the most cost effective and hence is desirable. However for most embedding problems, it is
very difficult to obtain an embedding thatminimizes these two parameters simultaneously. Therefore,
some trade-offs among these parameters must be made.

1.2. Hypercubes

Among the interconnection networks of parallel computers, the binary hypercube has received much
attention. An important property of the hypercube, which makes it popular, is its ability to effi-
ciently simulate the message routings of other interconnection networks. A formal definition of the
hypercube is stated here.

Definition 1.2: An n-dimension hypercube, Qn, has 2n vertices each labelled with a binary string of
length n. Two vertices are adjacent if and only if their labels differ in exactly one position.

A graphG is said to be t-arc transitive if for any two paths on t+1 vertices P = (u0, u1, . . . , ut) and
Q = (v0, v1, . . . , vt), there exists an automorphism α ofG such that α(ui) = vi, for every i, 0 ≤ i ≤ t.
The 0-arc transitive and 1-arc transitive are referred to as vertex-transitive and edge-transitive in this
paper. It is well known that Qn is a t-arc transitive graph for t = 0, 1, 2 (refer [13]).

If G is a bipartite graph with V(G) = [X, Y] such that (i) 2n−1 < |V(G)| ≤ 2n and (ii) |X|, |Y| ≤
2n−1, then G is said to be balanced. Also, Qn is called the optimal hypercube of G and n is called the
optimal dimension of G. It is desirable to embed G into a hypercube of dimension n or at least close
to n so as to minimize the expansion of the embedding. It is obvious that the balancedness of G is
a necessary condition for G to be a subgraph of Qn. However, it is not sufficient. For example, the
star graph K1,4 is a balanced bipartite graph with |V(G)| = 5 < 23 and |X|, |Y| ≤ 4, but K1,4 is not a
subtree of Q3 since its maximum vertex degree is 4 but Q3 is 3-regular.

1.3. Height-balanced trees

Trees generally form the underlying data structure for several parallel algorithms that employ divide-
and-conquer rule, branch-and-bound technique and so on. A binary search tree, or BST, is a binary
tree whose vertices are arranged such that for every vertex v, all the vertices in its left subtree have a
value less than v, and all the vertices in its right subtree have a value less than v. In the average case,
BSTs offer logarithmic time for inserting/deleting/searching a value. The disadvantage of BSTs is that,
in the worst case, their running time is linear. This happens if the items are inserted into the BST are
in order. In such a case, a BST performs no better than an array. However, there exist self-balancing
BSTs which ensures that, regardless of the order of the data inserted, the tree always maintains a loga-
rithmic running time. Certain examples of self-balancing BSTs are red-black trees, 2–3–4 trees, Splay
trees, B-trees, Adelson, Velskii and Landis (AVL) trees, etc. The computational efficiency of AVL trees
has motivated a vast study in information storage and retrieval and to implement parallel dictionary
routines, see [9, 15]. The fact that the worst height of a height-balanced tree is logarithmic (see [1,
12]) has motivated the author to study the embedding of height-balanced trees into hypercubes.

AnAVL tree is also called a height-balanced tree and is formally defined in [1] as below. Figure 1(a)
shows a fewheight-balanced trees of heights 1,2,3 (the height of a tree is taken as the length of a longest
path from the root), respectively.

Definition 1.3: A rooted binary tree is said to be height-balanced if for every vertex v, the heights of
the subtrees rooted at the left and right child of v, differ by at most one.

For a vertex v in a height-balanced tree T, the balance factor bT(v) of v is defined as the difference
between the heights of left and right subtrees of v. It is usually assumed that the height of an empty
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(a) (b)

Figure 1. Examples of height-balanced trees and auxiliary tree: (a) height-balanced trees and (b) auxiliary tree T∗ .

tree is −1 and consequently, (i) for a leaf l ∈ V(T), bT(l) = 0 and (ii) the tree consisting of the root
alone has height 0. Clearly, bT(v)= 0 for every v ∈ V(T) if and only if T is a complete binary tree.

A tree T is a subtree of a hypercubeQn if and only if T admits a labelling of its vertices using n-bit
binary strings such that the labels of the adjacent vertices differ in exactly one position. Hence an
embedding L : T → Qn amounts to a labelling of the vertices of T with binary strings of length n. To
achieve our embeddings, we make use of a small extension in the structure of a tree T with root R:
we add two new vertices A, B and two new edges (A,B) and (B,R). We call this supertree of T as the
auxiliary tree of T (denoted as T∗) and call the path (A,B,R) as the auxiliary path of T∗. Figure 1(b)
shows the auxiliary tree of a binary tree T.

1.4. Outline of the paper

In 1984, Havel [10] conjectured that any binary tree can be embedded into its optimal hypercube with
dilation 2. There are several papers which show that the conjecture is true for special classes of binary
trees (see [5, 8, 17]). The following are some of the well-known results on embedding height-balanced
trees into hypercube.

Proposition 1.4 ([3]): For all h ≥ 3, the complete binary tree Ch of height h is embeddable into its
optimal hypercube Qh+1 with dilation 2. However, Ch is a subtree of its next-to-optimal hypercube Qh+2.

Proposition 1.5 ([6]): For all h ≥ 1, the Fibonacci tree Fh of height h (a height-balanced tree in which
the balance factor of all the non-leaf vertices is one) is a subtree of Q	0.75h
+1.

Proposition 1.6 ([7]): Let HBTh be a class of height-balanced trees in which the balance factor is arbi-
trary in the first three levels and is zero thereafter and let HBT∗

h be the class of the corresponding auxiliary
trees. For all h ≥ 1, every balanced height-balanced tree of height h in HBT∗

h is a subtree of its optimal
hypercube.

In [11], the authors have considered two classes of height-balanced trees that are recursive in struc-
ture and have proved that every tree in these two classes is a subtree of the hypercube. In this paper, we
continue to embed other height-balanced trees and in our embeddings, we have reduced the dilation
from 2 (as stated in the conjecture) to 1 but at the cost of increasing the expansion. The gap between
the obtained expansion and the minimum expansion (as demanded in the conjecture) is O(h). In
Section 2, we define the two subclasses of height-balanced trees and also find the optimal dimension
of the hypercube into which the trees of these subclasses can be embedded. In Section 3, we embed
every tree in the two subclasses into the hypercube.

2. Preliminaries

In this section, we define two subclasses of height-balanced treesX andY and determine the dimen-
sion of the optimal hypercube into which every tree of these subclasses can be embedded. If Th
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4 I. RAMAN

is a height-balanced tree of height h, we denote its levels by L0, L1, . . . Lh, where for 0 ≤ i ≤ h,
Li = {v ∈ V(Th) : distTh(v, root) = i}.

Definition 2.1: Let Xh,t be a height-balanced tree of height h such that

bXh,t (v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if v ∈
t−1⋃
i=0

Li,

0 if v ∈
h⋃
i=t

Li.

We denote by X the class {Xh,t : h ≥ 0, 0 ≤ t ≤ h/2} of trees.

Definition 2.2: Let Yh,t be a height-balanced tree of height h such that

bYh,t (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ L0 ∪ L2 ∪ · · · ∪ Lt−2, t is even,
1 if v ∈ L1 ∪ L3 ∪ · · · ∪ Lt−1, t is even,
1 if v ∈ L0 ∪ L2 ∪ · · · ∪ Lt−1, t is odd,
0 if v ∈ L1 ∪ L3 ∪ · · · ∪ Lt−2, t is odd,

0 if v ∈
h⋃
i=t

Li.

We denote by Y the class {Yh,t : h ≥ 0, 0 ≤ t ≤ h/2} of trees.

The balance condition imposed on the vertices of the trees Xh,t and Yh,t may seem hard. The
motivation for defining the class X of trees is as follows: the complete binary tree (where the balance
factor of all vertices is zero) and the Fibonacci tree (where the balance factor of all non-leaf vertices
is one) are embeddable into the hypercube (see Propositions 1.4 and 1.5). An obvious question that
arises is: Is a midway tree (half the vertices with balance factor one and other half the vertices until level
t with balance factor zero) embeddable into hypercube? Such a midway tree is Xh,t . By further making
the balance factor of every vertex in the first t alternate levels of Xh,t to zero, we get Yh,t . The trees in
the classes X and Y can be defined recursively also.

Definition 2.3: Xh,0 := Ch, and for 1 ≤ t ≤ �h/2
,Xh,t is formed by taking one copy of Xh−1,t−1 with
root R1, one copy of Xh−2,t−1 with root R2, a new vertex R and adding the edges (R,R1) and (R,R2);
refer Figure 2(a).

Definition 2.4: Yh,0 := Ch, for 1 ≤ t ≤ �h/2
, if t is even, Yh,t is formed by taking two copies of
Yh−1,t−1 with roots R1 and R2, a new vertex R and adding the edges (R,R1) and (R,R2) (refer

(a) (b) (c)

Figure 2. Structure of Xh,t and Yh,t for 1 ≤ t ≤ �h/2
: (a) Xh,t for t ≥ 1, (b) Yh,t when t ≥ 1 is even and (c) Yh,t when t ≥ 1 is odd.
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Figure 2(b)) and if t is odd, Yh,t is formed by taking one copy of Yh−1,t−1 with root R1, one copy of
Yh−2,t−1 with root R2, a new vertex R and adding the edges (R,R1) and (R,R2) (refer Figure 2(c)).

From Definitions 2.1 through 2.4, the following proposition is obvious.

Proposition 2.5: For any two integers t1 ≥ t2 > 0, the following hold:

• Xh,t1 ⊆ Xh,t2
• Yh,2t1 ⊆ Yh,2t2
• Yh,2t1−1 ⊆ Yh,2t2−1

One may see that bXh,t (v) = 0 and bYh,t (v) = 0 for all vertices v ∈ ⋃h
i=t Li of Xh,t and Yh,t . This

implies that the subtree of Xh,t(Yh,t) rooted at a vertex in Lt is a complete binary tree. A precise value
for the number of vertices of the trees is given in the next proposition. This helps us to determine the
optimal dimensions of Xh,t and Yh,t .

Proposition 2.6: For every t, 0 ≤ t ≤ �h/2
,

• |V(Xh,t)| = (2h−2t+1)(3t)− 1.

• |V(Yh,t)| =
{

−1 + (2h−t+1)(3t/2) if t is even,
−1 + (2h−t)(3(t+1)/2) if t is odd.

Proof: We prove by induction on t. For t= 0, we have Xh,0 � Ch and hence xh,t = |V(Ch)| =
2h+1 − 1. Let xh,t = |V(Xh,t)| and by induction hypothesis, xh−1,t−1 = (2h−2t+2)(3t−1)− 1 and
xh−2,t−1 = (2h−2t+1)(3t−1)− 1. From Definition 2.3, we have xh,t = xh−1,t−1 + xh−2,t−1 + 1 =
(2h−2t+2)(3t−1)+ (2h−2t+1)(3t−1)− 1 = (2h−2t+1)(3t)− 1. The number of vertices of Yh,t can be
proved on similar lines. �

Proposition 2.7: The optimal dimensions of Xh,t and Yh,t are h − �0.42t
 + 1 and h − �0.21t
 + 1,
respectively.

Proof: The optimal dimension of Xh,t is 	log2(|V(Xh,t)|)
 which equals 	h − 2t + 1 + 1.58t

(we use Proposition 2.6 and 3 ∼ 21.58) = h − �0.42t
 + 1. Similarly, the optimal dimension of
Yh,t is 	log2(|V(Yh,t)|)
 which equals 	h − t + 1.58((t + 1)/2)
 = 	h − t + 0.79t + 0.79
 = h −
�0.21t
 + 1. �

3. Embedding Xh,t and Yh,t into hypercube

In this section, we embed every tree in the classesX andY into hypercube. Specifically, we prove that

• Every Xh,t ∈ X is embeddable into Qm(h,t) with dilation 1 wherem(h, t) = h − �t/3
 + 1.
• Every Yh,t ∈ Y is embeddable into Qd(h,t) with dilation 1 where d(h, t) = h − �t/6
 + 2.

We note that the gap between the dimension of the hypercube (into which the trees are embedded)
and the optimal dimension of the trees (given in Proposition 2.7) is O(t) = O(h) since t ≤ h/2. The
problem of embedding the trees Xh,t and Yh,t into their optimal hypercube is left open.

Theorem 3.1: Let Xh,t be the height-balanced tree as defined in Definition 2.1. For every h ≥ 1 and
every t, 1 ≤ t ≤ �h/2
, X∗

h,t ⊆ Qm(h,t) where m(h, t) = h − �t/3
 + 1.
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6 I. RAMAN

(a) (b)

Figure 3. Embedding of X∗
h,t into Qr : (a) the tree B∗(h) ⊆ Qh+1 and (b) labelling of X∗

h,t : here R = 0r−2, B = 0r−31, A = 0r−411,

R′ = 0r−3, B′ = 0r−41, A′ = 0r−511.

Proof: The idea of our proof is to label the vertices of X∗
h,t using m(h, t)-bit binary strings where

m(h, t) = h − �t/3
 + 1, by induction on t. For the base case, we have X∗
h,2 ⊆ X∗

h,1 � B∗(h) ⊆ Qh+1;
the first containment follows from Proposition 2.5, the tree B∗(h) is shown in Figure 3(a) and
the last containment follows from the fact that B∗(h) ⊆ HBT∗

h and from Proposition 1.6. The tree
X∗
h,3 ⊆ HBT∗

h ⊆ Qh (the first containment follows from the definitions of X∗
h,3 and HBT∗

h and the
second containment follows from Proposition 1.6). Hence the theorem is true for initial values of
t= 1,2,3. Further for t ≥ 4, without loss of generality, we prove the theorem such that the auxil-
iary path (A,B,R) of X∗

h,t is mapped to (0m(h,t)−211, 0m(h,t)−11, 0m(h,t)). We call this condition on
the auxiliary path as auxiliary condition.

Since X∗
h,3k+2 ⊆ X∗

h,3k+1 ⊆ X∗
h,3k (by Proposition 2.5) and m(h, 3k + 2) = m(h, 3k + 1) =

m(h, 3k), it is sufficient to prove that for t= 3k,X∗
h,t ⊆ Qr where r = m(h, 3k) and this is shown below.

We may verify that, r = m(h, t) = m(h − 3, t − 3)+ 2 = m(h − 4, t − 3)+ 3 = m(h − 3, t − 2)+
2 = m(h − 4, t − 2)+ 3. The tree X∗

h,t contains one copy of Xh−3,t−3, one copy of Xh−4,t−3, two
copies of Xh−3,t−2 and one copy of Xh−4,t−2. By induction hypothesis, we are given embeddings
X∗
h−3,t−3 ⊆ Qm(h−3,t−3) � Qr−2, X∗

h−4,t−3 ⊆ Qm(h−4,t−3) � Qr−3, X∗
h−3,t−2 ⊆ Qm(h−3,t−2) � Qr−2

and X∗
h−4,t−2 ⊆ Qm(h−4,t−2) � Qr−3 satisfying the auxiliary condition. Let (A,B,R) and (A′,B′,R′)

denote the auxiliary paths of X∗
h−3,α and X∗

h−4,α , respectively, where α ∈ {t − 2, t − 3}. By auxiliary
condition, R = 0r−2, B = 0r−31, A = 0r−411, R′ = 0r−3, B′ = 0r−41, A′ = 0r−511. Since Qn (n ∈
{r − 2, r − 3}) is 2-arc transitive, there exists an automorphism φ ofQn such that the path (A,B,R) is
mapped onto the path (R,B,A) and the path (A′,B′,R′) is mapped onto the path (R′,B′,A′). We label
the vertices of X∗

h,t as follows: (i) apply the automorphism φ on the vertices of X∗
h−3,t−2 and X∗

h−4,t−2
then prefix the labels of all the subtrees by a 2 or 3 bit label as shown in Figure 3(b). Label the ver-
tices on the auxiliary path of X∗

h,t with 110B′, 01B and 01R. Since Qr is 2-arc transitive, there exists
an automorphism ofQr which maps the auxiliary path of X∗

h,t onto (0
r−211, 0r−11, 0r) thus satisfying

the auxiliary condition. Since the labels of the vertices of X∗
h,t are distinct, the provided labelling is a

required embedding. �

Before we proceed to embedY∗
h,t intoQh−�t/6
+2 with unit dilation, we prove the following lemma.

Lemma 3.2: If Yh,t is a height-balanced tree as defined in Definition 2.2, then for 1 ≤ t ≤ 6, Y∗
h,t ⊆

Qh+1.

Proof: The tree Y∗
h,1 � B∗(h) ⊆ Qh+1 (the containment follows from Proposition 1.6 since B∗(h) ⊆

HBT∗
h ). The tree Y

∗
h,2 � D∗(h) ⊆ Qh+1 (the tree D∗(h) is shown in Figure 4(a) and the containment
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(a) (b)

Figure 4. Embedding of Y∗
h,t into Qd(h,t) when t is odd: (a) the tree D

∗(h) ⊆ Qh+1 and (b) labelling of Y∗
h,t for odd t.

follows from Proposition 1.6 since D∗(h) ⊆ HBT∗
h ). The trees Y

∗
h,5 ⊆ Y∗

h,3 ⊆ Y∗
h,1 ⊆ Qh+1 and the

trees Y∗
h,6 ⊆ Y∗

h,4 ⊆ Y∗
h,2 ⊆ Qh+1. �

Theorem 3.3: Let Yh,t be a height-balanced tree as defined in Definition 2.2. For every h ≥ 1 and every
t, 0 ≤ t ≤ �h/2
, Y∗

h,t ⊆ Qd(h,t) where d(h, t) = h − �t/6
 + 2.

Proof: We prove the theorem by induction on t. For t= 0, the tree Y∗
h,0 � C∗

h ⊆ Qh+2 (the contain-
ment follows from Proposition 1.4). For 1 ≤ t ≤ 5, by Lemma 3.2, we have Y∗

h,t ⊆ Qh+1 ⊆ Qh+2. For
t= 6, the theorem follows fromLemma 3.2. Hence for the base case, the theorem is true for 0 ≤ t ≤ 6.
For t ≥ 7, we prove that Y∗

h,t ⊆ Qd(h,t) such that the auxiliary path of Y∗
h,t is mapped onto the path

(0d(h,t)−211, 0d(h,t)−11, 0d(h,t)) (recall that this is called auxiliary condition).
Case 1: t is odd
In this case, the balance factor of the root is 1 and t ≡ 1, 3, 5 (mod 6). It can be easily verified

that q = d(h, t) = d(h − 1, t − 1)+ 1 = d(h − 2, t − 1)+ 2. By induction hypothesis, there exist
embeddings Y∗

h−1,t−1 ⊆ Qd(h−1,t−1) � Qq−1 and Y∗
h−2,t−1 ⊆ Qd(h−2,t−1) � Qq−2 satisfying the aux-

iliary condition. Let (A,B,R) and (A′,B′,R′) denote the auxiliary paths of Y∗
h−1,t−1 and Y∗

h−2,t−1,
respectively. By the auxiliary condition, R = 0q−1, B = 0q−21, A = 0q−311, R′ = 0q−2, B′ = 0q−31,
A′ = 0q−411. Since Qq−1 is edge-transitive, there exists an automorphism ψ of Qq−1 such that the
edge (B,R) is mapped onto the edge (A,B). We label the vertices of Y∗

h,t as follows: (i) apply the auto-
morphism ψ on the labels of the vertices of Y∗

h−1,t−1 and then prefix the labels by 0, (ii) consider
the labelling of Y∗

h−2,t−1 (by induction hypothesis) and prefix the labels by 10 and (iii) label the ver-
tices on the auxiliary path of Y∗

h,t with 10B′, 10A′ and 0A. The above labelling technique is shown in
Figure 4(b). SinceQq is 2-arc transitive, there exists an automorphism ofQq whichmaps the auxiliary
path of Y∗

h,t onto (0
q−211, 0q−11, 0q), thus satisfying the auxiliary condition.

Case 2: t is even
In this case, the balance factor of the root is 0 and t ≡ 0, 2, 4 (mod 6). Since Y∗

h,6k+4 ⊆ Y∗
h,6k+2 ⊆

Y∗
h,6k (by Proposition 2.5) and d(h, 6k + 4) = d(h, 6k + 2) = d(h, 6k), it is sufficient to prove that for

t= 6k, Y∗
h,t ⊆ Qp where p = d(h, 6k) and this is shown below.

It can be easily verified that p = d(h, t) = d(h − 1, t − 1) = d(h − 6, t − 4)+ 5 = d(h − 6, t −
5)+ 5 = d(h − 6, t − 6)+ 5 = d(h − 7, t − 6)+ 6. By induction hypothesis, there exist embed-
dings Y∗

h−6,t−6 ⊆ Qd(h−6,t−6) � Qp−5, Y∗
h−6,t−5 ⊆ Qd(h−6,t−5) � Qp−5, Y∗

h−6,t−4 ⊆ Qd(h−6,t−4) �
Qp−5, Y∗

h−7,t−6 ⊆ Qd(h−7,t−6) � Qp−6. Let (A,B,R) be the auxiliary path of Y∗
h−6,β where β ∈ {t −

4, t − 5, t − 6} and let (A′,B′,R′) be the auxiliary path of Y∗
h−7,t−6, both satisfying the auxiliary

condition. Hence A = 0p−711, B = 0p−61, R = 0p−5, A′ = 0p−811, B′ = 0p−71, R′ = 0p−6. Let φ,
ψ and θ be automorphisms of a hypercube Qn where n ∈ {p − 5, p − 6} which maps the path
(0n−211, 0n−11, 0n) onto (0n, 0n−11, 0n−211), the edge (0n−11, 0n) onto the edge (0n−211, 0n−11) and
the edge (0n−11, 0n) onto the edge (0n, 0n−11) respectively. Such automorphisms exist since hyper-
cube is 2-arc transitive and edge-transitive. Let π be the identity automorphism.We label the vertices
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8 I. RAMAN

of Y∗
h,t with p-bit string labels as follows: consider a drawing of Y∗

h,t drawn three levels down and this
drawing contains four copies of Yh−3,t−3 and two copies of Yh−3,t−2 (refer to Figure 5). If we fur-
ther redraw each copy of the trees Yh−3,t−3 and Yh−3,t−2 three levels down, the structure of Yh−3,t−3
has two copies of Yh−6,t−6, two copies of Yh−7,t−6 and two copies of Yh−6,t−5 (refer to Figure 6) and
the structure of Yh−3,t−2 has four copies of Yh−6,t−5 and two copies of Yh−6,t−4 (refer to Figure 10).
Hence Y∗

h,t has in total of 4(2 + 2 + 2)+ 2(4 + 2) = 36 subtrees when drawn 3+3= 6 levels down.
The vertices of Y∗

h,t at levels 0– 3 are labelled usingA,B,R each prefixed by a 5-bit label. Four labellings
of Yh−3,t−3 are shown in Figures 6–9. In these figures, the labels of Yh−6,t−6, Yh−6,t−5 (and Yh−7,t−6)
are prefixed by a 5-bit (and 6-bit) label after being subject to one of the automorphism in {π , φ,
ψ , θ}. Two labellings of Yh−3,t−2 are shown in Figures 10 and 11. In these figures, the labels of
Yh−6,t−5 and Yh−6,t−4 are prefixed by a 5-bit label after being subject to one of the automorphism in
{π , φ, ψ , θ}. The above labelling technique of Y∗

h,t is depicted in Figures 5 – 11 and we note that

Figure 5. Embedding of Y∗
h,6k intoQp ; the labelling of Y

i
h−3,t−3, for 1 ≤ i ≤ 4, is given in Figures 6–9, respectively, and the labelling

of Yih−3,t−2, for i= 5,6, is given in Figures 10 and 11, respectively. In Figures 5– 11, A = 0p−711, B = 0p−61, R = 0p−5 and A′ =
0p−811, B′ = 0p−71, R′ = 0p−6.

Figure 6. Labelling of Y1h−3,t−3: the embedding of Yh−6,t−6 into Qp−5, Yh−7,t−6 into Qp−6 and Yh−6,t−5 into Qp−5 follows by
induction hypothesis.

Figure 7. Labelling of Y2h−3,t−3: the embedding of Yh−6,t−6 into Qp−5, Yh−7,t−6 into Qp−6 and Yh−6,t−5 into Qp−5 follows by
induction hypothesis.
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Figure 8. Labelling of Y3h−3,t−3: the embedding of Yh−6,t−6 into Qp−5, Yh−7,t−6 into Qp−6 and Yh−6,t−5 into Qp−5 follows by
induction hypothesis.

Figure 9. Labelling of Y4h−3,t−3: the embedding of Yh−6,t−6 into Qm−5, Yh−7,t−6 into Qm−6 and Yh−6,t−5 into Qp−5 follows by
induction hypothesis.

Figure 10. Labelling of Y5h−3,t−2: the embedding of Yh−6,t−5 and Yh−6,t−4 into Qp−5 follows by induction hypothesis.

Figure 11. Labelling of Y6h−3,t−2: the embedding of Yh−6,t−5 and Yh−6,t−4 into Qp−5 follows by induction hypothesis.

the length of every label is p. Since Qp is 2-arc transitive, there exists an automorphism of Qp which
maps the auxiliary path of Y∗

h,t onto (0
p−211, 0p−11, 0p) thus satisfying the auxiliary condition. Since

the labels of the vertices of Y∗
h,t are distinct, the provided labelling is an injection and it is a required

embedding. �
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10 I. RAMAN

4. Conclusion

In this paper, we identified two subclasses of height-balanced trees and proved that every tree of the
subclasses is a subtree of the hypercube. The problem of embedding these trees into their optimal
hypercube is open. The problem of embedding any height-balanced tree into its optimal hypercube
is also open.

Disclosure statement
No potential conflict of interest was reported by the author.
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