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Abstract

Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numer-

ous non-dynein proteins, but the identities and functions of these proteins are not fully eluci-

dated. Here, we show that the classical Chlamydomonasmotility mutant pf23 is defective in

the Chlamydomonas homolog of DYX1C1. The pf23mutant has a 494 bp deletion in the

DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analy-

ses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral

counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner

dynein arms (IDA) as well as a fraction of the outer dynein arms (ODA). A C-terminal trunca-

tion of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of

cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-

type, which suggests an important role in dynein complex stability. The role of PF23/

DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for mac-

romolecular assembly.

Author summary

Most animal cells have antenna-like organelles called “cilia”. These organelles have various

important functions both in motility and sensing the environment. Motile cilia are essen-

tial for moving cells as well as moving fluids across a surface. The waveform of motile cilia

requires large macromolecular motors; these are the ciliary dyneins. These dynein
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complexes are assembled in the cytoplasm in a pathway called preassembly, and then

transported into cilia. Defects in this process cause a heterogeneous human disease called

primary ciliary dyskinesia that results, for example, in the disruption of the motility of

respiratory tract cilia, sperm and nodal cilia during development. The mechanisms of the

preassembly pathway are not fully understood. In this study, we use a mutation in the

well-conserved DYX1C1/PF23 gene of the green alga, Chlamydomonas reinhardtii. Loss of

a conserved domain (DYX) reveals a failure to assemble most ciliary dyneins. Preassembly

of inner arm dyneins is particularly affected. We find that if dynein arms are not assem-

bled, dynein subunits in the cytoplasm are unstable. We suggest that DYX1C1 may play a

role as a scaffold for other preassembly factors and the dynein subunits.

Introduction

Motile cilia (also known as flagella) are antenna-like organelles protruding from many types of

cells and required for motility and cell signaling [1, 2]. Motile cilia are essential for normal ver-

tebrate development, fertility, and organ homeostasis [3–7]. The movement of motile cilia is

driven by the ciliary dynein motors, which are composed of outer (ODA) and inner dynein

arms (IDA) [8–10]. ODA and IDAmotors are composed of different proteins and have differ-

ent structures. The ciliary dyneins are assembled in the cytoplasm, a process called “preassem-

bly”, before they are transported into cilia for docking on axonemal doublet microtubules [11,

12]. Defects in preassembly, transport or docking of the dynein complexes can cause abnormal

ciliary motility and disorders in humans including primary cilia dyskinesia (PCD) [6, 13, 14].

Multiple non-dynein cytoplasmic proteins have been identified that are required for preassem-

bly of the axonemal dyneins (reviewed in [15, 16]). These include ODA7/LRRC50/DNAAF1,

PF13/KTU/DNAAF2, PF22/DNAAF3, HEATR2, IDA10/MOT48, ODA16, ZYMD10,

PIH1D3 and LRRC6 [17–24] (see S1 Table). However, neither the molecular mechanism of

the preassembly process, nor the complete genetic/functional relationship between these fac-

tors is known.

Dyslexia is a disorder in which the patients show normal intelligence but have problems in

reading, writing and/or spelling words. The causative genes for dyslexia are controversial [25–

32]. One candidate gene is DYX1C1 (dyslexia susceptibility 1 candidate 1), which was dis-

rupted by a translocation in dyslexia patients [33], but there is little validation of the role of

this gene [34]. Recently, the DYX1C1 gene has also been implicated in ciliary assembly [35,

36], but these patients did not show dyslexia [35]. Chandrasekar et al [36] found that knock-

down of the DYX1C1 homolog in zebrafish shows ciliary phenotypes that included a failure in

assembly of some ciliary dyneins and abnormal ciliary motility. DYX1C1 mutations in human

cause PCD due to abnormal ciliary motility and failure in assembly of axonemal dyneins [35].

The authors postulated that DYX1C1 (also called DNAAF4) is required for preassembly of cili-

ary dyneins, possibly working in concert with PF13/KTU/DNAAF2 [35]. However, the mecha-

nism by which DYX1C1 affects dynein preassembly remained to be fully elucidated.

In this study, we report that the Chlamydomonas homolog of DYX1C1 is defective in the

classical Chlamydomonas mutant pf23 (paralyzed flagella 23), a paralyzed mutant deficient in

ciliary dynein assembly [37]. pf23 has been widely used to study the function and composition

of ciliary dyneins (e.g. [38–42]). In pf23, DYX1C1 contains a mutation resulting in deletion of

27 amino acids within the DYX domain. The pf23 phenotype is rescued by transformation

with the wild-type DYX1C1 gene, which indicates the deletion mutation in PF23/DYX1C1 is

sufficient to cause ciliary dynein assembly defects and the non-motile phenotype.

DYX1C1/PF23 is required for ciliary dynein assembly
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Furthermore, cryo-electron-microscopic tomography (cryo-ET) and biochemical analyses

reveal that the defects in axonemal dynein assembly are more profound than had previously

been appreciated [37, 39, 40]. PF23/DYX1C1 is localized to the cytoplasm and is required for

preassembly of most axonemal dyneins. In addition, missing dyneins in pf23 display a range of

defects in their subunit composition, and suggest PF23/DYX1C1 is essential for proper stabil-

ity of axonemal dynein heavy chains. Thus, PF23/DYX1C1 is a conserved, cytoplasmic ciliary

dynein assembly protein.

Results and discussion

Chlamydomonas has a single DYX1C1 gene

To determine the function of DYX1C1 in cilia-related processes, we searched the Chlamydo-

monas genome database (version 4 (http://genome.jgi.doe.gov/Chlre4/Chlre4.home.html) and

version 5 (https://phytozome.jgi.doe.gov/pz/portal.html%23!info?alias=Org_Creinhardtii)) for

DYX1C1 homologs. BLAST search using human DYX1C1 protein as the query revealed one

copy of a DYX1C1 homolog in Chlamydomonas (Cre11.g467560 at Phytozome Chlamydomo-

nas v5.5). The predicted DYX1C1 sequences in both genome databases contained gaps, and the

correct Chlamydomonas DYX1C1 sequence was determined by PCR (the sequenced Chlamy-

domonas DYX1C1 sequence has been deposited in the DNA Data Bank of Japan (DDBJ) under

the accession number LC149873). The Chlamydomonas DYX1C1 gene maps to chromosome

XI near the PF23 locus and is predicted to encode a protein with 816 amino acids and a theo-

retical pI/MW of 5.04/82751.23 (S1A and S1B Fig). The Chlamydomonas DYX1C1 protein is

longer, with a lower pI, compared to the human DYX1C1 protein, which has 420 amino acids

and a theoretical pI/Mw of 8.88/48526.88 (Figs 1A, S1A and S1B).

A search of Chlamydomonas DYX1C1, using the SMART (http://smart.embl-heidelberg.de/

) and pfam (http://pfam.xfam.org/) servers, revealed a CS domain in the N-terminus; CS

domains are predicted to be an interacting module for HSP90 (discussed further below; [18,

43]). The analysis also reveals a central coiled-coil domain and multiple TPR (tetratricopeptide

repeat) motifs in the C-terminal half of the molecule, which are involved in protein-protein

interactions (S1A Fig). Although there are some differences in the number of TPR motifs, the

overall DYX1C1 domain structure is conserved in ciliated organisms that include human,

mouse, zebrafish, Trypanosoma and Chlamydomonas (S1A and S1B Fig). This domain organi-

zation suggests that DYX1C1 is designed for protein interactions [35, 36].

The Chlamydomonasmutant pf23 is defective in the DYX1C1 gene

Cross sections of ciliary axonemes in DYX1C1 morpholino knockdown zebrafish and the

PCD patients reveal a partial failure of assembly of dynein arms [35, 36]. This structural phe-

notype is reminiscent of the axonemal phenotype of the Chlamydomonas pf23mutant, which

lacks several inner dynein arms [37]. Therefore, we sequenced DYX1C1 in pf23. Analysis of the

DYX1C1 genomic DNA in pf23 reveals a 494 bp deletion that removes all of exon 5 and part of

the flanking introns. Using a marker designed for this deletion and crosses between pf23 and a

mapping strain (S1D2: CC-2290), we confirmed that this deletion cosegregates with the Pf23

phenotype (62/62). The pf23 DYX1C1 cDNA lacks 81 nucleotides of exon 5. The mutation

results in the removal of 27 amino acids in DYX1C1, which forms part of the “DYX domain”

[36] (Figs 1A and S1A). In addition, cDNA sequencing revealed that in pf23DYX1C1 exons 4

and 6 are directly connected in-frame (S1A Fig). Consistent with the sequencing data, immu-

noblots, using anti-Chlamydomonas DYX1C1 antibody (CT299; see Materials and methods),

revealed that pf23 expresses an altered, non-functional form of DYX1C1 (~ 92 kDa) while

wild-type expresses a ~ 95 kDa form (Figs 1A, 1B, S2A and S2B).

DYX1C1/PF23 is required for ciliary dynein assembly
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Fig 1. Immunoblot analyses reveal DYX1C1 is shorter in pf23 and the wild-typeDYX1C1 gene rescues
the pf23mutant. (A) Immunoblotting of whole cell samples from wild-type, pf23, pf23gR (T1, T5, T9, T14)
using the anti-DYX1C1 antibody. Wild-type cells express an ~95 kDa DYX1C1 (blue arrowhead), while pf23
expresses an ~92 kDa DYX1C1 (pink arrowhead), because of the loss of 27 amino acids that correspond to
the wild-type 5th exon. Rescued strains (T1, T5 and T14) expressed both wild-type and mutant-type DYX1C1.
Note that pf23gR-T9 expresses a short and reduced, but partially functional ~67 kDa DYX1C1 (green
arrowhead, see text and Fig 3). (B) Immunoblotting of whole cell samples from wild-type, pf23, pf23cR (NT
and 3×HA) using the anti-DYX1C1 and anti-HA antibodies. pf23cR-NT strains expressed both wild-type and
mutant DYX1C1. pf23cR-3×HA strain expressedmutant and wild-type DYX1C1 tagged with 3×HA epitopes
(orange arrowhead). This DYX1C1-3×HA in pf23cR-3×HA was also detected by the anti-HA antibody (orange
arrowhead). The membrane, blotted with the DYX1C1 antibody (middle), was re-blotted with the anti-HA
antibody (bottom). (C) Restoration of swimming in rescued pf23 strains. Swimming velocity was measured for
wild-type and rescued strains of pf23. 20–25 cells were selected for measurement of swimming speed. The
original pf23 is completely non-motile, and for the pf23 strain “NM” indicates non-motile/not measured. Note
that pf23gR-T9 shows slower swimming compared to wild-type, possibly because of the reduced expression
of the truncated DYX1C1 fragment and the resultant partial failure of inner dynein arm assembly (discussed in
the text).

https://doi.org/10.1371/journal.pgen.1006996.g001

DYX1C1/PF23 is required for ciliary dynein assembly
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To further test whether the defective DYX1C1 gene is responsible for the non-motile phe-

notype, we transformed pf23with the wild-type DYX1C1 genomic DNA with its endogenous

promoter or cDNA with the PsaD promoter. Both the wild-type DYX1C1 genomic DNA and

cDNA successfully rescued the pf23 phenotype. The rescued strains (listed in S2 Table) show

nearly wild-type motility (Fig 1C). Consistently, immunoblots of whole cells from the rescued

strains show both the wild-type DYX1C1 together with the shorter, mutant DYX1C1 (Fig 1B).

Also, the ciliary lengths of the rescued strains are near wild-type in the SG (Sager and Granick)

media (wild-type, 10.9 ± 1.1 μm; pf23, 4.8 ± 0.6 μm; pf23cR-NT, 11.0 ± 1.2 μm, pf23cR-3×HA,

11.1 ± 2.0 μm; pf23gR-T5, 11.6 ± 1.4 μm; pf23gR-T9, 10.3 ± 1.4 μm; n = 10, see also [44]). These

results strongly suggest that DYX1C1 is the gene responsible for the pf23 phenotype, and that

an intact DYX domain is essential for ciliary dynein assembly in pf23 [37].

One transformant, pf23gR-T9 (S2 Table), displays slightly slower swimming speeds com-

pared to wild-type or other transformants (Fig 1C). In addition, immunoblots revealed a

DYX1C1 fragment of ~ 67 kDa in cells from pf23gR-T9 (Fig 1A). Sequence analysis of the

inserted, exogenous DYX1C1 sequence in pf23gR-T9 revealed that during transformation the

full-length DYX1C1 gene was not integrated, which predicts the loss of 208 amino acids at the

C-terminus of the DYX1C1 protein (S1A Fig). The predicted pI/Mw of exogenous DYX1C1 in

pf23gR-T9was 5.22/62780.39, consistent with the last two TPR motifs of DYX1C1 being lost

and/or disrupted (Figs 1A and S2B). Conclusions are confounded by the observation that the

DYX1C1 protein in pf23gR-T9 is present at a lower level. These results may indicate that while

the DYX domain is required for function, either the C-terminal two TPR motifs are required

for the assembly of only specific inner dynein arms, or inner dynein arm assembly is affected

more by the amount of DXY1C1, or both (Figs 1A and S1A). This C-terminal truncation

would produce a protein that is similar to that encoded by the translocation found in the Finn-

ish family with dyslexia [33].

Majority of axonemal dyneins are missing or reduced in pf23

Ciliary dyneins can be divided into the outer dynein arms (ODA) that reside on the outer cir-

cumference of the doublet microtubules and the inner dynein arms (IDA) that reside on the

inner circumference (Fig 2A). Chlamydomonas has only one typeof ODA. There are seven

major subspecies of IDAs termed “a” to “g” and three minor subspecies of IDAs called

“DHC3”, “DHC4” and “DHC11” (Fig 2A) [8, 45, 46]. ODAs are particularly important for

high ciliary beat frequency, while the IDAs are essential for ciliary waveform control [8, 41].

The three minor subspecies have been shown to replace the major subspecies in proximal part

of the axoneme [46, 47], and are predicted to be important for bend initiation in cilia.

Although thin-section electron micrographs and high-resolution 2D gel electrophoresis

showed a reduction in dynein arm assembly in axonemes from pf23 [37, 39, 40], the exact

dynein species that failed to assemble was not determined. Furthermore, the original pf23was

described as a mutant lacking inner dynein arm proteins and structures, but retaining most of

the ODAs [37]. Subsequent analysis predicts that four IDAs, “a”, “c”, “d” and “f/I1” are missing

in axonemes from pf23 [48, 49].

To determine precisely which IDA subspecies are missing from pf23 cilia, we used urea-

PAGE [50, 51] to examine the dynein heavy chain composition. As described previously [37],

urea-PAGE reveals that IDA bands are missing or reduced in density compared to wild-type

(Fig 2B). To semi-quantitatively estimate the amounts of each dynein in cilia from pf23, we

performed spectral counting of dynein heavy chain bands cut from the gel samples of wild-

type and pf23 as well as four of the pf23 rescued strains described above (pf23cR-NT, pf23cR-

3×HA, pf23gR-T5 and pf23gR-T9) (S2 Table). Based on spectral counting, IDA subspecies “b”,

DYX1C1/PF23 is required for ciliary dynein assembly
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Fig 2. Ciliary dyneins, particularly IDAs, are greatly reduced in pf23 axonemes. (A) Schematic drawing
of a ciliary microtubule 96-nm repeat fromChlamydomonas.Chlamydomonas has one type of ODA
consisting of three heavy chains (α, β and γ), and seven types of major IDAs (“a” to “g”). Amongmajor IDAs,
only IDA “f/I1” has two heavy chains (1α and 1β). In the proximal/distal part of the axonemes, somemajor
IDAs are predicted to be replaced by three minor IDAs (“DHC3”, “DHC4” and “DHC11”). This figure is
modified from Yamamoto et al., [57]. (B) Urea-PAGE of equal amount of ciliary axonemes from wild-type and
pf23. Only the dynein heavy chain region of the gel is shown. Blue arrowheads indicate the three ODA heavy

DYX1C1/PF23 is required for ciliary dynein assembly
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“c”, “d”, “e”, “f/I1” and “g” are present at less than 20% of the wild-type level (Fig 3A and 3B),

whereas inner dynein arm “a” is present at ~70% of the wild-type level (Fig 3B). We also found

that ODAs have a modest defect in pf23 as well as IDAs, ODAs are reduced to 50–60% of the

wild-type level (Fig 3B). These results were also confirmed by HPLC chromatography using a

Mono-Q column, which show clear reductions in all dynein peaks except inner dynein arm

“a” (Fig 2C). In addition, we found that the minor IDA subspecies (“DHC3”, “DHC4” and

“DHC11”) are missing or greatly reduced in pf23 (Fig 3B). Taken together, the dynein defects

in pf23 are far more profound than previously described. Partial loss of the DYX domain in

DYX1C1 results in an assembly defect for the majority of ciliary IDAs including the minor

IDA subspecies and a fraction of the ODAs. Many of the mutations found in patients with

PCD are premature stop codons (Y128X/W162X, V132X, and I195X). These stop codons may

lead to mRNA decay. By the immunofluorescence microscopy with antibodies to ODA heavy

chains, or to DNALI1 (dynein axonemal light intermediate chain 1) in IDAs, the dynein arms

are not assembled in these patients [35]. These patients are likely to define the null phenotype,

but the presence of the DYX1C1 protein was not monitored. At present, there is not a protein

null for the PF23 locus in Chlamydomonas. However, we would argue that the current pf23

allele is not a complete null since some ODAs are assembled unlike in the PCD patients.

Cryo-ET confirms the loss of dyneins in pf23 axonemes

To further assess defects of dynein structure in pf23 axonemes, we performed cryo-electron

tomography (cryo-ET) and subtomogram classification/average analysis of isolated axonemes.

Sub-volumes containing a 96-nm periodic structure on the doublet microtubule were compu-

tationally extracted, aligned in 3D orientation, masked at dyneins of interest, classified and

averaged (Fig 4 and [52]). The whole averaged map of pf23 axonemes demonstrates a loss of

most of IDAs, consistent with our biochemical analyses, which show a failure in assembly of

most inner dynein arms (Fig 4A). A structure with an elongated and a globular density is seen

at the position of dynein “a” (red arrow in Fig 4A, [52]), which suggests the presence of dynein

“a”. To further characterize the structure located in the dynein “a” position (referred to as

dynein “a”), and further assess occupancy of dyneins in the pf23 axoneme, we employed a

newly developed image classification technique [52]. In 71% of sub-tomograms, the dynein “a”

structure appears more clearly in the sub-averages (Fig 4B: left), while in the remaining sub-

tomograms dynein “a” is missing in sub-averages. Thus, consistent with the biochemical analy-

sis in Fig 3A and 3B, cryo-ET reveals partial occupancy of the dynein “a” site in pf23

axonemes.

With the exception of dynein “a”, cryo-ET analysis does not resolve other inner arm dyne-

ins. There is a structure in pf23 axonemes at the dynein “f/I1” position (blue arrows in Fig 4A

and 4B). However, the structure does not show the morphology of a dynein. Features showing

the head and the tail are not found and density corresponding to the IC/LC complex is missing

(Fig 4A and 4C). The density at the dynein “f/I1” site is located at the position of the dynein

“f/I1” tether, which is associated with the dynein “f/I1” motor domain: the tether is assembled

in axonemes from other mutants missing f/I1 dynein [53]. Although the sites of dyneins “c”

chains (α, β and γ), and pink arrowheads indicate the heavy chains of IDAs. Both the IDAs and ODA are
greatly reduced in pf23. (C) Ciliary dyneins of pf23were separated using the Mono-Q column on the HPLC
system [45] and the peak fractions were assessed by the urea-PAGE. In the urea gel, ODA “α/β”, ODA “γ”,
and IDA “a” were detected as strong bands, and IDA “d” and IDA “g” were detected as weak bands. The
symbol “×” in the chromatographic pattern and the urea gel indicates non-dynein peaks or peaks containing
unidentified high-molecular protein(s). “M” in the urea gel is the marker lane (Also see the elution pattern of
[79]).

https://doi.org/10.1371/journal.pgen.1006996.g002

DYX1C1/PF23 is required for ciliary dynein assembly
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Fig 3. Spectral counting reveals failure of ciliary dynein assembly in pf23 axonemes. (A, B) Ciliary
dynein-containing regions of axonemal samples in the SDS-PAGE gels were cut from the gel, and the amount
of each species of ciliary dynein estimated by spectral counting. The strains used were wild-type, pf23,
pf23cR-NT, pf23cR-3×HA, pf23gR-T5 and pf23gR-T9, and results were normalized using the wild-type
spectral numbers. In (A), a summary of dynein heavy chain peptide fractions (unique peptides) is shown that
verifies the reliability of the spectral counting analyses. In (B), a summary of unweighted peptide analyses
used to semi-quantitatively estimate the amount of ciliary dynein heavy chains is shown. The average of two
independent experiments is presented in the figures. The colors are an indication of the percentage of wild-
type level of each dynein heavy chain: red 0–20%, yellow 20–40%, blue 40–60%, purple 60–80%, light green
80–120%, dark green < 120%, respectively. The pf23 axonemes have greatly reduced amounts of major IDAs
(“b”, “c”, “d”, “e”, “f/I1” and “g”), all below 20% of the wild-type level. In contrast, 70% of IDA “a” species is
found in pf23 axonemes. Theminor IDAs, “DHC3”, “DHC4” and “DHC11”, are also greatly reduced in pf23
axonemes. The ODA heavy chains are reduced about 50% compared to wild-type axonemes. In pf23 rescued
strains, most of ciliary dyneins are recovered, but major IDAs “b”, “e” and minor IDA “DHC4” remain reduced
in pf23gR-T9, which expresses a short DYX1C1 fragment lacking the wild-type C-terminus.

https://doi.org/10.1371/journal.pgen.1006996.g003
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and “e” have diffuse intensity (yellow arrow in Fig 4B), we do not find any structure, before

and after classification that look like a dynein. These densities may represent the IDA heavy

chains that are not properly folded or represent density from other proteins. Similarly, no sig-

nificant density is found at the location of the other inner dynein isoforms. Therefore, we con-

clude that only dynein “a” is found with partial occupancy in pf23 axonemes. Given the large

difference of intermediate/light chain compositions between the dynein species lacking in pf23

(“b”, “c”, “d”, “e”, “f/I1”, “g”), these results strongly suggest that DYX1C1/PF23 plays an

Fig 4. IDA defects in the pf23 cilia visualized by Cryo-ET and image analysis. (A) Surface rendering representation of the averaged density maps
from pf23 (total average; left) and wild-type (EMD2131 [47]; right in green) cilia. Inner and outer arm dynein isoforms are indicated by yellow letters
[47]. (B) Longitudinal sections from averaged cryo-ET density maps to compare pf23 cilia, classified based on the area corresponding to the dynein “a”
(left panel) and dynein “f/I1” (right) loci, respectively, and wild-type (center). Dynein “a” in wild-type and the density we interpret as dynein “a” in pf23 are
indicated by red arrows. There is density at the locus of dynein “f/I1”, but closer to the doublet microtubule (blue arrows in A and the right panel of B),
which we interpret as non-dynein, possibly the tether defined by Heuser et al., [53]. Scale bar = 24 nm. (C) IC/LC complex of IDA “f/I1” is missing from
pf23 axoneme (encircled in the left panel). The central panel shows density of the IC/LC complex (indicated) sectioned at the same place as wild-type.
In all the longitudinal sections and surface renderings, the proximal end of the axoneme is located at left and the distal end at right. The angles and
positions of the sections in (B) and (C) are shown in the right panel. The analyses in Fig 4 were based on and further characterized/refined from [52]
under the publisher’s permission (Elsevier).

https://doi.org/10.1371/journal.pgen.1006996.g004
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important role in assembly of ciliary IDA heavy chains. We also observed that, compared to

wild-type axonemes, pf23 axonemes show a tendency to be compressed during cryo preserva-

tion. This observation suggests the IDAs play a role in maintaining axonemal integrity.

By cryo-ET observation and image classification, we can detect the decrease of ODAs,

which is consistent with our biochemical analyses (Fig 5A). Subtomograms containing ODA

were classified into five classes. One subclass (C4) shows no density of outer arm dynein

heads. Since 19% of subtomograms were categorized in C4, we conclude that the total occu-

pancy of ODAs in pf23 cilia is about 81%, slightly more than our spectral counting results.

Structural differences between other subclasses indicates heterogeneity of ODA in pf23 axo-

nemes. As partly described in Obbineni et al., [52], we noticed that one (β) of the three (α, β
and γ) ODA heavy chains are tilted in some populations of ODAs in pf23 axonemes. The

observed ODA heterogeneity suggests DYX1C1/PF23 functions in the assembly of ODA heavy

chains/heads (Fig 5B). In addition, partial failure in ODA assembly or heavy chain orientation

may be a consequence of missing the outer-inner dynein (OID) linkers [47, 53–56]. Other

obvious axonemal structures, such as radial spokes, central pair, N-DRC, and MIA complex

[57] appear unaffected in the pf23 axonemes.

ChlamydomonasDYX1C1 functions in the cytoplasmic dynein
preassembly pathway

To ask if the cytoplasmic localization of DYX1C1 in mammals [35] is conserved in Chlamydo-

monas, we examined the cellular localization of DYX1C1 by immunoblots of Chlamydomonas

cilia, cell bodies and whole cells using anti-DYX1C1 antibody (Fig 6A). DYX1C1 is found in

cell bodies and whole cells, but not in cilia (Fig 6A). Although previous studies postulated that

DYX1C1 could function in dynein assembly in the cytoplasm [35, 36], the exact state of ciliary

dyneins in DYX1C1-deficient organisms remains unresolved. DYX1C1 could be required to

maintain the stability of dynein subunits during assembly. To test this, we compared selected

dynein subunits from the axoneme and cell body in wild-type and pf23 cells by immunoblots

(Fig 6B). As expected, IC2 (an intermediate chain of ODA), IC138 (an intermediate chain of

IDA “f/I1”) and p28 (a light chain of IDAs “a”, “c”, “d”) are reduced in pf23 axonemes (Fig

6B). Importantly, the relative amount of each protein is reduced in the cytoplasmic extracts

(compare red and blue arrowheads, Fig 6B). Thus, the loss of part of the DYX domain appears

to also be required for stability of axonemal dyneins before transport to and docking in the

axoneme (Figs 1A and S1A).

To further test the idea that DYX1C1 is required for preassembly of ciliary dyneins in cyto-

plasm, we examined the preassembly state of ciliary dyneins in wild-type and pf23 cytoplasmic

extracts (Fig 6C). As previously reported for sucrose gradient fractionation of wild-type cyto-

plasmic extracts, IC2 sediments at ~20S and ~12S, IC138 sediments at ~20S, and p28 sedi-

ments at ~15S, respectively [11, 12]. In contrast, following sucrose density gradient

centrifugation of pf23 cytoplasmic extracts, the amount of preassembled ODA is greatly

reduced compared to wild-type and the preassembly of IDAs is nearly undetectable (Fig 6C).

These results indicate that Chlamydomonas DYX1C1 functions in cytoplasmic preassembly of

ciliary dyneins.

DYX1C1 may constitute a novel ciliary dynein preassembly complex

Based on a yeast two-hybrid experiment, Tarker et al [35] suggested a potential interaction

between DYX1C1 and PF13/KTU/DNAAF2. Also, yeast two-hybrid and immunoprecipitation

studies suggest interaction between DYX1C1 and PIH1D3, which is another preassembly fac-

tor responsible for X-linked primary ciliary dyskinesia [23, 24, 58]. To identify proteins that
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Fig 5. pf23 also had slight structural defects in ODAs. (A) Classification of pf23ODAs based on the algorithm of Obbineni et al [52].
ODAs in pf23were classified into 5 classes. The total occupancy of ODAs in pf23was 81%, slightly more than our spectral counting results
(Fig 3A and 3B). 9 doublets were not classified to any class. Scale bar = 24 nm. (B) Longitudinal sections which involve ODA β heavy chain
heads (Left: C1 subclass, Center: C1 subclass, sectioned at the 7 degrees tilted angle with respect to the left panel. Right: C2 subclass).
Resemblance of dynein heavy chain heads between the central and right panels suggest the β head domain in C1 subclass was tilted ~7
degree compared to that of C2 subclass. Dynein β heavy chain heads are indicated by red arrowheads. The proximal end of the axoneme is
located at left and the distal end at right. The analyses in Fig 5 were based on and further characterized/refined from [52] under the
publisher’s permission (Elsevier).

https://doi.org/10.1371/journal.pgen.1006996.g005
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Fig 6. Ciliary dyneins are not preassembled in pf23 cytoplasm. (A)ChlamydomonasDYX1C1 is located in the cell body. Wild-type whole cells (WC),
deciliated cell bodies (CB), cilia (Cil) from the equivalent number of cell bodies, and a 10-fold excess of cilia were probed with anti-DYX1C1, anti-actin,
and anti-p28 antibodies. While more than half of p28 and small amount of actin are present in ciliary IDAs, the signal of DYX1C1 was observed only in cell
bodies and whole cell samples, indicating DYX1C1 functions in the cytoplasm. (B) The amounts of ciliary dynein subunits were greatly reduced both in
axonemes and cell bodies of pf23. Total ~1 μg of axoneme (Axo) and cell bodies (CB) from wild-type and pf23were run on SDS-PAGE, and blotted with
anti-IC2 (an intermediate chain of ODA), anti-IC138 (an intermediate chain of IDA “f/I1”) and anti-p28 (a light chain of IDAs “a”, “c”, “d”) antibodies. The
amounts of these dynein subunits were greatly reduced in the cell bodies of pf23 compared to wild-type (compare pink arrowheads to blue arrowheads),
suggesting the stability of these subunits is reduced in pf23 cytoplasmic extracts. (C) The cytoplasmic preassembly of ciliary dyneins is incomplete in pf23
cytoplasm. Sucrose density centrifugation was performed on cytoplasmic extracts from wild-type and pf23 to examine the preassembly of ODA and IDAs.
Resultant fractions were probed with anti-IC2, anti-IC138, and anti-p28 antibodies. In wild-type cytoplasmic extracts, the pre-assembled ODA and IDAs
sedimented as large complexes: ODA, ~20S, pink arrowhead; IDA “f/I1”, ~20S, green arrowhead; IDAs “a”, “c”, “d”, ~15S, orange arrowhead. In pf23, the
pre-assembled IDA complexes (“a”, “c”, “d”, “f/I1”) were not observed, and only trace amount of preassembled ODA complexes were detectable (blue
arrowhead). The fractions were also blotted using the anti-DYX1C1/PF23 antibody. PF23/DYX1C1 sedimented near the top of the sucrose density
gradient fractions, suggesting the bindings between PF23/DYX1C1 and ciliary dyneins are transient or weak, and/or binding of only a small portion of
DYX1C1 to ciliary dyneins is enough for the dynein pre-assembly process. A yellow arrowhead indicates the normal DYX1C1 band, while a purple
arrowheadmost likely indicates a band of slightly degraded DYX1C1molecule. (D) Immunoblots of previously identified dynein preassembly factors
(PF13/KTU/DNAAF2 and IDA10/MOT48) in whole cell samples from wild-type and various preassembly deficient mutants (oda7, ida10, pf13, pf13-3,
pf22, pf22A, pf23) (S2 Table). The amount of the preassembly factors is variable from culture to culture, but relatively normal in pf23 compared to wild-
type. A pink arrowhead indicates the PF13/KTU bands, and a blue arrowhead above indicates non-specific bands. (E) Immunoblots ofChlamydomonas
DYX1C1/PF23 on the whole cell samples from wild-type and various preassembly deficient mutants (oda7, ida10, pf13, pf13-3, pf22, pf22A, pf23). The
amount of DYX1C1 is at wild-type levels in previously identified dynein-preassembly mutants. Note that pf23 has a smaller DYX1C1 than other strains
because of the mutation (pink arrowhead).

https://doi.org/10.1371/journal.pgen.1006996.g006

DYX1C1/PF23 is required for ciliary dynein assembly

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1006996 September 11, 2017 12 / 21

https://doi.org/10.1371/journal.pgen.1006996.g006
https://doi.org/10.1371/journal.pgen.1006996


function with DYX1C1 in the preassembly/cytoplasmic stability of ciliary dyneins, we immu-

noprecipitated DYX1C1-containing complexes from the cytoplasm of the pf23cR-3×HA strain;

an antibody to HA was used for precipitation from cytoplasmic extracts either with or without

Bis(sulfosuccinimidyl)suberate (BS3)-crosslinking (see Materials and methods). From the

immunoprecipitation experiments, we could not identify interactions between DYX1C1 and

previously identified dynein preassembly factors reviewed in [16]. In addition, immunoblot

analysis of whole cell extracts from wild-type and pf23 do not reveal significant changes in the

abundance of the previously identified dynein preassembly factors PF13/KTU/DNAAF2 and

IDA10/MOT48 (Fig 6D). In Chlamydomonas, many double mutants that lack inner and outer

dynein arms fail to assemble cilia. For example, the pf9×oda4, ida3×oda2 or pf9×oda3 double

mutants lack cilia [44, 59, 60]. We made double mutants of pf23with pf13 (PF13/KTU/

DNAAF2) or with oda7 (ODA7/LRRC50/DNAAF1). The double mutants lacked cilia in both

pf23×pf13 and pf23×oda7 strains. Furthermore, DYX1C1 levels are unaffected in the known

preassembly deficient mutants, oda7, ida10, pf13 and pf22 (Fig 6E and S2 Table; reviewed in

[16]). These results suggest that the stability and function of DYX1C1 in Chlamydomonas cells

can be independent of the other preassembly factors. Given the differences in the dynein spe-

cies missing in pf23 compared to other preassembly mutants (pf13, pf22, oda7 and ida10)(for

the dynein defect(s) in each mutant see S2 Table), the DYX1C1/PF23 complex may have a

unique molecular function in ciliary dynein pre-assembly. However, it is also possible that

DYX1C1 functions both independently and cooperatively with previously identified preassem-

bly factors for dynein assembly.

Summary

We report that DYX1C1 is a ciliary dynein preassembly factor that is needed for dynein arm

assembly; the DYX domain plays a major role in the preassembly of the inner dynein arms.

We propose that DYX1C1 is needed for stability of ciliary dyneins both in cytoplasm and cilia.

This action could be mediated by effects on protein folding as has been proposed for other pre-

assembly factors, or by providing a scaffold for the association of various essential dynein com-

ponents. Many of the previously identified preassembly factors have domains identified as

playing roles in protein-protein interactions (e.g. TPR, HEAT, LRR), and may provide a

unique staging area for the assembly of these large molecular complexes. Additional genetic,

biochemical and structural analyses are required to determine the precise mechanistic role of

DYX1C1 in dynein assembly.

Materials andmethods

Strains and culture conditions

Chlamydomonas reinhardtii wild-type (137c) and the mutants that were used are listed in S2

Table. Mutants were purchased from Chlamydomonas Resource Center (University of Minne-

sota) or generously provided by Dr. Ritsu Kamiya (Chuo University). Cells were grown in

TAP (Tris-Acetate-Phosphate) and/or SG (Sager and Granick) media under constant

illumination.

Preparation of cilia, axonemes, cell bodies and whole cell samples

Live Chlamydomonas cells were deciliated using the dibucaine method [61]. In order to pre-

pare axonemes, detached cilia were collected by centrifugation, and demembranated with

0.2% IGEPAL or Nonidet P-40 in cold HMDEK (30 mMHEPES, 5 mMMgSO4, 1 mMDTT,

1 mM EGTA, and 50 mM potassium acetate, pH7.4) or HMDS (10 mMHEPES, 5 mM
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MgSO4, 1 mMDTT, 4% Sucrose, pH7.4) buffer. Membrane and matrix fractions were sepa-

rated from the axonemes by centrifugation to yield a pure axoneme fraction. Extracts from cell

body or whole cell samples were treated with methanol and chloroform to remove DNA/RNA

fractions and washed with methanol several times until the resultant pellets became nearly

white in color. In some experiments, to reduce possible protein degradation, isolated cell bod-

ies or whole cells were directly added to SDS-PAGE sample buffer, mixed well, and heated at

95˚C for 10 min.

SDS-PAGE and immunoblots

SDS-PAGE and immunoblotting were performed with standard protocols described previ-

ously using 5 to 10% acrylamide gels [57]. SDS-PAGE gels were stained with CBB (Coomassie

brilliant blue) or silver. For immunoblotting, samples separated by SDS-PAGE were trans-

ferred to a nitrocellulose or PVDF membrane, stained with CBB or Ponceau S if necessary,

incubated with specific primary antibodies and subsequently HRP (horseradish peroxidase)-

conjugated secondary antibodies. Immuno-reaction was detected using a TMB (3,30,5,50-tetra-

methylbenzidine peroxidase) substrate kit (Vector Laboratories), Pierce ECL immnoblotting

substrate (Thermo Scientific) or ECL prime immunoblotting detection reagent (GE Health-

care). Primary antibodies used were as follows: anti-DYX1C1 CT299 (Rabbit: this study), anti-

PF13/KTU (Rabbit: [17]), anti-IDA10/MOT48 (Rabbit: this study), anti-IC138 (Rabbit: [62]),

anti-IC2 (Mouse: [63]), anti-Actin (Rabbit: [64]), anti-p28 (Rabbit: [59]), and anti-HA 3F10

(Rat: Roche Applied Science) or anti-HA Y11 (Rabbit: Santa Cruz). HRP-conjugated goat

anti-rabbit or goat anti-mouse secondary antibodies were commercially purchased from Invi-

trogen. Anti-PF13/KTU antibody was a generous gift from Dr. David R. Mitchell (SUNY

Upstate Medical University).

Sucrose density gradient centrifugation

Sucrose density gradient centrifugation of Chlamydomonas cytoplasmic extracts was per-

formed as described in [65]. Briefly, cells were broken by the glass beads method [66] and

crude supernatant was obtained by centrifugation at 10,000 rpm for 10 min. The supernatant

was clarified at 22,500 rpm for 2 hr using a Type 40 Beckman fixed-angle rotor, and the cyto-

plasmic extract was collected. The cytoplasmic extract was loaded on a 5–20% sucrose density

gradient, centrifuged at 32,500 rpm for 16 hr using a Beckman SW41Ti rotor, and equal vol-

ume fractions were collected into Eppendorf tubes.

Polyclonal antibody production

Anti-DYX1C1 antibody (CT299) was raised against maltose-binding protein fused to the

206-residue DYX1C1 sequence predicted by JGI Chlamydomonas genome version 4 (http://

genome.jgi.doe.gov/Chlre4/Chlre4.home.html). This DYX1C1 antigen was synthesized by

GenScript USA Inc. and corresponds to residues 1–142 and 324–350 of both the DYX1C1

sequence determined in this study and the full-length protein sequence predicted by Phyto-

zome Chlamydomonas genome version 5.5 (https://phytozome.jgi.doe.gov/pz/portal.html#!

info?alias=Org_Creinhardtii). Antibody was blot-purified [67] prior to use. An anti-MOT48

antibody was produced against the full-length MOT48 protein (see[18]) fused with the gluta-

thione S-transferase protein located at the N-terminus. The MOT48 antiserum was blot-puri-

fied using the recombinant MOT48 protein.
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PCR for mapping

Crude DNA was obtained from about ~1×106 cells from each progeny of matings and used for

mapping PCR as previously described [68]. The matings were carried out between the S1D2

strain (CC-2290) and a pf23 strain [69].

Rescue of the pf23 strain

Phenotypic rescue of pf23 using a genomic DNA fragment containing the wild-type DYX1C1

sequence was performed as described previously [70]. Briefly, BAC29H10 was isolated from

Chlamydomonas BAC library (bacterial artificial chromosome), and pf23 cells were trans-

formed with 29H10 by the glass bead method [71]. For screening of transformed pf23 cells, the

cells were grown in liquid TAP medium and swimming cells were isolated for further analyses.

Phenotypic rescue of pf23 using wild-type DYX1C1 cDNA and the pGenD vector was car-

ried out as described previously [18, 72]. The wild-type DYX1C1 cDNA was synthesized by

GenScript Japan (http://www.genscript.jp/gene_synthesis.html), and inserted into the NdeI-

EcoRI sites of the modified pGenD vector, which contains the APHVIII gene conferring paro-

momycin resistance to Chlamydomonas. For some experiments, the 3×HA epitope sequence

was also inserted into the pGenD plasmid so that the exogenous DYX1C1 gene would express

a protein with the 3×HA tag at the C-terminus. The modified pGenD vector was transformed

into pf23 cells by the electroporation method [73]. Transformants were selected by growing

the transformed pf23 cells on TAP plates containing 10 μg/ml paromomycin. Swimming cells

were then isolated for further study.

Spectral counting of ciliary dynein heavy chains

For semi-quantitative estimation of amounts of axonemal dynein heavy chains, 15 μg axo-
nemes were run on 8% acrylamide SDS-PAGE gels. Gel regions above 250 kDa containing all

the axonemal dynein heavy chains were cut out and processed for spectral counting analyses

using LC/MS/MS (liquid chromatography/MS/MS). The averages of two independent experi-

ments are summarized in Fig 3.

Identification of potential DYX1C1 interacting partners

To determine the potential interacting partners of DYX1C1, immunoprecipitation experi-

ments were performed using an anti-HA antibody and cytoplasmic extracts from pf23cR-

3×HA expressing 3×HA tagged exogenous DYX1C1. Immunoprecipitation was performed

from extracts without chemical crosslinking or following BS3 (bis(sulfosuccinimidyl)suberate)

crosslinking (0.5 mM). Cytoplasmic extracts of pf23cR-3×HA were obtained by sonicating cells

that had been deciliated (by pH shock) 30 min to induce DYX1C1 expression. The cell extracts

were clarified by centrifugation and the supernatants collected. Immunoprecipitation under

non-crosslinked conditions was performed as described previously [57]. Cytoplasmic extracts

were mixed with HA antibody-conjugated agarose beads (Anti-HA (3F10) affinity Matrix:

Roche), incubated from several hours to overnight, and proteins precipitated with HA anti-

body-conjugated agarose beads run ~ 10 mm into an SDS-PAGE gel, stained with CBB, cut

out from the gel and their identity determined by ESI/LC/MS/MS (electrospray ionization/liq-

uid chromatography/MS/MS) analysis.

For immunoprecipitation under BS3-crosslinked conditions, cytoplasmic extracts were

crosslinked with 0.5 mM BS3 for 30 min, and SDS-PAGE sample buffer containing 1% SDS

added. Samples were then heated at 95˚C for 10 min, diluted 10 times with 1% IGEPAL in TBS

[74], and mixed with an HA-antibody conjugated agarose beads (Anti-HA (3F10) affinity
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Matrix: Roche). The mixture was incubated overnight and the proteins precipitated with the

HA antibody-conjugated agarose beads processed as described above.

For experimental controls, untagged wild-type cytoplasmic extracts were processed in the

same way as experimental samples, both under non-crosslinked and BS3-crosslinked condi-

tions. The proteins identified in precipitates from pf23cR-3×HA, but not from wild-type, were

considered as potential interacting partners of DYX1C1. The protein identification thresholds

in Scaffold 4 software (http://www.proteomesoftware.com/products/scaffold/) were set as fol-

lows: Protein Threshold: 90%, Minimal Peptides Number: 2, Peptide Threshold: 80%.

Cryo electron tomography

Purified cilia from pf23were mounted on lacey carbon grids (Plano, Germany) and plunged

into liquid ethane at liquid nitrogen temperature using a hand-made manual plunger. Frozen

grids were transferred to the JEM2200FS transmission electron microscope (JEOL, Japan) by a

cryo-transfer system 626 (Gatan, USA). Electron micrographs were recorded at a nominal

magnification of 20,000, accelerating voltage of 200 kV and total dose ~40e-/Å2, by in-column

energy filtering (JEOL) and a CMOS detector F416 (TVIPS, Germany), using Serial EM [75].

Tomograms were reconstructed using IMOD. Subtomograms were extracted from axonemes

located nearly parallel to the tilt axis of the goniometer of the microscope, aligned based on the

96-nm periodicity as described elsewhere [76], and classified using a missing wedge-free algo-

rithm developed in part using axonemes from pf23 [52]. For ODA classification, we set the

number of subclasses to six. Since the sixth subclass contains only nine subtomograms which

seem misaligned, we did not pursue further classification and show only five subaverages. 3D

maps are presented using UCSF Chimera [77] and IMOD. The analyses of wild-type/pf23

tomograms in Figs 4 and 5 were based on and further characterized/refined from [52] under

the publisher’s permission (Elsevier). The density maps used in Figs 4 and 5 have been depos-

ited at EMDataBank (http://www.emdatabank.org/) under the accession IDs EMD3779,

EMD3786, and EMD3787.

Other methods

Protein concentration of samples was measured by the Coomassie staining method [78]. Pro-

tein motifs and domains were analyzed using SMART (http://smart.embl-heidelberg.de/) or

pfam (http://pfam.xfam.org/) searches. For sequence comparisons, data were aligned using

ClustalW (http://www.genome.jp/tools/clustalw/) and the output was processed with BioEdit

(http://www.mbio.ncsu.edu/bioedit/bioedit.html). Images were equally adjusted for contrast

and/or brightness, if necessary. Figures were assembled using Photoshop (Adobe Systems),

Microsoft Paint (Microsoft Windows), Illustrator (Adobe Systems), and/or Power Point

(Microsoft Corporation).

Supporting information

S1 Fig. Domain structures of DYX1C1/PF23 and homologous proteins. (A) Domain struc-

ture was predicted using the SMART/Pfam analyses. DYX1C1 homologs have one CS domain

(gray) at the N-terminal half, a coiled-coil region (green), and several TPR motifs (yellow) at

the C-terminal half. The red dotted line in wild-type Chlamydomonas indicates the deficient

region in pf23. The blue bars in human and Chlamydomonas structures represent the predicted

positions of the DYX domain. The sequence NCBI accession numbers used for this compari-

son were as follows: Human, NP_570722; Mouse, NP_080590; Zebrafish, NP_991251; Trypa-

nosoma, XP_829662. Chlamydomonas DYX1C1 sequences were determined in this study. (B)

A phylogenetic tree of potential DYX1C1 homologs in eukaryotes. The alignment was created
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using Clustal W version 1.83 at DDBJ (http://www.ddbj.nig.ac.jp/index-j.html) at the default

settings with neighbor-joining clustering. The tree was refined with NJplot (http://doua.prabi.

fr/software/njplot). Another CS/PIH domain containing dynein pre-assembly factor, PIH1D3,

was used as the outgroup. The sequence accession numbers used for tree construction were as

follows: Human DYX1C1, NP_570722 (NCBI); Mouse DYX1C1, NP_080590 (NCBI); Zebra-

fish DYX1C1, NP_991251 (NCBI); Trypanosoma DYX1C1, XP_829662 (NCBI); Volvox

DYX1C1, Vocar.0014s0240 (Phytozome Volvox v2.1); Tetrahymena DYX1C1,

TTHERM_00540410 (TGD); Phytophthora DYX1C1, XP_009526226 (NCBI); Chlamydomo-

nasDYX1C1, this study; Chlamydomonas TWI1, Cre07.g335800 (Phytozome Chlamydomonas

v5.5); Human PIH1D3, NP_775765 (NCBI); Mouse PIH1D3, NP_808589 (NCBI); Zebrafish

PIH1D3, NP_001002309 (NCBI); Trypanosoma PIH1D3, XP_821214 (NCBI).

(TIF)

S2 Fig. Sequence comparison of DYX1C1/PF23 and homologous proteins. (A) DYX1C1/

PF23 and its homologs in human, mouse and zebrafish were aligned using ClustalW. Red,

black, and green bars represent the CS domain (a potential HSP90 binding module), the

coiled-coil domain, and the TPR domain(s), respectively. Blue bar represents the DYX

domain, which is defined in Chandrasekar et al [36]. The yellow dotted box indicates the

27-amino acid containing region deficient in pf23. (B) Chlamydomonas wild-type, mutated

(pf23-type), and exogeneous DYX1C1 expressed in pf23gR-T9were aligned by ClustalW. The

yellow dotted box indicates the 27-amino acid containing region deficient in pf23. The red bar

represents a C-terminal region lacking in pf23gR-T9. The sequence NCBI accession numbers

used for this comparison were as follows: Human, NP_570722; Mouse, NP_080590; Zebrafish,

NP_991251. Chlamydomonas DYX1C1 sequences were determined in this study.

(TIF)

S1 Table. Previously identified dynein pre-assembly factors present in Chlamydomonas.

(DOCX)

S2 Table. Chlamydomonasmutant strains used in this study.

(DOCX)
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