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We introduce and investigate new subclasses of biunivalent functions defined in the open unit disk, involving Séldgean operator
associated with Chebyshev polynomials. Furthermore, we find estimates of the first two coeflicients of functions in these classes,
making use of the Chebyshev polynomials. Also, we give Fekete-Szeg inequalities for these function classes. Several consequences

of the results are also pointed out.

1. Introduction

Let o/ denote the class of analytic functions of the form
f@=z+)az" )
n=2

normalized by the conditions f(0) =0 = f '(0) -1 defined in
the open unit disk

A={zeC: |z] <1}. 2)

Let & be the subclass of & consisting of functions of form (1)
which are also univalentin A. Let $* («) and % («) denote the
well-known subclasses of &, consisting of starlike and convex
functions of order a (0 < & < 1), respectively.

The Koebe one-quarter theorem [1] ensures that the
image of A under every univalent function f € & contains
a disk of radius 1/4. Thus every univalent function f has an
inverse f' satisfying

@)=z
. NERC)
Ftw)=w (ll<n(), n()zy).

4

A function f € ¢ is said to be biunivalent in A if both f and
f7" are univalent in A. Let ¥ denote the class of biunivalent

(z €n),

functions defined in the unit disk A. Since f € X has the
Maclaurin series given by (1), a computation shows that its
inverse g = ! has the expansion

g(w)Zf_l(w)=w—a2w2+(2a§—a3)w3+...‘ (4)

An analytic function f is subordinate to an analytic
function g, written as f(z) < g(z), provided there is an
analytic function w defined on A with w(0) = 0 and |w(z)| <
1 satistying f(z) = g(w(z)).

Chebyshev polynomials, which are used by us in this
paper, play a considerable role in numerical analysis. We
know that the Chebyshev polynomials are four kinds. The
most of books and research articles related to specific orthog-
onal polynomials of Chebyshev family contain essentially
results of Chebyshev polynomials of first and second kinds
T,(x) and U, (x) and their numerous uses in different appli-
cations; see Doha [2] and Mason [3].

The well-known kinds of the Chebyshev polynomials are
the first and second kinds. In the case of real variable x on
(=1, 1), the first and second kinds are defined by

T, (x) = cosnb,

_ sin(n+1)0 )
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where the subscript # denotes the polynomial degree and x =
cos 0. We consider the function

1
_— 6
1-2tz +2° (©)
We note that if t = cosa, € (—77/3,7/3), then forall z € A

O (z,t) =

1 o sin(n+ 1
O(zt)= ———— =1+ ZW—)“Z"
1 -2tz +z? ~=  sina )

=1+2cosaz + (3 cos’a — sinzoc) 2t
Thus, we write

(D(Z,t)z1+U1(t)Z+U2(t)z2+... ©
(zen, te(-1,1)),

where U,_, = sin(narccost)/V1 —1t2, for n € N, are the
second kind of the Chebyshev polynomials. Also, it is known
that

U, () = 2tU,_, (t) - Ui (t), %)
U, (t) =2t
U, (t) = 4t* - 1, (10)

U, (t) = 8> —4t,....

The Chebyshev polynomials T,(t), t € [-1,1], of the first
kind have the generating function of the form

iTn OB 1712 en). (1)
n=0

— 2tz + 22

All the same, the Chebyshev polynomials of the first kind
T,(t) and the second kind U,,(t) are well connected by the
following relationship:

dT, (t) _
Q=W ),

T, (1) = U, () = tU,_, (1), (12)
2T" (t) = Un (t) - Un—z (t) .

Several authors have introduced and investigated sub-
classes of biunivalent functions and obtained bounds for the
initial coeflicients (see [4-10]). In [11], making use of the
Salagean [12] differential operator,

D o — o (13)
defined by
P°f(z) = f(2),

D' f(2) = Df (2) = zf (),

, (14)

Pf(2)=2 (2" f(2) =2 (2" f(2)
keN=1{1,23,..},

Pfz)=z+ inkanz", keN,=NuU{0}, (15)

n=2

Journal of Complex Analysis

and further for functions g of the form (4) Vijaya et al. [11]
(also see [13]) defined

Dkg (w) =w- a22kw2 + (2a§ - a3) 3 4. (16)

and introduced two new subclasses of biunivalent functions.
In this paper, we use Chebyshev polynomials to obtain the
estimates on the coefficients |a,| and |a;|.

2. Biunivalent Function Classes ./ ';()L, D(z,1))
and 75 (B, (2, 1))

Motivated by recent works of Altinkaya and Yalcin [14] (also
see [15]) and recent studies on biunivalent functions involving
Séilagean operator [11, 13], in this section, we introduce two
new subclasses of X associated with Chebyshev polynomials
and obtain the initial Taylor coefficients |a,| and |as| for the
function classes by subordination.

Definition 1. For 0 < A < 1andt € (-1,1) a function f €

¥ of form (1) is said to be in the class ﬂ;()t,cb(z, t)) if the
following subordination holds:

Dk+1f (Z) Dk+2f (Z)
Ve o e
Dk+1 ( ) Dk+2 ( ) (17)
gl\w gl\lw
(1 _A) Dkg (w) Dk“g(w) < (D(w,t),

where z, w € A and g is given by (4).

We note that by specializing the parameters A and suitably
fixing the values for k in Definition 1, we introduce (had not
been studied so far) the following new subclasses of X as listed
below.

Remark 2. Supposing f(z) € X and t € (-1,1), then we
denote

(1) ME(0, D(2,1)) = SE(D(z,1)),
(2) ME(1, D(2,1)) = HE(D(2, 1)),
(3) 30, D(2, 1)) = S35(D(2, 1)),
(4) MY, D(z,1)) = Hy(D(z,1)).
Due to Frasin and Aouf [16] and Panigarhi and Muru-

gusundaramoorthy [17] (also see [11, 13]) we define the
following new subclass involving the Séldgean operator [12].

Definition 3. For0 < f < landt € (-1, 1) afunction f € Xof
form (1) is said to be in the class # I; B, O(z, 1)) if the following
subordination holds:
D'f (2) i
(-9 L (D @) <o,
(18)

Dk (w) i

(1-8) == 4 B(Drg ) < @@,

where z,w € A, g = ', D" f(2) and D¥g(w) are given by
(4), (15), and (16), respectively.
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In Definition 3, by specializing the parameters 8 and
suitably fixing the values for k (had not been studied so far)
the following new subclasses of X are as listed below.

Remark 4. Supposing f(z) € X andt € (-1,1), then we
denote

(1) FE(0, (2, 1)) = RE(D(2, 1)),
2) FE(1, 0(z,1) = Z5(0(2, 1)),
(3) FUB, D(z,1)) = F5(B, D(z,1)),
(4) FU1, D(z,t) = H2D(z,1)).

In the following theorems we determine the initial Taylor
coeflicients |a,| and |a;| for the function classes f €

MEM, D(2,1)) and f € FE(B, D(z,1)).

Theorem 5. Let f given by (1) be in the class /%;(A, D(z,t))
andt € (0,1). Then

|a,|
3 262t
2223 - (A2 4 5h+2) 2% 42+ (14 A2 2] (19)

las| < awo_
T eI (142038

where 0 < A < 1andt + 1/7/2.

Proof. Let f € %’g()t, d(z,t))and g = f_l. Considering (17),
we have

Dk+1f (Z) Dk+2f (Z)

(1 _A) Dkf(Z) Dk+1f(z) = (D(Z!t)) (20)
Dk+1g (w) Dk+zg (w) ~
(1-21) Dgw D) O (w,t). (21
Define the functions u(z) and v(w) by
u@)=cz+6z +---, (22)
v(w) =dw+dyw’ + - (23)

which are analytic in A with #(0) = 0 = v(0) and |u(z)| < 1,
[v(w)| < 1, for all z € A. It is well known that

lu(z)| = 'clz+Qz2+...| <1,

v ()| = |[dyw+dyw® +--| < 1, (24)
Z,W € A,
and then
ol <1,
|d; <1 (25)
vjeN.

Using (22) and (23) in (20) and (21), respectively, we have

Dk+1f(z) Dk+2f (Z)
1-1) Dkf (2) Dk+1f(z)
=1+U, (O ux)+U, )1’ (2) +---,
k+1 k+2 (26)
D" gw) D"g(w)
(1 _)L) Dkg(w) Dk+1g(w)

=1+U, ()v(w)+U, () v (W) +--- .
In light of (1), (4), (10), (15), and (16) and from (26), we have
1+ (1+1) 2%,z + [2(1 +21) 3%a, - (1+31) 2% a;

= 1+U1(t)c1z+[Ul(t)cﬁUz(t)Cf]

. Z2 + ceey
(27)
1-(1+ ) 2w+ {[81+4)3° - GA+1)2%] &
2 +203 gt w’ + = 14U, () dyw
+|U,0dy + U, () d7 | w? +
This yields the following relations:
(1+M)2%a, =U, (t) ¢, (28)
—(1+3102%a2 +2(1+21) 34,
(29)
=U, () + U, () ¢},
—(1+M)2%a, =U, (1) d,, (30)
(4 +20)3° - (1+32)2%) a; -2(1+22) 34
@31
=U,(t)d, + U, (t)d].
From (28) and (30) it follows that
¢ =-dj, (32)
20+ 0 2%a; =Uf (1) (o + ). (33)
Adding (29) to (31) and using (33), we obtain
@
Us (1) (, + dy) (34)

2 [{2(1+20)3% = (1+30) 2%} UZ (1) - (1 + 1)? 22U, (1)]

Applying (25) to the coefficients ¢, and d, and using (10) we
have

|,

B 2tV2t (35)
- V(21 +22) 3% — (A2 + 50 +2) 2%] a2 + (1 + 1) 2|




By subtracting (31) from (29) and using (32) and (33), we get

LU0 ) U(o-d)

= ) (36)
BT AN 2% (11203

Using (10), once again applying (25) to the coeflicients ¢, ¢,,
d,,and d,, we get

442 t

< ST + TSRS (37)

|“3|
O]

By taking A = O0Oor A = 1landt € (0,1), one
can easily state the estimates |a,| and |a;| for the function
classes J5(0,D(z,t)) = SE(D(z,1)) and AE(1, D(z,1)) =
K ’;(d)(z, t)), respectively.

Remark 6. Let f given by (1) be in the class é”g(CD(z, t)). Then

2t\2t
\/|[3k —22K] 8¢ + 22k|

|as| <
(38)

ar ot

|a3| < 27 + ?
Remark 7. Let f given by (1) be in the class %Ig(@(z, t)). Then

2t\2t
\/|[3k+1 — 22(kD] 842 4 22(k+1)|’

|a,| <

(39)

2 t
|€l3| < ﬁ + 3k+1 . (40)

For k = 0, Theorem 5 yields the following corollary.

Corollary 8. Let f given by (1) be in the class /%g(/\, DO(z,t)).
Then

P 22t
e -0z eayae]

|a,

(41)
o] < 4% Lt
TTaen a+21y

where0 < A < landt + 1//2.

By taking k = 0 in the above remarks we get the
estimates |a,| and |a,| for the function classes §'s.(®(z, t)) and
Ho(D(z,1)),

Remark 9. Let f given by (1) be in the class é’g (D(z,t)). Then

|ay| < 2tV2t,
(42)
|a3| <4t’ +t.
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Remark 10. Let f given by (1) be in the class :%/;(d)(z, t)).
Then, for t # 1/+/2,

262t

V|4 - 882 43)

)t
|as| < ¢t 3

|a,| <

Theorem 11. Let f given by (1) be in the class 9;([5, D(z,1))
andt € (0,1). Then

|a,|
B 2t\2t (44)
- V[ +2B) 36— (1+ B) 2] 412 + (1 + B)’ 22|
4t* 2t
|as| < (45)

(v gy 2z (1+2p)3

Proof. Proceeding as in the proof of Theorem 5 we can arrive
at the following relations:

(1+B)2a, =U, () a, (46)
(1+28)3%a, =U, (1) ¢, + U, () &, (47)
-(1+p)2%a, =U, (1) d,, (48)
2(1+2p)3%a% - (1+2p) 3*a,
=U, (t)dy + U, (t)d:. )
From (46) and (48) it follows that
¢ =—dj, (50)
2(1+ ) 2%a; = UL (1) (] + 7). (51)
From (47), (49), and (51), we obtain
i - Ui (1) (¢ +dy) )

2[(1+2B) 302 (1) - (1 + p)* 22U, ()]

Using (10) and (25) for the coefficients ¢, and d,, we
immediately get the desired estimate on |a,| as asserted in
(44).

By subtracting (49) from (47) and using (50) and (51), we
get

_UoE@+d) U0(g-d)

2(1+ﬁ)222k 2(1+2pB)3kF (53)

Again using (10) and (25) for the coefficients ¢;, ¢,, d;, and d,,
we get the desired estimate on |as| as asserted in (45). O
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Remark 12. Let f given by (1) be in the class 9?;(@(2, t)).
Then

B 22t
B \/|(3k _ 22k) 442 + 22k|

4r ot

|a, |

(54)

|as| <

Remark 13. Let f given by (1) be in the class %’;(Cb(z, t)).
Then

o] < 2t\/2t
21 = 5
k+1 _ »2(k+1) 2 2(k+1)
\/|(3 22Uk+1)) 452 4 22(k+1))| (55)
44 2t

|as| < 220 F 3kl
By taking k = 0 we deduce the following results.

Remark 14. Let f given by (1) be in the class F5(f3, ®(z,t)).
Then

2t\/2t

|a2| < 5 5
|(1+B) - 42|
2 2t

4t N
(1+p)? (1+2p)

(56)

|a3| <

2
‘“3 _.”‘12'
_
(1+21)3F
8|1 —‘u|1‘3
|21 +20) 35— (A2 + 51 +2) 2%%) 42 + (1 + A)? 22K

Proof. From (29) and (31)

a - pay = (1- )

UL (8) (¢ + dy)
(4(1+2X) 3K = 2(1 +31) 22) U2 (t) - 2U, (t) (1 + A)* 2%

U, (t) (¢, - d,) (60)

1
" 4(1+421)3k =Ui (t)[(h(”)Jr 4(1+2/\)3k)02

(00~ )

(1-wU; () (61)
C2[(2( 20 3k - (1+30)2K) U2 (1) - (1 +0)* 22U, (1) ]

u=1]<

u=1] =

5
Remark 15. Let f given by (1) be in the class 5’/72(1, D(z,t)) =
5 (D(z,t)). Then
t\2t
|ay| < i
[1-22| 57)
|as| < £+ =
Remark 16. Let f given by (1) be in the class 9/72(0, D(z,t)) =
R5(O(z,1)). Then
|a2| < 2tV2t,
(58)

|as| < 4t” +2t.

3. Fekete-Szego Inequality for the Function
Classes .//5 (A, ®(z,t)) and FE(A, O(z, 1))

Due to Zaprawa [18], in this section we obtain the Fekete-
Szeg6 inequality for the function classes /%’5(/\, d(z,t)) and
Fr(B Oz 1)).

Theorem 17. Let f given by (1) be in the class /1’5()&, D(z,t))
and y € R. Then one has
|(1+2)? 2% /4 + 21 +22) 35 = (A% + 51+ 2) 27|
2(1+20) 3F (59)
|(1 +A)? 2% /48 +2(1+20)3° - (1> + 51 +2) 22"|
2(1+27) 3k ’
Then, in view of (10), we conclude that
2
|a3 —Hay
t 1
— -, 0<|h L — 2
(1+2X)3k [ (w) 4(1+2A)3k (62)
- 1
4t |h , h >—
Taking y = 1, we have the following corollary. O
Corollary 18. If f € /ﬂg(/\, D(z, 1)), then
5 t
|as -] < (63)

T (1+2M) 3K



Corollary19. Let f given by (1) be in the class S;(@(z, t)) and
p € R. Then one has

2
|‘13 —ha,
¢ |2 /8¢> + 3 - 27|
= -]« 1 (64)
8|1—M| t3 |22k/8t2+3k—22k|
(3% — 2%) 862 + 2% 1] 3 :
t
2k+1°
T I
"13 !mz|— 2|1—y|t3

|(3k+1 _ 22(k+2)) 22 + 22k| ’

Particularly, for y = 1if f € H2(D(z,1)) one obtains

2

|a3 - a2| < —. (67)

2
as — pa,

2
(1+2p) 3

81—yt
[(1+2B)3% = (1+ B)* 2] a2 + (1 + B)* 22|

Proof. From (29) and (31)

as —pa; = (1-p)
‘ U; () (g +dy)
2[(1+2B) 302 (1) - (1 + )* 22U, (1)

U, (t) (¢, - d,)

2e2ps Y ©)
1
| [(“*‘“ 2(1+2,5)3k)cz
1
(10 s )4
where

2[(1+2B) 3502 (1) - (1 + B)° 22U, (1)]

|~ 1]
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Particularly, for y = 1 if f € S5(D(z,t)) one obtains
2
|a3 - a2| <t. (65)

Corollary 20. Let f given by (1) be in the class %’;((D(z, t))
and p € R. Then one has

'zzk/th + 3k+1 _ 22(k+2)|

'//l - 1| < 3k+1
- 'zzk/th 43R 22(k+2)| (66)
p—1|> - .

3 +1

Theorem 21. Let f given by (1) be in the class 97;(& D(z,1))
and y € R. Then one has

|(1+ B)* 22 /a8 + (1+2B) 3* - (1 + B)" 2|

(1+2B)3* (68)
. |(1+ B)* 2% /4% + (1+2B) 35 = (1 + p)* 2%
— > .
=] (1+2p)3*
Then, in view of (10), we conclude that
2
|a3 - /mzl
2t 1
———, 0<|h S ¥
(1+2p)3k I 6ol 2(1+2p)3* 7D
4t |h , h z2 .
Gl Gl = Sy
Taking y = 1, we have the following corollary. O
Corollary 22. If f € FX(B, d(z,1)), then
|a - a2| <2 72)
T (14 2p) 3

Corollary 23. Let f given by (1) be in the class %’;(@(z, t))
and p € R. Then one has

2
‘a3 _.“azl
2t |22k/4t2 + 3k _ 22k|
* -1l ——F—— 73
8[1—ul e’ 22 fag* 1 3+ - 2|
|[3k — 2%] 4¢2 + 22|’ lu-1]2 e
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Particularly, for u = 1 if f € Re(®D(z,1t)) one obtains

|a3 - ai. < 2t. (74)
2
5 3k+1 >
|“3_W’z < 21—y

|[3k+1 _ 22(k+2)] 2+ 22k| >

Particularly, for y = 1if f € H3(D(z,t)) one obtains

|a3 - a§ < 3 (76)
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