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We introduce and investigate new subclasses of biunivalent functions defined in the open unit disk, involving Sălăgean operator
associated with Chebyshev polynomials. Furthermore, we find estimates of the first two coefficients of functions in these classes,
making use of the Chebyshev polynomials. Also, we give Fekete-Szegö inequalities for these function classes. Several consequences
of the results are also pointed out.

1. Introduction

LetA denote the class of analytic functions of the form

𝑓 (𝑧) = 𝑧 + ∞∑
𝑛=2

𝑎𝑛𝑧𝑛 (1)

normalized by the conditions 𝑓(0) = 0 = 𝑓󸀠(0) − 1 defined in
the open unit disk

󳵻 = {𝑧 ∈ C : |𝑧| < 1} . (2)

LetS be the subclass ofA consisting of functions of form (1)
which are also univalent in󳵻. LetS∗(𝛼) andK(𝛼) denote the
well-known subclasses ofS, consisting of starlike and convex
functions of order 𝛼 (0 ≤ 𝛼 < 1), respectively.

The Koebe one-quarter theorem [1] ensures that the
image of 󳵻 under every univalent function 𝑓 ∈ A contains
a disk of radius 1/4. Thus every univalent function 𝑓 has an
inverse 𝑓−1 satisfying

𝑓−1 (𝑓 (𝑧)) = 𝑧, (𝑧 ∈ 󳵻) ,
𝑓 (𝑓−1 (𝑤)) = 𝑤 (|𝑤| < 𝑟0 (𝑓) , 𝑟0 (𝑓) ≥ 1

4) .
(3)

A function 𝑓 ∈ A is said to be biunivalent in 󳵻 if both 𝑓 and𝑓−1 are univalent in 󳵻. Let Σ denote the class of biunivalent

functions defined in the unit disk 󳵻. Since 𝑓 ∈ Σ has the
Maclaurin series given by (1), a computation shows that its
inverse 𝑔 = 𝑓−1 has the expansion

𝑔 (𝑤) = 𝑓−1 (𝑤) = 𝑤 − 𝑎2𝑤2 + (2𝑎22 − 𝑎3)𝑤3 + ⋅ ⋅ ⋅ . (4)

An analytic function 𝑓 is subordinate to an analytic
function 𝑔, written as 𝑓(𝑧) ≺ 𝑔(𝑧), provided there is an
analytic function 𝑤 defined on 󳵻 with 𝑤(0) = 0 and |𝑤(𝑧)| <1 satisfying 𝑓(𝑧) = 𝑔(𝑤(𝑧)).

Chebyshev polynomials, which are used by us in this
paper, play a considerable role in numerical analysis. We
know that the Chebyshev polynomials are four kinds. The
most of books and research articles related to specific orthog-
onal polynomials of Chebyshev family contain essentially
results of Chebyshev polynomials of first and second kinds𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) and their numerous uses in different appli-
cations; see Doha [2] and Mason [3].

The well-known kinds of the Chebyshev polynomials are
the first and second kinds. In the case of real variable 𝑥 on(−1, 1), the first and second kinds are defined by

𝑇𝑛 (𝑥) = cos 𝑛𝜃,
𝑈𝑛 (𝑥) = sin (𝑛 + 1) 𝜃

sin 𝜃 , (5)
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where the subscript 𝑛 denotes the polynomial degree and 𝑥 =
cos 𝜃. We consider the function

Φ (𝑧, 𝑡) = 1
1 − 2𝑡𝑧 + 𝑧2 . (6)

We note that if 𝑡 = cos𝛼, 𝛼 ∈ (−𝜋/3, 𝜋/3), then for all 𝑧 ∈ 󳵻
Φ (𝑧, 𝑡) = 1

1 − 2𝑡𝑧 + 𝑧2 = 1 + ∞∑
𝑛=1

sin (𝑛 + 1) 𝛼
sin𝛼 𝑧𝑛

= 1 + 2 cos𝛼𝑧 + (3 cos2𝛼 − sin2𝛼) 𝑧2 + ⋅ ⋅ ⋅ .
(7)

Thus, we write
Φ (𝑧, 𝑡) = 1 + 𝑈1 (𝑡) 𝑧 + 𝑈2 (𝑡) 𝑧2 + ⋅ ⋅ ⋅

(𝑧 ∈ 󳵻, 𝑡 ∈ (−1, 1)) , (8)

where 𝑈𝑛−1 = sin(𝑛 arccos 𝑡)/√1 − 𝑡2, for 𝑛 ∈ N, are the
second kind of the Chebyshev polynomials. Also, it is known
that

𝑈𝑛 (𝑡) = 2𝑡𝑈𝑛−1 (𝑡) − 𝑈𝑛−2 (𝑡) , (9)

𝑈1 (𝑡) = 2𝑡;
𝑈2 (𝑡) = 4𝑡2 − 1,
𝑈3 (𝑡) = 8𝑡3 − 4𝑡, . . . .

(10)

The Chebyshev polynomials 𝑇𝑛(𝑡), 𝑡 ∈ [−1, 1], of the first
kind have the generating function of the form

∞∑
𝑛=0

𝑇𝑛 (𝑡) 𝑧𝑛 = 1 − 𝑡𝑧
1 − 2𝑡𝑧 + 𝑧2 (𝑧 ∈ 󳵻) . (11)

All the same, the Chebyshev polynomials of the first kind𝑇𝑛(𝑡) and the second kind 𝑈𝑛(𝑡) are well connected by the
following relationship:

𝑑𝑇𝑛 (𝑡)𝑑𝑡 = 𝑛𝑈𝑛−1 (𝑡) ,
𝑇𝑛 (𝑡) = 𝑈𝑛 (𝑡) − 𝑡𝑈𝑛−1 (𝑡) ,
2𝑇𝑛 (𝑡) = 𝑈𝑛 (𝑡) − 𝑈𝑛−2 (𝑡) .

(12)

Several authors have introduced and investigated sub-
classes of biunivalent functions and obtained bounds for the
initial coefficients (see [4–10]). In [11], making use of the
Sălăgean [12] differential operator,

𝐷𝑘 : A 󳨀→ A (13)

defined by

D
0𝑓 (𝑧) = 𝑓 (𝑧) ,

D
1𝑓 (𝑧) = D𝑓 (𝑧) = 𝑧𝑓󸀠 (𝑧) ,

D
𝑘𝑓 (𝑧) = D (D𝑘−1𝑓 (𝑧)) = 𝑧 (D𝑘−1𝑓 (𝑧))󸀠 ,

𝑘 ∈ N = {1, 2, 3, . . .} ,

(14)

D
𝑘𝑓 (𝑧) = 𝑧 + ∞∑

𝑛=2

𝑛𝑘𝑎𝑛𝑧𝑛, 𝑘 ∈ N0 = N ∪ {0} , (15)

and further for functions 𝑔 of the form (4) Vijaya et al. [11]
(also see [13]) defined

𝐷𝑘𝑔 (𝑤) = 𝑤 − 𝑎22𝑘𝑤2 + (2𝑎22 − 𝑎3) 3𝑘𝑤3 + ⋅ ⋅ ⋅ (16)

and introduced two new subclasses of biunivalent functions.
In this paper, we use Chebyshev polynomials to obtain the
estimates on the coefficients |𝑎2| and |𝑎3|.
2. Biunivalent Function ClassesM𝑘Σ(𝜆, Φ(𝑧, 𝑡))
andF𝑘Σ(𝛽, Φ(𝑧, 𝑡))

Motivated by recent works of Altinkaya and Yalcin [14] (also
see [15]) and recent studies on biunivalent functions involving
Sălăgean operator [11, 13], in this section, we introduce two
new subclasses of Σ associated with Chebyshev polynomials
and obtain the initial Taylor coefficients |𝑎2| and |𝑎3| for the
function classes by subordination.

Definition 1. For 0 ≤ 𝜆 ≤ 1 and 𝑡 ∈ (−1, 1) a function 𝑓 ∈
Σ of form (1) is said to be in the class M𝑘Σ(𝜆, Φ(𝑧, 𝑡)) if the
following subordination holds:

(1 − 𝜆) 𝐷𝑘+1𝑓 (𝑧)𝐷𝑘𝑓 (𝑧) + 𝜆𝐷𝑘+2𝑓 (𝑧)𝐷𝑘+1𝑓 (𝑧) ≺ Φ (𝑧, 𝑡) ,

(1 − 𝜆) 𝐷𝑘+1𝑔 (𝑤)𝐷𝑘𝑔 (𝑤) + 𝜆𝐷𝑘+2𝑔 (𝑤)𝐷𝑘+1𝑔 (𝑤) ≺ Φ (𝑤, 𝑡) ,
(17)

where 𝑧, 𝑤 ∈ 󳵻 and 𝑔 is given by (4).

We note that by specializing the parameters𝜆 and suitably
fixing the values for 𝑘 in Definition 1, we introduce (had not
been studied so far) the following new subclasses ofΣ as listed
below.

Remark 2. Supposing 𝑓(𝑧) ∈ Σ and 𝑡 ∈ (−1, 1), then we
denote

(1) M𝑘Σ(0, Φ(𝑧, 𝑡)) ≡ S𝑘Σ(Φ(𝑧, 𝑡)),
(2) M𝑘Σ(1, Φ(𝑧, 𝑡)) ≡ K𝑘Σ(Φ(𝑧, 𝑡)),
(3) M0Σ(0, Φ(𝑧, 𝑡)) = S∗Σ(Φ(𝑧, 𝑡)),
(4) M0Σ(1, Φ(𝑧, 𝑡)) = KΣ(Φ(𝑧, 𝑡)).
Due to Frasin and Aouf [16] and Panigarhi and Muru-

gusundaramoorthy [17] (also see [11, 13]) we define the
following new subclass involving the Sălăgean operator [12].

Definition 3. For 0 ≤ 𝛽 ≤ 1 and 𝑡 ∈ (−1, 1) a function𝑓 ∈ Σ of
form (1) is said to be in the classF𝑘Σ(𝛽, Φ(𝑧, 𝑡)) if the following
subordination holds:

(1 − 𝛽) 𝐷𝑘𝑓 (𝑧)𝑧 + 𝛽 (𝐷𝑘𝑓 (𝑧))󸀠 ≺ Φ (𝑧, 𝑡) ,

(1 − 𝛽) 𝐷𝑘𝑔 (𝑤)𝑤 + 𝛽 (𝐷𝑘𝑔 (𝑤))󸀠 ≺ Φ (𝑤, 𝑡) ,
(18)

where 𝑧, 𝑤 ∈ 󳵻, 𝑔 = 𝑓−1, 𝐷𝑘𝑓(𝑧) and 𝐷𝑘𝑔(𝑤) are given by
(4), (15), and (16), respectively.
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In Definition 3, by specializing the parameters 𝛽 and
suitably fixing the values for 𝑘 (had not been studied so far)
the following new subclasses of Σ are as listed below.

Remark 4. Supposing 𝑓(𝑧) ∈ Σ and 𝑡 ∈ (−1, 1), then we
denote

(1) F𝑘Σ(0, Φ(𝑧, 𝑡)) ≡ R𝑘Σ(Φ(𝑧, 𝑡)),
(2) F𝑘Σ(1, Φ(𝑧, 𝑡)) ≡ H𝑘Σ(Φ(𝑧, 𝑡)),
(3) F0Σ(𝛽, Φ(𝑧, 𝑡)) ≡ FΣ(𝛽, Φ(𝑧, 𝑡)),
(4) F0Σ(1, Φ(𝑧, 𝑡)) ≡ H0Σ(Φ(𝑧, 𝑡)).
In the following theorems we determine the initial Taylor

coefficients |𝑎2| and |𝑎3| for the function classes 𝑓 ∈
M𝑘Σ(𝜆, Φ(𝑧, 𝑡)) and 𝑓 ∈ F𝑘Σ(𝛽, Φ(𝑧, 𝑡)).
Theorem 5. Let 𝑓 given by (1) be in the class M𝑘Σ(𝜆, Φ(𝑧, 𝑡))
and 𝑡 ∈ (0, 1).Then
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨
≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨󵄨[2 (1 + 2𝜆) 3𝑘 − (𝜆2 + 5𝜆 + 2) 22𝑘] 4𝑡2 + (1 + 𝜆)2 22𝑘󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
(1 + 𝜆)2 22𝑘 +

𝑡
(1 + 2𝜆) 3𝑘 ,

(19)

where 0 ≤ 𝜆 ≤ 1 and 𝑡 ̸= 1/√2.
Proof. Let𝑓 ∈ M𝑘Σ(𝜆, Φ(𝑧, 𝑡)) and 𝑔 = 𝑓−1.Considering (17),
we have

(1 − 𝜆) 𝐷𝑘+1𝑓 (𝑧)𝐷𝑘𝑓 (𝑧) + 𝜆𝐷𝑘+2𝑓 (𝑧)𝐷𝑘+1𝑓 (𝑧) = Φ (𝑧, 𝑡) , (20)

(1 − 𝜆) 𝐷𝑘+1𝑔 (𝑤)𝐷𝑘𝑔 (𝑤) + 𝜆𝐷𝑘+2𝑔 (𝑤)𝐷𝑘+1𝑔 (𝑤) = Φ (𝑤, 𝑡) . (21)

Define the functions 𝑢(𝑧) and V(𝑤) by
𝑢 (𝑧) = 𝑐1𝑧 + 𝑐2𝑧2 + ⋅ ⋅ ⋅ , (22)

V (𝑤) = 𝑑1𝑤 + 𝑑2𝑤2 + ⋅ ⋅ ⋅ (23)

which are analytic in 󳵻 with 𝑢(0) = 0 = V(0) and |𝑢(𝑧)| < 1,|V(𝑤)| < 1, for all 𝑧 ∈ 󳵻. It is well known that

|𝑢 (𝑧)| = 󵄨󵄨󵄨󵄨󵄨𝑐1𝑧 + 𝑐2𝑧2 + ⋅ ⋅ ⋅󵄨󵄨󵄨󵄨󵄨 < 1,
|V (𝑤)| = 󵄨󵄨󵄨󵄨󵄨𝑑1𝑤 + 𝑑2𝑤2 + ⋅ ⋅ ⋅󵄨󵄨󵄨󵄨󵄨 < 1,

𝑧, 𝑤 ∈ 󳵻,
(24)

and then
󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 1,
󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 1

∀𝑗 ∈ N.
(25)

Using (22) and (23) in (20) and (21), respectively, we have

(1 − 𝜆) 𝐷𝑘+1𝑓 (𝑧)𝐷𝑘𝑓 (𝑧) + 𝜆𝐷𝑘+2𝑓 (𝑧)𝐷𝑘+1𝑓 (𝑧)
= 1 + 𝑈1 (𝑡) 𝑢 (𝑧) + 𝑈2 (𝑡) 𝑢2 (𝑧) + ⋅ ⋅ ⋅ ,

(1 − 𝜆) 𝐷𝑘+1𝑔 (𝑤)𝐷𝑘𝑔 (𝑤) + 𝜆𝐷𝑘+2𝑔 (𝑤)𝐷𝑘+1𝑔 (𝑤)
= 1 + 𝑈1 (𝑡) V (𝑤) + 𝑈2 (𝑡) V2 (𝑤) + ⋅ ⋅ ⋅ .

(26)

In light of (1), (4), (10), (15), and (16) and from (26), we have

1 + (1 + 𝜆) 2𝑘𝑎2𝑧 + [2 (1 + 2𝜆) 3𝑘𝑎3 − (1 + 3𝜆) 22𝑘𝑎22]
⋅ 𝑧2 + ⋅ ⋅ ⋅ = 1 + 𝑈1 (𝑡) 𝑐1𝑧 + [𝑈1 (𝑡) 𝑐2 + 𝑈2 (𝑡) 𝑐21 ]
⋅ 𝑧2 + ⋅ ⋅ ⋅ ,

1 − (1 + 𝜆) 2𝑘𝑎2𝑤 + {[(8𝜆 + 4) 3𝑘 − (3𝜆 + 1) 22𝑘] 𝑎22
− 2 (1 + 2𝜆) 3𝑘𝑎3}𝑤2 + ⋅ ⋅ ⋅ = 1 + 𝑈1 (𝑡) 𝑑1𝑤
+ [𝑈1 (𝑡) 𝑑2 + 𝑈2 (𝑡) 𝑑21]𝑤2 + ⋅ ⋅ ⋅ .

(27)

This yields the following relations:

(1 + 𝜆) 2𝑘𝑎2 = 𝑈1 (𝑡) 𝑐1, (28)

− (1 + 3𝜆) 22𝑘𝑎22 + 2 (1 + 2𝜆) 3𝑘𝑎3
= 𝑈1 (𝑡) 𝑐2 + 𝑈2 (𝑡) 𝑐21 ,

(29)

− (1 + 𝜆) 2𝑘𝑎2 = 𝑈1 (𝑡) 𝑑1, (30)

(4 (1 + 2𝜆) 3𝑘 − (1 + 3𝜆) 22𝑘) 𝑎22 − 2 (1 + 2𝜆) 3𝑘𝑎3
= 𝑈1 (𝑡) 𝑑2 + 𝑈2 (𝑡) 𝑑21.

(31)

From (28) and (30) it follows that

𝑐1 = −𝑑1, (32)

2 (1 + 𝜆)2 22𝑘𝑎22 = 𝑈21 (𝑡) (𝑐21 + 𝑑21) . (33)

Adding (29) to (31) and using (33), we obtain

𝑎22
= 𝑈31 (𝑡) (𝑐2 + 𝑑2)
2 [{2 (1 + 2𝜆) 3𝑘 − (1 + 3𝜆) 22𝑘}𝑈21 (𝑡) − (1 + 𝜆)2 22𝑘𝑈2 (𝑡)] .

(34)

Applying (25) to the coefficients 𝑐2 and 𝑑2 and using (10) we
have
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨
≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨󵄨[2 (1 + 2𝜆) 3𝑘 − (𝜆2 + 5𝜆 + 2) 22𝑘] 4𝑡2 + (1 + 𝜆)2 22𝑘󵄨󵄨󵄨󵄨󵄨

. (35)
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By subtracting (31) from (29) and using (32) and (33), we get

𝑎3 = 𝑈21 (𝑡) (𝑐21 + 𝑑21)
2 (1 + 𝜆)2 22𝑘 + 𝑈1 (𝑐2 − 𝑑2)4 (1 + 2𝜆) 3𝑘 . (36)

Using (10), once again applying (25) to the coefficients 𝑐1, 𝑐2,𝑑1, and 𝑑2, we get
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2

(1 + 𝜆)2 22𝑘 +
𝑡

(1 + 2𝜆) 3𝑘 . (37)

By taking 𝜆 = 0 or 𝜆 = 1 and 𝑡 ∈ (0, 1), one
can easily state the estimates |𝑎2| and |𝑎3| for the function
classes M𝑘Σ(0, Φ(𝑧, 𝑡)) = S𝑘Σ(Φ(𝑧, 𝑡)) and M𝑘Σ(1, Φ(𝑧, 𝑡)) =
K𝑘Σ(Φ(𝑧, 𝑡)), respectively.
Remark 6. Let𝑓 given by (1) be in the classS𝑘Σ(Φ(𝑧, 𝑡)).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨[3𝑘 − 22𝑘] 8𝑡2 + 22𝑘󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
22𝑘 +

𝑡
3𝑘 .

(38)

Remark 7. Let𝑓 given by (1) be in the classK𝑘Σ(Φ(𝑧, 𝑡)).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨[3𝑘+1 − 22(𝑘+1)] 8𝑡2 + 22(𝑘+1)󵄨󵄨󵄨󵄨

, (39)

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 𝑡2
22𝑘 +

𝑡
3𝑘+1 . (40)

For 𝑘 = 0, Theorem 5 yields the following corollary.

Corollary 8. Let 𝑓 given by (1) be in the classM0Σ(𝜆, Φ(𝑧, 𝑡)).
Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨󵄨(1 + 𝜆)2 − (𝜆2 + 𝜆) 4𝑡2󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
(1 + 𝜆)2 +

𝑡
(1 + 2𝜆) ,

(41)

where 0 ≤ 𝜆 ≤ 1 and 𝑡 ̸= 1/√2.
By taking 𝑘 = 0 in the above remarks we get the

estimates |𝑎2| and |𝑎3| for the function classesS∗Σ(Φ(𝑧, 𝑡)) and
KΣ(Φ(𝑧, 𝑡)).
Remark 9. Let𝑓 given by (1) be in the classS𝑘Σ(Φ(𝑧, 𝑡)).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡,
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2 + 𝑡. (42)

Remark 10. Let 𝑓 given by (1) be in the class K𝑘Σ(Φ(𝑧, 𝑡)).
Then, for 𝑡 ̸= 1/√2,

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨4 − 8𝑡2󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 𝑡2 + 𝑡
3 .

(43)

Theorem 11. Let 𝑓 given by (1) be in the class F𝑘Σ(𝛽, Φ(𝑧, 𝑡))
and 𝑡 ∈ (0, 1).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨
≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨󵄨[(1 + 2𝛽) 3𝑘 − (1 + 𝛽)2 22𝑘] 4𝑡2 + (1 + 𝛽)2 22𝑘󵄨󵄨󵄨󵄨󵄨

, (44)

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
(1 + 𝛽)2 22𝑘 +

2𝑡
(1 + 2𝛽) 3𝑘 . (45)

Proof. Proceeding as in the proof ofTheorem 5 we can arrive
at the following relations:

(1 + 𝛽) 2𝑘𝑎2 = 𝑈1 (𝑡) 𝑐1, (46)

(1 + 2𝛽) 3𝑘𝑎3 = 𝑈1 (𝑡) 𝑐2 + 𝑈2 (𝑡) 𝑐21 , (47)

− (1 + 𝛽) 2𝑘𝑎2 = 𝑈1 (𝑡) 𝑑1, (48)

2 (1 + 2𝛽) 3𝑘𝑎22 − (1 + 2𝛽) 3𝑘𝑎3
= 𝑈1 (𝑡) 𝑑2 + 𝑈2 (𝑡) 𝑑21.

(49)

From (46) and (48) it follows that

𝑐1 = −𝑑1, (50)

2 (1 + 𝛽)2 22𝑘𝑎22 = 𝑈21 (𝑡) (𝑐21 + 𝑑21) . (51)

From (47), (49), and (51), we obtain

𝑎22 = 𝑈31 (𝑡) (𝑐2 + 𝑑2)
2 [(1 + 2𝛽) 3𝑘𝑈21 (𝑡) − (1 + 𝛽)2 22𝑘𝑈2 (𝑡)] . (52)

Using (10) and (25) for the coefficients 𝑐2 and 𝑑2, we
immediately get the desired estimate on |𝑎2| as asserted in
(44).

By subtracting (49) from (47) and using (50) and (51), we
get

𝑎3 = 𝑈21 (𝑡) (𝑐21 + 𝑑21)
2 (1 + 𝛽)2 22𝑘 + 𝑈1 (𝑡) (𝑐2 − 𝑑2)2 (1 + 2𝛽) 3𝑘 . (53)

Again using (10) and (25) for the coefficients 𝑐1, 𝑐2, 𝑑1, and 𝑑2,
we get the desired estimate on |𝑎3| as asserted in (45).
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Remark 12. Let 𝑓 given by (1) be in the class R𝑘Σ(Φ(𝑧, 𝑡)).
Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨(3𝑘 − 22𝑘) 4𝑡2 + 22𝑘󵄨󵄨󵄨󵄨

,
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2

22𝑘 +
2𝑡
3𝑘 .

(54)

Remark 13. Let 𝑓 given by (1) be in the class H𝑘Σ(Φ(𝑧, 𝑡)).
Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨(3𝑘+1 − 22(𝑘+1)) 4𝑡2 + 22(𝑘+1)󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
22(𝑘+1) +

2𝑡
3𝑘+1 .

(55)

By taking 𝑘 = 0 we deduce the following results.
Remark 14. Let 𝑓 given by (1) be in the class FΣ(𝛽, Φ(𝑧, 𝑡)).
Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡
√󵄨󵄨󵄨󵄨󵄨(1 + 𝛽)2 − 4𝑡2𝛽2󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2
(1 + 𝛽)2 +

2𝑡
(1 + 2𝛽) .

(56)

Remark 15. Let 𝑓 given by (1) be in the classF0Σ(1, Φ(𝑧, 𝑡)) ≡
HΣ(Φ(𝑧, 𝑡)).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 𝑡√2𝑡
√󵄨󵄨󵄨󵄨1 − 𝑡2󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 𝑡2 + 2𝑡
3 .

(57)

Remark 16. Let 𝑓 given by (1) be in the classF0Σ(0, Φ(𝑧, 𝑡)) ≡
RΣ(Φ(𝑧, 𝑡)).Then

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨 ≤ 2𝑡√2𝑡,
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 ≤ 4𝑡2 + 2𝑡. (58)

3. Fekete-Szegö Inequality for the Function
ClassesM𝑘Σ(𝜆, Φ(𝑧, 𝑡)) andF𝑘Σ(𝜆, Φ(𝑧, 𝑡))

Due to Zaprawa [18], in this section we obtain the Fekete-
Szegö inequality for the function classes M𝑘Σ(𝜆, Φ(𝑧, 𝑡)) and
F𝑘Σ(𝛽, Φ(𝑧, 𝑡)).
Theorem 17. Let 𝑓 given by (1) be in the classM𝑘Σ(𝜆, Φ(𝑧, 𝑡))
and 𝜇 ∈ R. Then one has

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{{{{{

𝑡
(1 + 2𝜆) 3𝑘 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨(1 + 𝜆)2 22𝑘/4𝑡2 + 2 (1 + 2𝜆) 3𝑘 − (𝜆2 + 5𝜆 + 2) 22𝑘󵄨󵄨󵄨󵄨󵄨2 (1 + 2𝜆) 3𝑘
8 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨󵄨(2 (1 + 2𝜆) 3𝑘 − (𝜆2 + 5𝜆 + 2) 22𝑘) 4𝑡2 + (1 + 𝜆)2 22𝑘󵄨󵄨󵄨󵄨󵄨

, 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨󵄨(1 + 𝜆)2 22𝑘/4𝑡2 + 2 (1 + 2𝜆) 3𝑘 − (𝜆2 + 5𝜆 + 2) 22𝑘󵄨󵄨󵄨󵄨󵄨2 (1 + 2𝜆) 3𝑘 .

(59)

Proof. From (29) and (31)

𝑎3 − 𝜇𝑎22 = (1 − 𝜇)

⋅ 𝑈31 (𝑡) (𝑐2 + 𝑑2)(4 (1 + 2𝜆) 3𝑘 − 2 (1 + 3𝜆) 22𝑘) 𝑈21 (𝑡) − 2𝑈2 (𝑡) (1 + 𝜆)2 22𝑘

+ 𝑈1 (𝑡) (𝑐2 − 𝑑2)4 (1 + 2𝜆) 3𝑘 = 𝑈1 (𝑡) [(ℎ (𝜇) + 1
4 (1 + 2𝜆) 3𝑘) 𝑐2

+ (ℎ (𝜇) − 1
4 (1 + 2𝜆) 3𝑘)𝑑2] ,

(60)

where

ℎ (𝜇)
= (1 − 𝜇)𝑈21 (𝑡)
2 [(2 (1 + 2𝜆) 3𝑘 − (1 + 3𝜆) 22𝑘) 𝑈21 (𝑡) − (1 + 𝜆)2 22𝑘𝑈2 (𝑡)] .

(61)

Then, in view of (10), we conclude that

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{

𝑡
(1 + 2𝜆) 3𝑘 , 0 ≤ 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 ≤ 1

4 (1 + 2𝜆) 3𝑘
4𝑡 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 ≥ 1

4 (1 + 2𝜆) 3𝑘 .
(62)

Taking 𝜇 = 1, we have the following corollary.
Corollary 18. If 𝑓 ∈ M𝑘Σ(𝜆, Φ(𝑧, 𝑡)), then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑡
(1 + 2𝜆) 3𝑘 . (63)
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Corollary 19. Let𝑓 given by (1) be in the classS𝑘Σ(Φ(𝑧, 𝑡)) and𝜇 ∈ R. Then one has
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{{{

𝑡
3𝑘 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨22𝑘/8𝑡2 + 3𝑘 − 22𝑘󵄨󵄨󵄨󵄨󵄨3𝑘8 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨(3𝑘 − 22𝑘) 8𝑡2 + 22𝑘󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨22𝑘/8𝑡2 + 3𝑘 − 22𝑘󵄨󵄨󵄨󵄨󵄨3𝑘 .
(64)

Particularly, for 𝜇 = 1 if 𝑓 ∈ S∗Σ(Φ(𝑧, 𝑡)) one obtains

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑡. (65)

Corollary 20. Let 𝑓 given by (1) be in the class K𝑘Σ(Φ(𝑧, 𝑡))
and 𝜇 ∈ R. Then one has

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{

𝑡
3𝑘+1 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨22𝑘/2𝑡2 + 3𝑘+1 − 22(𝑘+2)󵄨󵄨󵄨󵄨󵄨3𝑘+12 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨(3𝑘+1 − 22(𝑘+2)) 2𝑡2 + 22𝑘󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨22𝑘/2𝑡2 + 3𝑘+1 − 22(𝑘+2)󵄨󵄨󵄨󵄨󵄨3𝑘+1 .
(66)

Particularly, for 𝜇 = 1 if 𝑓 ∈ K0Σ(Φ(𝑧, 𝑡)) one obtains
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑡

3 . (67)

Theorem 21. Let 𝑓 given by (1) be in the class F𝑘Σ(𝛽, Φ(𝑧, 𝑡))
and 𝜇 ∈ R. Then one has

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{{{{{

2𝑡
(1 + 2𝛽) 3𝑘 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨(1 + 𝛽)2 22𝑘/4𝑡2 + (1 + 2𝛽) 3𝑘 − (1 + 𝛽)2 22𝑘󵄨󵄨󵄨󵄨󵄨(1 + 2𝛽) 3𝑘
8 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨󵄨[(1 + 2𝛽) 3𝑘 − (1 + 𝛽)2 22𝑘] 4𝑡2 + (1 + 𝛽)2 22𝑘󵄨󵄨󵄨󵄨󵄨

, 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨󵄨(1 + 𝛽)2 22𝑘/4𝑡2 + (1 + 2𝛽) 3𝑘 − (1 + 𝛽)2 22𝑘󵄨󵄨󵄨󵄨󵄨(1 + 2𝛽) 3𝑘 .

(68)

Proof. From (29) and (31)

𝑎3 − 𝜇𝑎22 = (1 − 𝜇)
⋅ 𝑈31 (𝑡) (𝑐2 + 𝑑2)
2 [(1 + 2𝛽) 3𝑘𝑈21 (𝑡) − (1 + 𝛽)2 22𝑘𝑈2 (𝑡)]

+ 𝑈1 (𝑡) (𝑐2 − 𝑑2)2 (1 + 2𝛽) 3𝑘 = 𝑈1 (𝑡)

⋅ [(ℎ (𝜇) + 1
2 (1 + 2𝛽) 3𝑘) 𝑐2

+ (ℎ (𝜇) − 1
2 (1 + 2𝛽) 3𝑘)𝑑2] ,

(69)

where

ℎ (𝜇) = (1 − 𝜇)𝑈21 (𝑡)
2 [(1 + 2𝛽) 3𝑘𝑈21 (𝑡) − (1 + 𝛽)2 22𝑘𝑈2 (𝑡)] . (70)

Then, in view of (10), we conclude that
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{

2𝑡
(1 + 2𝛽) 3𝑘 , 0 ≤ 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 ≤ 1

2 (1 + 2𝛽) 3𝑘
4𝑡 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨ℎ (𝜇)󵄨󵄨󵄨󵄨 ≥ 1

2 (1 + 2𝛽) 3𝑘 .
(71)

Taking 𝜇 = 1, we have the following corollary.
Corollary 22. If 𝑓 ∈ F𝑘Σ(𝛽, Φ(𝑧, 𝑡)), then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 2𝑡
(1 + 2𝛽) 3𝑘 . (72)

Corollary 23. Let 𝑓 given by (1) be in the class R𝑘Σ(Φ(𝑧, 𝑡))
and 𝜇 ∈ R. Then one has
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{{{

2𝑡
3𝑘 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨22𝑘/4𝑡2 + 3𝑘 − 22𝑘󵄨󵄨󵄨󵄨󵄨3𝑘8 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨[3𝑘 − 22𝑘] 4𝑡2 + 22𝑘󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨22𝑘/4𝑡2 + 3𝑘 − 22𝑘󵄨󵄨󵄨󵄨󵄨3𝑘 .
(73)
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Particularly, for 𝜇 = 1 if 𝑓 ∈ R0Σ(Φ(𝑧, 𝑡)) one obtains
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 2𝑡. (74)

Corollary 24. Let 𝑓 given by (1) be in the class H𝑘Σ(Φ(𝑧, 𝑡))
and 𝜇 ∈ R. Then one has

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{

2𝑡
3𝑘+1 , 󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨22𝑘/𝑡2 + 3𝑘+1 − 22(𝑘+2)󵄨󵄨󵄨󵄨󵄨3𝑘+12 󵄨󵄨󵄨󵄨1 − 𝜇󵄨󵄨󵄨󵄨 𝑡3󵄨󵄨󵄨󵄨[3𝑘+1 − 22(𝑘+2)] 𝑡2 + 22𝑘󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜇 − 1󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨22𝑘/𝑡2 + 3𝑘+1 − 22(𝑘+2)󵄨󵄨󵄨󵄨󵄨3𝑘+1 .
(75)

Particularly, for 𝜇 = 1 if 𝑓 ∈ H0Σ(Φ(𝑧, 𝑡)) one obtains
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 2𝑡

3 . (76)
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