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We introduce and investigate a new subclass of the function class Σ of biunivalent functions of complex order defined in the open
unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the
Taylor-Maclaurin coefficients |𝑎

2
| and |𝑎

3
| for functions in this new subclass. Several, known or new, consequences of the results

are also pointed out.

1. Introduction, Definitions, and Preliminaries

LetA denote the class of functions of the following form:

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑧
𝑛
, (1)

which are analytic in the open unit disk

U = {𝑧 : 𝑧 ∈ C, |𝑧| < 1} . (2)

By S we denote the class of all functions in A which are
univalent in U. Some of the important and well-investigated
subclasses of the classS include, for example, the classS∗(𝛼)
of starlike functions of order 𝛼 in U and the class K(𝛼) of
convex functions of order 𝛼 in U. It is well known that every
function 𝑓 ∈ S has an inverse 𝑓−1, defined by

𝑓
−1
(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ U) ,

𝑓 (𝑓
−1
(𝑤)) = 𝑤 (|𝑤| < 𝑟

0
(𝑓) ; 𝑟

0
(𝑓) ≧

1

4
) ,

(3)

where

𝑔 (𝑤) = 𝑓
−1
(𝑤) = 𝑤 − 𝑎

2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(4)

A function 𝑓 ∈ A is said to be biunivalent in U, if
𝑓(𝑧) and 𝑓

−1
(𝑧) are univalent in U. Let Σ denote the class

of biunivalent functions in U given by (1).
An analytic function 𝑓 is subordinate to an analytic

function 𝑔, written 𝑓(𝑧) ≺ 𝑔(𝑧), provided that there is
an analytic function 𝜔 defined on U with 𝜔(0) = 0 and
|𝜔(𝑧)| < 1 satisfying 𝑓(𝑧) = 𝑔(𝜔(𝑧)). Ma and Minda [1]
unified various subclasses of starlike and convex functions for
which either of the quantity 𝑧𝑓󸀠(𝑧)/𝑓(𝑧) or 1+(𝑧𝑓󸀠󸀠(𝑧)/𝑓󸀠(𝑧))
is subordinate to a more general superordinate function. For
this purpose, they considered an analytic function 𝜙 with
positive real part in the unit disk U, 𝜙(0) = 1, 𝜙󸀠(0) >

0, and 𝜙 maps U onto a region starlike with respect to 1
and symmetric with respect to the real axis. The class of
Ma-Minda starlike functions consists of functions 𝑓 ∈ A
satisfying the subordination 𝑧𝑓

󸀠
(𝑧)/𝑓(𝑧) ≺ 𝜙(𝑧). Similarly,

the class of Ma-Minda convex functions consists of functions
𝑓 ∈ A satisfying the subordination 1 + (𝑧𝑓

󸀠󸀠
(𝑧)/𝑓

󸀠
(𝑧))

≺ 𝜙(𝑧).
A function 𝑓 is bi-starlike of Ma-Minda type or biconvex

of Ma-Minda type, if both 𝑓 and 𝑓
−1 are, respectively,

Ma-Minda starlike or convex. These classes are denoted,
respectively, byS∗

Σ
(𝜙) andK

Σ
(𝜙). In the sequel, it is assumed

that 𝜙 is an analytic function with positive real part in the
unit disk U, satisfying 𝜙(0) = 1 and 𝜙

󸀠
(0) > 0, and 𝜙(U) is
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symmetric with respect to the real axis. Such a function has a
series expansion of the form

𝜙 (𝑧) = 1 + 𝐵
1
𝑧 + 𝐵
2
𝑧
2
+ 𝐵
3
𝑧
3
+ ⋅ ⋅ ⋅ , (𝐵

1
> 0) . (5)

The convolution or Hadamard product of two functions
𝑓 and ℎ ∈ A is denoted by 𝑓 ∗ ℎ and is defined as

(𝑓 ∗ ℎ) (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑏
𝑛
𝑧
𝑛
, (6)

where 𝑓(𝑧) is given by (1) and ℎ(𝑧) = 𝑧 + ∑
∞

𝑛=2
𝑏
𝑛
𝑧
𝑛. Here,

in our present investigation, we recall a convolution operator
I
𝑎,𝑏,𝑐

due to Hohlov [2, 3], which indeed is a special case of
the Dziok-Srivastava operator [4, 5].

For the complex parameters 𝑎, 𝑏, and 𝑐(𝑐 ̸= 0, −1, −2,

−3, . . .), the Gaussian hypergeometric function
2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧)

is defined as

2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧) =

∞

∑

𝑛=0

(𝑎)
𝑛
(𝑏)
𝑛

(𝑐)
𝑛

𝑧
𝑛

𝑛!

= 1+

∞

∑

𝑛=2

(𝑎)
𝑛−1

(𝑏)
𝑛−1

(𝑐)
𝑛−1

𝑧
𝑛−1

(𝑛 − 1)!
(𝑧 ∈ U) ,

(7)

where (𝛼)
𝑛
is the Pochhammer symbol (or the shifted

factorial) defined as follows:

(𝛼)
𝑛
=

Γ (𝛼 + 𝑛)

Γ (𝛼)

= {
1 (𝑛 = 0) ,

𝛼 (𝛼+ 1) (𝛼 + 2) , . . . , (𝛼 + 𝑛 − 1) (𝑛 = 1, 2, 3, . . .) .

(8)

For the positive real values 𝑎, 𝑏, and 𝑐(𝑐 ̸= 0, −1, −2, −3, . . .),
by using the Gaussian hypergeometric function given by (7),
Hohlov [2, 3] introduced the familiar convolution operator
I
𝑎,𝑏,𝑐

as follows:

I
𝑎,𝑏;𝑐

𝑓 (𝑧) = 𝑧
2𝐹1 (

𝑎, 𝑏, 𝑐; 𝑧) ∗ 𝑓 (𝑧) ,

= 𝑧 +

∞

∑

𝑛=2

𝜑
𝑛
𝑎
𝑛
𝑧
𝑛

(𝑧 ∈ U) ,
(9)

where

𝜑
𝑛
=

(𝑎)
𝑛−1

(𝑏)
𝑛−1

(𝑐)
𝑛−1

(𝑛 − 1)!
. (10)

Hohlov [2, 3] discussed some interesting geometrical prop-
erties exhibited by the operator I

𝑎,𝑏;𝑐
. The three-parameter

family of operators I
𝑎,𝑏;𝑐

contains, as its special cases, most
of the known linear integral or differential operators. In
particular, if 𝑏 = 1 in (9), thenI

𝑎,𝑏;𝑐
reduces to the Carlson-

Shaffer operator. Similarly, it is easily seen that the Hohlov
operator I

𝑎,𝑏;𝑐
is also a generalization of the Ruscheweyh

derivative operator as well as the Bernardi-Libera-Livingston
operator.

Recently, there has been triggering interest to study biu-
nivalent function class Σ and obtained nonsharp coefficient
estimates on the first two coefficients |𝑎

2
| and |𝑎

3
| of (1).

But the coefficient problem for each of the Taylor-Maclaurin
coefficients,

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 (𝑛 ∈ N \ {1, 2} ;N := {1, 2, 3, . . .}) , (11)

is still an open problem (see [6–11]). Many researchers (see
[12–17]) have recently introduced and investigated several
interesting subclasses of the biunivalent function class Σ and
they have found nonsharp estimates on the first two Taylor-
Maclaurin coefficients |𝑎

2
| and |𝑎

3
|.

Motivated by the earlier work of Deniz [18] (see [19–21])
and Peng and Han [22], in the present paper, we introduce
new subclasses of the function class Σ of complex order
𝛾 ∈ C \ {0}, involving Hohlov operator I

𝑎,𝑏;𝑐
, and find

estimates on the coefficients |𝑎
2
| and |𝑎

3
| for functions in the

new subclasses of function class Σ. Several related classes are
also considered, and connection to earlier known results are
made.

Definition 1. A function 𝑓 ∈ Σ given by (1) is said to be in the
class S𝑎,𝑏;𝑐

Σ
(𝛾, 𝜆, 𝜙), if the following conditions are satisfied:

1 +
1

𝛾
(

𝑧(I
𝑎,𝑏;𝑐

𝑓 (𝑧))
󸀠

(1 − 𝜆) 𝑧 + 𝜆I
𝑎,𝑏;𝑐

𝑓 (𝑧)
− 1) ≺ 𝜙 (𝑧)

(𝛾 ∈ C \ {0} ; 0 ≦ 𝜆 ≦ 1; 𝑧 ∈ U) ,

1 +
1

𝛾
(

𝑤(I
𝑎,𝑏;𝑐

𝑔 (𝑤))
󸀠

(1 − 𝜆)𝑤 + 𝜆I
𝑎,𝑏;𝑐

𝑔 (𝑤)
− 1) ≺ 𝜙 (𝑤)

(𝛾 ∈ C \ {0} ; 0 ≦ 𝜆 ≦ 1; 𝑤 ∈ U) ,

(12)

where the function 𝑔 is given by (4).
On specializing the parameters 𝜆 and 𝑎, 𝑏, and 𝑐, one

can state the various new subclasses of Σ as illustrated in the
following examples.

Example 2. For 𝜆 = 1 and 𝛾 ∈ C\ {0}, a function𝑓 ∈ Σ, given
by (1), is said to be in the class S𝑎,𝑏;𝑐

Σ
(𝛾, 𝜙), if the following

conditions are satisfied:

1 +
1

𝛾
(
𝑧(I
𝑎,𝑏;𝑐

𝑓 (𝑧))
󸀠

I
𝑎,𝑏;𝑐

𝑓 (𝑧)
− 1) ≺ 𝜙 (𝑧) ,

1 +
1

𝛾
(
𝑤(I
𝑎,𝑏;𝑐

𝑔 (𝑤))
󸀠

I
𝑎,𝑏;𝑐

𝑔 (𝑤)
− 1) ≺ 𝜙 (𝑤) ,

(13)

where 𝑧, 𝑤 ∈ U and the function 𝑔 is given by (4).

Example 3. For 𝜆 = 0 and 𝛾 ∈ C\ {0}, a function𝑓 ∈ Σ, given
by (1), is said to be in the class G𝑎,𝑏;𝑐

Σ
(𝛾, 𝜙), if the following

conditions are satisfied:

1 +
1

𝛾
((I
𝑎,𝑏;𝑐

𝑓 (𝑧))
󸀠

− 1) ≺ 𝜙 (𝑧) ,

1 +
1

𝛾
((I
𝑎,𝑏;𝑐

𝑔 (𝑤))
󸀠

− 1) ≺ 𝜙 (𝑤) ,

(14)

where 𝑧, 𝑤 ∈ U and the function 𝑔 is given by (4).
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It is of interest to note that, for 𝑎 = 𝑐 and 𝑏 = 1, the class
S𝑎,𝑏;𝑐
Σ

(𝛾, 𝜆, 𝜙) reduces to the following new subclasses.

Example 4. For 𝜆 = 1 and 𝛾 ∈ C \ {0}, a function 𝑓 ∈ Σ,
given by (1), is said to be in the classS∗

Σ
(𝛾, 𝜙), if the following

conditions are satisfied:

1 +
1

𝛾
(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 1) ≺ 𝜙 (𝑧) ,

1 +
1

𝛾
(
𝑤𝑔
󸀠
(𝑤)

𝑔 (𝑤)
− 1) ≺ 𝜙 (𝑤) ,

(15)

where 𝑧, 𝑤 ∈ U and the function 𝑔 is given by (4).

Example 5. For 𝜆 = 0 and 𝛾 ∈ C \ {0}, a function 𝑓 ∈ Σ,
given by (1), is said to be in the classH∗

Σ
(𝛾, 𝜙), if the following

conditions are satisfied:

1 +
1

𝛾
(𝑓
󸀠
(𝑧) − 1) ≺ 𝜙 (𝑧) ,

1 +
1

𝛾
(𝑔
󸀠
(𝑤) − 1) ≺ 𝜙 (𝑤) ,

(16)

where 𝑧, 𝑤 ∈ U and the function 𝑔 is given by (4).
In the following section, we find estimates on the coef-

ficients |𝑎
2
| and |𝑎

3
| for functions in the above-defined sub-

classesS𝑎,𝑏;𝑐
Σ

(𝛾, 𝜆, 𝜙) of the function class Σ by employing the
techniquewhich is different from that used by earlier authors.
Earlier authors investigated the coefficients of biunivalent
functions mainly by using the following lemma.

Lemma 6 (see [23]). If ℎ ∈ P, then |𝑐
𝑘
| ≦ 2 for each 𝑘, where

P is the family of all functions ℎ, analytic in U, for which

R {ℎ (𝑧)} > 0 (𝑧 ∈ U) , (17)

where

ℎ (𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧
2
+ ⋅ ⋅ ⋅ (𝑧 ∈ U) . (18)

2. Coefficient Bounds for the Function Class
S𝑎,𝑏;𝑐
Σ

(𝛾,𝜆,𝜙)

We begin by finding the estimates on the coefficients |𝑎
2
| and

|𝑎
3
| for functions in the class S𝑎,𝑏;𝑐

Σ
(𝛾, 𝜆, 𝜙).

Suppose that 𝑝(𝑧) and 𝑞(𝑧) are analytic in U with 𝑝(0) =

0 = 𝑞(0), |𝑝(𝑧)| < 1, and |𝑞(𝑧)| < 1 and suppose that

𝑝 (𝑧) = 𝑝
1
𝑧 + 𝑝
2
𝑧
2
+ ⋅ ⋅ ⋅ (|𝑧| < 1) ,

𝑞 (𝑧) = 𝑞
1
𝑧 + 𝑞
2
𝑧
2
+ ⋅ ⋅ ⋅ (|𝑧| < 1) .

(19)

It is well known that
󵄨󵄨󵄨󵄨𝑝1

󵄨󵄨󵄨󵄨 ≤ 1,
󵄨󵄨󵄨󵄨𝑝2

󵄨󵄨󵄨󵄨 ≤ 1 −
󵄨󵄨󵄨󵄨𝑝1

󵄨󵄨󵄨󵄨

2

,

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 ≤ 1,

󵄨󵄨󵄨󵄨𝑞2
󵄨󵄨󵄨󵄨 ≤ 1 −

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨

2

.

(20)

Thus, from (5), it follows that

𝜙 (𝑝 (𝑧)) = 1 + 𝐵
1
𝑝
1
𝑧 + (𝐵

1
𝑝
2
+ 𝐵
2
𝑝
2

1
) 𝑧
2
+ ⋅ ⋅ ⋅ , (21)

𝜙 (𝑞 (𝑤)) = 1 + 𝐵
1
𝑞
1
𝑤 + (𝐵

1
𝑞
2
+ 𝐵
2
𝑞
2

1
)𝑤
2
+ ⋅ ⋅ ⋅ . (22)

Theorem 7. Let a function 𝑓(𝑧), given by (1), be in the class
S𝑎,𝑏;𝑐
Σ

(𝛾, 𝜆, 𝜙). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1

√
󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆2 − 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (2 − 𝜆)

2
𝐵
1
𝜑
2

2

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

(3 − 𝜆) 𝜑
3

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

(2 − 𝜆)
2
𝜑
2

2

(3 − 𝜆) 𝜑
3
𝐵
1

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆
2
− 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (3 − 𝜆) 𝜑

3
𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

(3 − 𝜆) 𝜑
3
{
󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆2 − 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (2 − 𝜆)

2
𝐵
1
𝜑
2

2
}

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

(2 − 𝜆)
2
𝜑
2

2

(3 − 𝜆) 𝜑
3
𝐵
1

,

(23)

where 𝜑
2
and 𝜑

3
are given by (10).

Proof. It follows from (12) that

1 +
1

𝛾
(

𝑧(I
𝑎,𝑏;𝑐

𝑓 (𝑧))
󸀠

(1 − 𝜆) 𝑧 + 𝜆I
𝑎,𝑏;𝑐

𝑓 (𝑧)
− 1) = 𝜙 (𝑝 (𝑧)) ,

1 +
1

𝛾
(

𝑤(I
𝑎,𝑏;𝑐

𝑔 (𝑤))
󸀠

(1 − 𝜆)𝑤 + 𝜆I
𝑎,𝑏;𝑐

𝑔 (𝑤)
− 1) = 𝜙 (𝑞 (𝑤)) ,

(24)

where 𝜙(𝑝(𝑧)) and 𝜙(𝑞(𝑤)) are given by (21) and (22),
respectively.

Now, by equating the coefficients in (24), we get

(2 − 𝜆)

𝛾
𝜑
2
𝑎
2
= 𝐵
1
𝑝
1
, (25)

(𝜆
2
− 2𝜆)

𝛾
𝜑
2

2
𝑎
2

2
+
(3 − 𝜆)

𝛾
𝜑
3
𝑎
3
= 𝐵
1
𝑝
2
+ 𝐵
2
𝑝
2

1
, (26)
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−
(2 − 𝜆)

𝛾
𝜑
2
𝑎
2
= 𝐵
1
𝑞
1
, (27)

(𝜆
2
− 2𝜆)

𝛾
𝜑
2

2
𝑎
2

2
+
(3 − 𝜆)

𝛾
𝜑
3
(2𝑎
2

2
− 𝑎
3
) = 𝐵
1
𝑞
2
+ 𝐵
2
𝑞
2

1
.

(28)

From (25) and (27), we find that

𝑎
2
=

𝛾𝐵
1
𝑝
1

(2 − 𝜆) 𝜑
2

=
−𝛾𝐵
1
𝑞
1

(2 − 𝜆) 𝜑
2

, (29)

which implies

𝑝
1
= −𝑞
1
, (30)

(2 − 𝜆)
2
𝜑
2

2
𝑎
2

2
= 𝛾
2
𝐵
2

1
𝑝
2

1
. (31)

By adding (26) and (28) and by using (29) and (30), we obtain

{[2𝛾 (𝜆
2
− 2𝜆) 𝐵

2

1
− 2(2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 2𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3
} 𝑎
2

2

= 𝐵
3

1
𝛾
2
(𝑝
2
+ 𝑞
2
) .

(32)

Now, by using (20) and (31), we get

{
󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆
2
− 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨

+(2 − 𝜆)
2
𝐵
1
𝜑
2

2
}
󵄨󵄨󵄨󵄨𝑎2

󵄨󵄨󵄨󵄨

2

≤
󵄨󵄨󵄨󵄨󵄨
𝛾
2󵄨󵄨󵄨󵄨󵄨
𝐵
3

1
.

(33)

Hence,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1
)

× (
󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆
2
− 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
]

× 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (2 − 𝜆)

2
𝐵
1
𝜑
2

2
)
−1/2

.

(34)

This gives the bound on |𝑎
2
| as asserted in (23).

Next, in order to find the bound on |𝑎
3
|, by subtracting

(28) from (26), we get

2 (3 − 𝜆)

𝛾
𝜑
3
𝑎
3
= 𝐵
1
(𝑝
2
− 𝑞
2
) +

2 (3 − 𝜆)

𝛾
𝜑
3
𝑎
2

2
. (35)

It follows from (20), (30), and (35) that

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

(3 − 𝜆) 𝜑
3

+
(3 − 𝜆) 𝜑

3

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1 − (2 − 𝜆)

2
𝜑
2

2

(3 − 𝜆) 𝜑
3

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨

2

. (36)

By using (34), we obtain

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

(3 − 𝜆) 𝜑
3

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

(2 − 𝜆)
2
𝜑
2

2

(3 − 𝜆) 𝜑
3
𝐵
1

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆
2
− 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (3 − 𝜆) 𝜑

3
𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

(3 − 𝜆) 𝜑
3
{
󵄨󵄨󵄨󵄨󵄨
[𝛾 (𝜆2 − 2𝜆) 𝐵

2

1
− (2 − 𝜆)

2
𝐵
2
] 𝜑
2

2
+ 𝛾 (3 − 𝜆) 𝐵

2

1
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ (2 − 𝜆)

2
𝐵
1
𝜑
2

2
}

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

(2 − 𝜆)
2
𝜑
2

2

(3 − 𝜆) 𝜑
3
𝐵
1

.

(37)

This completes the proof of Theorem 7.

By putting 𝜆 = 1 in Theorem 7, we have the following
corollary.

Corollary 8. Let the function 𝑓(𝑧) given by (1) be in the class
S𝑎,𝑏;𝑐
Σ

(𝛾, 𝜙). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1

√
󵄨󵄨󵄨󵄨2𝛾𝐵
2

1
𝜑
3
− (𝛾𝐵

2

1
+ 𝐵
2
) 𝜑
2

2

󵄨󵄨󵄨󵄨 + 𝐵
1
𝜑
2

2

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

2𝜑
3

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

𝜑
2

2

2𝜑
3
𝐵
1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨󵄨
2𝛾𝐵
2

1
𝜑
3
− (𝛾𝐵

2

1
+ 𝐵
2
) 𝜑
2

2

󵄨󵄨󵄨󵄨󵄨
+ 2𝜑
3
𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

2𝜑
3
{
󵄨󵄨󵄨󵄨2𝛾𝐵
2

1
𝜑
3
− (𝛾𝐵

2

1
+ 𝐵
2
) 𝜑
2

2

󵄨󵄨󵄨󵄨 + 𝐵
1
𝜑
2

2
}

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

𝜑
2

2

2𝜑
3
𝐵
1

.

(38)

By taking 𝑎 = 𝑐 and 𝑏 = 1, in Corollary 8, we get the
following corollary.

Corollary 9. Let the function 𝑓(𝑧) given by (1) be in the class
S∗
Σ
(𝛾, 𝜙). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1

√
󵄨󵄨󵄨󵄨𝛾𝐵
2

1
− 𝐵
2

󵄨󵄨󵄨󵄨 + 𝐵
1

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

2
,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

1

2𝐵
1

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨󵄨
𝛾𝐵
2

1
− 𝐵
2

󵄨󵄨󵄨󵄨󵄨
+ 2𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

2 (
󵄨󵄨󵄨󵄨𝛾𝐵
2

1
− 𝐵
2

󵄨󵄨󵄨󵄨 + 𝐵
1
)

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

1

2𝐵
1

.

(39)

(40)

By putting 𝜆 = 0 in Theorem 7, we have the following
corollary.
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Corollary 10. Let the function 𝑓(𝑧) given by (1) be in the class
G𝑎,𝑏;𝑐
Σ

(𝛾, 𝜙). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1

√
󵄨󵄨󵄨󵄨3𝛾𝐵
2

1
𝜑
3
− 4𝐵
2
𝜑
2

2

󵄨󵄨󵄨󵄨 + 4𝐵
1
𝜑
2

2

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{

{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

3𝜑
3

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

4𝜑
2

2

3𝜑
3
𝐵
1

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨3𝛾𝐵
2

1
𝜑
3
− 4𝐵
2
𝜑
2

2

󵄨󵄨󵄨󵄨 + 3𝜑
3
𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

3𝜑
3
(
󵄨󵄨󵄨󵄨3𝛾𝐵
2

1
𝜑
3
− 4𝐵
2
𝜑
2

2

󵄨󵄨󵄨󵄨 + 4𝐵
1
𝜑
2

2
)

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

4𝜑
2

2

3𝜑
3
𝐵
1

.

(41)

By taking 𝑎 = 𝑐 and 𝑏 = 1, in Corollary 10, we get the
following corollary.

Corollary 11. Let the function 𝑓(𝑧) given by (1) be in the class
H∗
Σ
(𝛾, 𝜙). Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

√𝐵
1

√
󵄨󵄨󵄨󵄨3𝛾𝐵
2

1
− 4𝐵
2

󵄨󵄨󵄨󵄨 + 4𝐵
1

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{

{{{{

{

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

3
,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

4

3𝐵
1

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 𝐵1

󵄨󵄨󵄨󵄨󵄨
3𝛾𝐵
2

1
− 4𝐵
2

󵄨󵄨󵄨󵄨󵄨
+ 3𝐵
3

1

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

3 (
󵄨󵄨󵄨󵄨3𝛾𝐵
2

1
− 4𝐵
2

󵄨󵄨󵄨󵄨 + 4𝐵
1
)

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

4

3𝐵
1

.

(42)

3. Concluding Remarks

For the class of strongly starlike functions, the function 𝜙 is
given by

𝜙 (𝑧) = (
1 + 𝑧

1 − 𝑧
)

𝛼

= 1 + 2𝛼𝑧 + 2𝛼
2
𝑧
2
+ ⋅ ⋅ ⋅ (0 < 𝛼 ≤ 1) ,

(43)

which gives 𝐵
1
= 2𝛼 and 𝐵

2
= 2𝛼
2.

Remark 12. From Theorem 7, when 𝐵
1
= 2𝛼 and 𝐵

2
= 2𝛼
2

for the class S𝑎,𝑏;𝑐
Σ

(𝛾, 𝜆, 𝜙) [8], we get

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨2𝛾
󵄨󵄨󵄨󵄨 𝛼

√
󵄨󵄨󵄨󵄨(𝜆 − 2) (2𝛾𝜆 − 𝜆 + 2) 𝛼𝜑

2

2
+ 2 (3 − 𝜆) 𝛾𝛼𝜑

3

󵄨󵄨󵄨󵄨 + (2 − 𝜆)
2
𝜑
2

2

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{

{{{{{

{

󵄨󵄨󵄨󵄨2𝛾
󵄨󵄨󵄨󵄨 𝛼

(3 − 𝜆) 𝜑
3

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

(2 − 𝜆)
2
𝜑
2

2

2 (3 − 𝜆) 𝜑
3
𝛼
,

󵄨󵄨󵄨󵄨󵄨
2 (𝜆 − 2) (2𝛾𝜆 − 𝜆 + 2) 𝛾𝛼

2
𝜑
2

2
+ 4𝛾
2
(3 − 𝜆) 𝛼

2
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ 4 (3 − 𝜆) 𝛼

2
𝜑
3

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

(3 − 𝜆) 𝜑
3
{
󵄨󵄨󵄨󵄨(𝜆 − 2) (2𝛾𝜆 − 𝜆 + 2) 𝛼𝜑

2

2
+ 2𝛾 (3 − 𝜆) 𝛼𝜑

3

󵄨󵄨󵄨󵄨 + (2 − 𝜆)
2
𝜑
2

2
}

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

(2 − 𝜆)
2
𝜑
2

2

2 (3 − 𝜆) 𝜑
3
𝛼
.

(44)

On the other hand, if we take
𝜙 (𝑧) =

1 + (1 − 2𝛽) 𝑧

1 − 𝑧

= 1 + 2 (1 − 𝛽) 𝑧 + 2 (1 − 𝛽) 𝑧
2
+ ⋅ ⋅ ⋅ (0 ≤ 𝛽 < 1) ,

(45)

then 𝐵
1
= 𝐵
2
= 2(1 − 𝛽).

Remark 13. From Theorem 7, when 𝐵
1
= 𝐵
2
= 2(1 − 𝛽) for

the class S𝑎,𝑏;𝑐
Σ

(𝛾, 𝜆, 𝜙), we get

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2 (1 − 𝛽)
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

√
󵄨󵄨󵄨󵄨[2 (1 − 𝛽) 𝜆𝛾 − 𝜆 + 2] (𝜆 − 2) 𝜑

2

2
+ 2 (1 − 𝛽) (3 − 𝜆) 𝛾𝜑

3

󵄨󵄨󵄨󵄨 + (2 − 𝜆)
2
𝜑
2

2

,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

2 (1 − 𝛽)
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

(3 − 𝜆) 𝜑
3

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 ≤

(2 − 𝜆)
2
𝜑
2

2

2 (1 − 𝛽) (3 − 𝜆) 𝜑
3

2 (1 − 𝛽)
󵄨󵄨󵄨󵄨󵄨
(𝜆 − 2) [2 (1 − 𝛽) 𝜆𝛾 − 𝜆 + 2] 𝛾𝜑

2

2
+ 2 (1 − 𝛽) (3 − 𝜆) 𝛾

2
𝜑
3

󵄨󵄨󵄨󵄨󵄨
+ 4(1 − 𝛽)

2

(3 − 𝜆)
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨

2

𝜑
3

(3 − 𝜆) 𝜑
3
{
󵄨󵄨󵄨󵄨(𝜆 − 2) [2 (1 − 𝛽) 𝛾𝜆 − 𝜆 + 2] 𝜑

2

2
+ 2 (1 − 𝛽) (3 − 𝜆) 𝛾𝜑

3

󵄨󵄨󵄨󵄨 + (2 − 𝜆)
2
𝜑
2

2
}

,

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 >

(2 − 𝜆)
2
𝜑
2

2

2 (1 − 𝛽) (3 − 𝜆) 𝜑
3

.

(46)
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Remark 14. By putting 𝛾 = 1 in Corollary 11 we obtain more
accurate results corresponding to the results obtained in [19].
Further, by taking 𝛾 = 1 and 𝜙(𝑧) is given by (43) (or by (45),
the results obtained inTheorem 7 andCorollary 11 yieldmore
accurate results than the results obtained in [15, 21].

Remark 15. If 𝑎 = 1, 𝑏 = 1 + 𝛿, and 𝑐 = 2 + 𝛿 with R(𝛿) >

−1, then the operator 𝐼
𝑎,𝑏,𝑐

𝑓 turns into well-known Bernardi
operator:

𝐵
𝑓
(𝑧) = [I

𝑎,𝑏,𝑐
(𝑓)] (𝑧) =

1 + 𝛿

𝑧𝛿
∫

1

0

𝑡
𝛿−1

𝑓 (𝑡) 𝑑𝑡. (47)

I
1,1,2

𝑓 and I
1,2,3

𝑓 are the well-known Alexander and
Libera operators, respectively. Further, if 𝑏 = 1 in (9),
then I

𝑎,𝑏;𝑐
immediately yields the Carlson-Shaffer operator

𝐿(𝑎, 𝑐)(𝑓) := I
𝑎,1,𝑐

𝑓. So, various other interesting corollaries
and consequences of our main results (which are asserted
by Theorem 7 above) can be derived similarly. The details
involved may be left as an exercise for the interested reader.
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