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a b s t r a c t

In last few decades, the emission of greenhouse gasses has exponentially increased due to large produc-

tion of electric power energy from conventional fossil fuels to pose critical environmental challenges. The

renewable energies (REs) are establishing themselves as key technologies for reduction of carbon emis-

sions, in addition to low cost and high efficiency. However, the operational limits and the power gener-

ation procedures of the renewable energies invite immense challenges. The uncertainty in production

with precise and error free approximation make it very complicated. Hence, an effective approach with

methodical organization of the renewable energies are the need of the hour for reliable and safe system.

In this study, an IEEE 30-bus hybrid power system (HPS) problem consisting of conventional thermal gen-

erators and green energies like wind generators and solar photovoltaic are considered to become environ-

mentally and economically capable than the existing ones. Several measures like penalty cost and reserve

cost have been considered in this present study for addressing the uncertainty issues underestimation

and overestimation respectively. Further, three hybrid configurations such as thermal-solar (TS),

thermal-wind (TW) and thermal-wind-solar (TWS) are proposed to perform the cost effective analysis.

The adopted hybrid power system is extremely complex and non-linear optimization problem. Hence,

a recently proposed evolutionary algorithm namely competitive swarm optimization (CSO) algorithm

is implemented to discover the optimum result for the variety goals like minimum production cost, car-

bon emission, voltage variation and loss of the power. The performance of CSO algorithm is compared

with several state-of-the-art meta-heuristic algorithms such GA, PSO, CSA, ABC, and SHADE-SF. The

extraordinary outcomes achieved in this work illustrate that the CSO method can successfully be applied

to handle the complex, non-convex and non-linear hybrid power system problems.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the increased demand in electricity production, the envi-

ronmental consequences pose a great challenge to affect the world

economy. The fertile agricultural land will experience drought and

warmer climate, affecting its crop harvests to drop. The fall in agri-

cultural land’s crop harvest is a long-lasting damage to the econ-

omy of a country. The infrastructures will get damaged by floods,

cyclones and hurricanes, causing to spend billions of dollars to

rebuild. These situations could hit to G.D.P in coming days. As

per the recent 2017 report (IEA, 2019) of the International Energy

Agency, the total primary energy supply of the world has reached

162,494 terawatt-hour ðTWhÞ or equivalent to 13,972 millions of

tons of oil equivalent ðMtoeÞ and out of which the fossil energy

accounts for 80 % of it. The overall major energy source in 1971

and 2017 is represented in Fig. 1. The primary reason for the huge

demand in fossil energy is due to the rapid industrialization, expo-

nential population growth and advancement in technologies. As a

consequence, the environmental condition starts to decorate with

increased emission of greenhouse gases. This poses a great chal-

lenge to consider other cleaner sources of energies with cost effec-

tive way. Hence, the renewable energies through hybrid power

systems have received the unparalleled attention in recent times

(Destek and Sinha, 2020; Li et al., 2020; Li et al., 2020) to satisfy

the demand of clean energies with least cost.

The classical hybrid power system model is designed to allocate

the requisite power from the conventional thermal generators to
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reduce the whole operating cost irrespective of generated emission

while fulfilling all the limitations (Mahor et al., 2009). The primary

objectives of these research works are to increase the efficiency of

the projected algorithms in considering different complex goals

like multi-fuel scenario, valve point effect (Chaib et al., 2016;

Bouchekara et al., 2016) and convergence speed (Mohamed et al.,

2017). However, the production of energy from the traditional fos-

sil fuel releases major greenhouse gases such as SOx, COx and NO2

which affect not only the humans but also other animals and

plants. The annual change in CO2 emissions in 2000–2018 (IEA,

2019) is presented in Fig. 2. From this figure it can be established

that in the period 2010–2016 the average carbon emissions has fol-

lowed annual drop of 1 % but in 2018 emissions started to grow

again at 0.5 %. Despite the increase in average carbon emissions

in 2018, the countries like the United States, Canada and Korea,

several countries exhibited overall drops, most remarkably by

Japan, Germany and France (IEA, 2019).

Therefore, the economic load dispatch (ELD) problem has been

passed by the Clean Air Organization to contain the greenhouse

gasses since 1990 (H.R.,1990). The outline formed by United

Nations on Climate Change (Lu et al., 2010) has proposed to impose

the carbon tax in order to tackle the greenhouse emissions by

Fig. 1. Comparison of fuel supply in 1971 and 2017.

Fig. 2. Scenario of CO2 emissions in between 2000 and 2018.
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increasing the operational cost. However, the previous works only

emphasize to decrease the level of pollutants in fossil fuel by

improving the dispatch strategies. But now a days the renewable

energies such as wind and solar have gained wide recognition

due to their zero emission and low fuel cost advantages. Hence,

the CEED model with wind power and solar power is being incor-

porated by the researchers across the world (Panda et al., 2020) to

minimize emission as well as the cost. The first CEED model incor-

porating wind power was proposed in (Hetzer et al., 2008) to ana-

lyze the effect of optimal solutions. The stochastic model of wind

generation was introduced in (Jabr and Pal, 2009) for realistic pre-

sentation of hybrid power system. The constraints on the genera-

tion of wind power energy are considered in (Liu and Xu, 2010;

Liu, 2011). Subsequently, the massive wind power generating sys-

tems was proposed as dynamic economic dispatch (DED) model in

(Wei et al., 2011). The remote hybrid power systemwith solar pho-

tovoltaic and diesel generator was reflected in (Henerica et al.,

2015). The propelled hydro generator was presented in

(Kanzumba, 2016) as an alternative form of storage to the hybrid

power system consisting solar photovoltaic, wind and diesel gener-

ators. The grid adjustment of wind and solar photovoltaic power is

complex due to their uncertainty nature. The probability distribu-

tion of the renewable energies wind and solar photovoltaic follow

the Weibull and lognormal density functions respectively (Chang,

2010; International Electrotechnical Commission., 2005). Occa-

sionally, the power output from these renewable energies bears

the penalty cost for underestimating the scheduled power by pro-

ducing surplus energy than required. On contrary to this, some-

times they produce less energy than the scheduled power to

create the overestimation scenario forcing the uses of expensive

reserved energy. The uncertainty nature of the renewable energies

displays serious challenges for the execution of the power system.

The uncertainty in production with precise and error free approx-

imation make the renewable energies very complicated. By consid-

ering the present scenario, it can be established that the

modifications in prevailing sharing policies to minimize mutually

the fuel price and amount of pollutants are the critical research

topic. Therefore, with increasing demand in energy consumptions

and consciousness of eco-friendly effects, great effectiveness

deployment for renewable energies like wind and solar have paid

more attention throughout the world. In ELD problems, when the

environmental concerns are attached then they are popularly

known as combined economic emission power dispatch problems

(CEED). The solution of CEED (Wolpert and Macready, 1997) prob-

lems focuses to generate the powers at lowest cost with least emis-

sion effect. Several classical optimization algorithms such as linear

programming (Nanda et al., 1988); lagrangian method (El-Keib

et al., 1994), analytical methods (Anantasate and Bhasaputra,

2011) and Newton-Raphson method (Chen and Chen, 2003) have

been deployed to discover the quality solution of the real-world

CEED problems. But, these methods fail to handle efficiently due

to the non-smooth and non-convex properties of the CEED

problems.

Hence, the nature inspiredmeta-heuristic algorithms are widely

applied in handling different real life complex problems for having

the capabilities in resolving the non-linear situations. Some of the

popular meta-heuristic algorithms such as GA (Ganjefar and

Tofighi, 2011), PSO (Abdullah et al., 2013), DE (Peng et al., 2012),

ACO (Karakonstantis and Vlachos, 2018), BFA (Hota et al., 2010),

CSA (Hassanien et al., 2018), ABC (Adaryani and Karami, 2013),

FPA (Harifi et al., 2020) and GPC (Yang, 2012) have been exten-

sively examined in solving the CEED problems. However, the ‘No

Free Lunch Theorem’ [48] cites that no evolutionary meta-

heuristic optimization algorithm can solve all the real life engi-

neering problems efficiently. Hence, there is a need to propose

new meta-heuristics subsequently to handle the new complex

problems.

Henceforth, at first, this paper focuses an effective approach

with methodical accomplishment of the renewable energies for

reliable and safe system. Several measures like reserve cost and

penalty cost have to be taken into account to regulate the uncer-

tain productions. Secondly, the paper focuses for the proper inte-

gration of conventional thermal and renewable energies. The

appropriate penetration of renewable energies may able to reduce

the generation cost. Finally, the work attempts producing the ideal

power schedule amid the generators for minimizing the generating

cost, carbon emission, transmission power loss and deviation of

voltage by implementation of a novel heuristic evolutionary algo-

rithm. In order to promote the renewable energy sources, carbon

tax (Yao et al., 2012; Roy et al., 2010) is imposed on each unit of

released poisonous gasses to represent emission in terms of cost.

The novel competitive swarm optimization algorithm (CSO)

(Cheng and Jin, 2014) is deployed to find the solution of the

adopted problem. The CSO being a nature inspired algorithm nei-

ther follows the particle best position and global best position to

modernize the swarm members. Instead, the algorithm produces

a pair wise competitive mechanism to apprise the position of the

particles. The results of the CSO algorithm is analyzed with several

state-of-the-art algorithms (Ganjefar and Tofighi, 2011; Abdullah

et al., 2013; Peng et al., 2012; Karakonstantis and Vlachos, 2018;

Hota et al., 2010; Hassanien et al., 2018; Adaryani and Karami,

2013; Harifi et al., 2020; Yang, 2012; Biswas et al., 2017) to provide

accurate and fast convergence solution of the non-linear con-

strained HPS problem.

The remainder of this paper is presented as following. The mod-

elling of the constrained hybrid power system problem and the

uncertain behavior of the renewable energies have been addressed

in Section 2. The objectives and case studies of the HPS are estab-

lished in section 3. The description and implementation of the CSO

algorithm are explained in section 4. The section 5 focus with

parameter setting and analysis of the experimental results. In this

part, firstly-three different hybrid configurations such as TS, TW

and TWS have been proposed to produce the cost effective analy-

sis. Secondly, the CSO algorithm has been implemented to the best

cost effective configuration to report the optimum solution for all

the objectives and case studies. Lastly, the conclusion is provided

in section 6.

2. Mathematical formulation

Here, a 30-bus IEEE hybrid power system ðHPSÞ problem com-

prises of thermal, wind and solar generators is adopted for analy-

sis. As the behavior of wind and solar generators is intermittent

in nature, hence the hybrid power system problem is non-

convex, non-linear and irregular. These complicated nature of the

HPS restrain the system operator from the ultimate consumption

of the green energies. Therefore, the uncertainty of power creation

in renewable energies must be adjusted from other resources to

balance the load demand and generation. To confirm the ultimate

exploitation of green energies, appropriate scheduling and alloca-

tion between other resources are required. The graphical illustra-

tion of a sample HPS is displayed in Fig. 3 and the required

parameters are listed in Table 1.

2.1. Thermal generators fuel cost

Thermal generators depend on traditional energy sources such

as natural gas, coal, petrol and diesel. The produced powers

ðMWÞ of these generators directly depend on the amount of fuel
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cost. Hence, the relationship among fuel cost =hÞð and produced

power MWð Þ can be estimated by a quadratic equation defined as:

Fuel costTG ¼
X

NTG

i¼1

ai þ biPTGi þ ciP
2
TGi ð1Þ

where, PTGi is power output and ai, bi and ci are the suitable coeffi-

cients of the i
th

thermal generating unit. NTG represents the total

thermal generators. The effect of valve-point has to be reflected

for better convincing and accurate projection of cost of the fuel.

The turbines with multi-valve in thermal generators show a larger

difference in fuel cost (Bouchekara et al., 2016). Hence, the conse-

quence of multi-valve turbines is added to the eqn. (1) to obtain

an updated total cost of thermal generators as:

Valve Point Effect ¼
X

NTG

i¼1

ai þ biPTGi þ ciP
2
TGi

þ ri � sin si � Pmin
TGi � PTGi

� �� �
�

�

�

�

�

� ð2Þ

where, ri and si are the valve-point coefficients and Pmin
TGi is the least

power production capacity of the i
th

thermal unit. The required

parameters of all the thermal power generators are noted in Table 2.

2.2. Direct cost of renewable energies

The solar photovoltaic and wind generators do not need fossil

fuel and are very different from the traditional thermal generators.

However, the wind and solar photovoltaic plants pay a cost propor-

tionate to the scheduled power output. This cost is formed from

the accumulation of initial layout, maintenance and renewal cost

(Chen et al., 2006). Hence, the cost for the k
th
wind power is exhib-

ited in terms of power output as:

Direct costWGk PWGkð Þ ¼ ukPWGk ð3Þ

where, uk is the cost coefficient of the connected k
th

wind turbine

and PWGk is the expected power from the specified generator. Like-

wise, the cost for the l
th
solar photovoltaic is given as:

Direct costSPVl PSPVlð Þ ¼ v lPSPVl ð4Þ

where, v l is the cost coefficient of the related l
th
solar PV plant and

PSPVl is the power of the generator.

2.3. Uncertainty cost of renewable energies

The renewable energies are unpredictable in nature. Sometimes

they fail to produce the required power whereas, other times they

produce more than the required amount. The first situation is

called an overestimation situation from the unpredictable energy

sources. Therefore, there is need of to have separate energy reserve

to match the requirement. The cost of engaging the reserve gener-

ators to fulfill the overestimated sum is called as reserve cost

(Panda and Tripathy, 2015). Hence, the reserve cost for the wind

generators and solar photovoltaic generators are provided as

follows.

Reserve cost for overestimation of k
th
wind generator is:

Fig. 3. Graphical illustration of a hybrid power system (HPS).

Table 1

Parameters of the adopted 30-bus IEEE system.

Entities Size Particulars

No. of buses 30 Alsac and Stott, 1974

No. of branches 41

No. of thermal

generators

03 TG1, TG2 and TG3 are connected to bus no. 1, 2 and 8

respectively.

No. of wind

generators

02 Wind generators WG1 and WG2 are connected at

bus no. 5 and 11 respectively.

No. of solar

photovoltaic

01 Solar photovoltaic SPV is connected at bus no. 13.

No. of control

variables

11 Real power for 2 thermals ðTG2 and TG3Þ, 2 winds

ðWG1 andWG2Þ, 1 solar generator ðSPVÞ and voltage

for all 6 connected buses.

Connected load

capacity

– 283.4 MW and 126.4 MVAr

load bus voltage

range

24 0:95� 1:05½ �p:u:
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Reserve costWGk PWGk�PWGakð Þ¼KRWGkðPWGk�PWGakÞ

¼KRWGk

�

Z PWGk

0

PWGk�pWGkð ÞfWG pWGkð ÞdpWGk

ð5Þ

The solar photovoltaic follows lognormal PDF (Shi et al., 2012)

which is very different from Weibull PDF of the wind generators.

The parameters of these probability density functions are listed

in Table 3. The reserve cost for the solar photovoltaic is made on

the basis of the definitions provided in Mohapatra et al. (2019).

Therefore, the reserve cost for overestimation of l
th

solar photo-

voltaic is:

Reserve costSPVl PSPVl � PSPValð Þ ¼ KRSPVlðPSPVl � PSPValÞ

¼ KRSPVl � f SPV ðPSPVal < PSPVlÞ � PSPVl � E PSPVal < PSPVlð Þ½ � ð6Þ

where, KRWGk and KRSPVl are the reserve cost coefficients of the k
th

and l
th

wind and solar plant respectively. The parameters PWGak

and PSPVal are the actual available power from the respective plants.

The density functions for the wind and solar are given as fWG and

f SPV respectively. The probability function f SPV ðPSPVal < PSPVlÞ repre-

sents the chances of shortage occurrence than the scheduled power.

The parameter E PSPVal < PSPVlð Þ represents the expectation of avail-

able power below the scheduled power for the solar generator.

The calculation of probability density function for the wind and

solar energies is adopted from the available research work (Shi

et al., 2012).

In contradiction to the power overestimation situation, there

exists another case of power underestimation. In this case, the

renewable energies produce higher power output than the esti-

mated amount. Therefore, it is required to utilize the surplus

power of the renewable energies by dropping the power produc-

tion from thermal generators. The cost functions for the calculation

of penalties have been added in both wind and solar models to bal-

ance the surplus amount as follows.

Penalty cost for underestimation of k
th
wind generator is:

Penalty costWGk PWGak � PWGkð Þ ¼ KPWGkðPWGak � PWGkÞ

¼ KPWGk

Z PWGrk

PWGk

pWGk � PWGkð ÞfWG pWGkð ÞdpWGk ð7Þ

Penalty cost for underestimation of l
th
solar photovoltaic is:

Penalty costSPVl PSPVal � PSPVlð Þ ¼ KPSPVl PSPVal � PSPVlð Þ

¼ KPSPVl � f SPV ðPSPVal > PSPVlÞ � EðPSPVal > PSPVlÞ½ � � PSPVl ð8Þ

where, KPWGk and KPSPVl are the penalty cost coefficients of the k
th
and

l
th
wind plant and solar plant respectively. The parameters PWGak and

PSPVal are the actual available power from the respective plants. The

notation PWGrk presents the rated power output of the k
th
wind firm.

The probability density function f SPV ðPSPVal > PSPVlÞ represents the

surplus occurrence chances than the scheduled power. The parame-

ter E PSPVal > PSPVlð Þ represents the expectation of available power

above the scheduled power for the solar generator.

2.4. Emission cost

It is established that power generated from traditional thermal

energies like coal, petrol, gas and diesel releases harmful gases

such as SOx and NOx into the atmosphere. The release of the toxic

gases escalates with the rise in produced power from the thermal

generators. Hence, the emission is calculated in tonnes per hour

ton=hð Þ by the following equation:

Emission ¼
X

NTG

i¼1

ai þ biPTGi þ ciP
2
TGi

� �

� 0:01þ die
hiPTGið Þ

h i

ð9Þ

where, ai, bi, ci, di and hi are the emission coefficients of the i
th
ther-

mal generator.

In recent times, several nations are placing immense burden on

the whole energy division to cut carbon emissions because of glo-

bal warming. In order to promote the green energy sources like

hydro power, wind power and solar power, the carbon tax factor

ðCarbontaxÞ is levied on each unit of released poisonous gasses to

represent emission with respect to cost. Hence, the emission cost

ð=hÞ is given as:

Emissioncost ¼ Carbontax � Emission ð10Þ

2.5. Power loss with voltage deviation

Another significant factors in HPS models are the actual net-

work power loss and deviation of voltage. Because of the inherent

resistance of the lines, the power loss in the system is inevitable.

The power loss is estimated as:

Power loss ¼
X

nl

j¼1

X

nl

k–i

GjkV
2
j þ V2

k � 2V jVkcos djk
� �

ð11Þ

where, djk ¼ dj � dk, is the voltage angles change between bus j and

bus k. Gjk is the transmission conductance and nl is the overall lines.

Table 2

The thermal generators coefficients for the considered problem.

Power generator Load bus a b c r s a b c d h

TG1 1 0 2 0.0037 18 0.037 4.091 �5.554 6.49 0.0002 6.667

TG2 2 0 1.75 0.0175 16 0.038 2.543 �6.047 5.638 0.0005 3.333

TG3 8 0 3.25 0.0083 12 0.045 5.326 �3.55 3.38 0.002 2

Table 3

The strictures of the wind and solar probability density functions.

Wind generators Solar photovoltaic

Wind generators Number of

turbines

Rated power

ðMWÞ

Parameters of Weibull

PDF

Weibull mean

ðm=sÞ

Rated power ðMWÞ Parameters of

Lognormal

Lognormal

mean

WG1 connected to

bus 5

25 75 9 and 2 7:976 50 connected to

bus 13

Mean is 6 and Std. is

0:6
483W=m2

WG2 connected to

bus 11

20 60 10 and 2 8:862
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In the model, voltage deviation is the degree of quality of volt-

age. The voltage deviation parameter is considered as accumulative

variation of voltage of entire load buses. It may be presented as.

Voltage dev iation ¼
X

NL

p¼1

VLp � 1
�

�

�

�

 !

ð12Þ

where, NL is the overall number of load buses and V Lp is the voltage

at loss bus respectively.

2.6. Equality constraints

In hybrid power system problem, the total produced active

power and reactive power should be equivalent to the total

demand and losses (Biswas et al., 2017). Hence, the power equilib-

rium equations form the balanced constraints of the system which

are shown in eqns. (13) and (14) respectively.

PGj � PDj � V j

X

Nbus

k¼1

Vk Gjkcos djk
� �

þ BjksinðdjkÞ
� �

¼ 08j 2 Nbus ð13Þ

QGj � QDj � V j

X

Nbus

k¼1

Vk Gjk sin djk
� �

� BjkcosðdjkÞ
� �

¼ 08j 2 Nbus ð14Þ

where, Nbus counts the overall number of buses. Similarly, the

active load and reactive load demands at bus j is given by PDj and

QDj respectively. Similarly, the active power generations and reac-

tive power generations from bus j are given by PGj and QGj respec-

tively. The other parameters Gjk and Bjk represent the

transmission conductance and susceptance between bus j and bus

k correspondingly.

2.7. Inequality constraints

The constraints with inequality balance of the hybrid power

model are the operational bounds of the generators, power system

instruments and security of the power lines and the buses.

Pmin
TGi � PTGi � Pmax

TGi ; i ¼ 1; � � � ::;NTG ð15Þ

Pmin
WGk � PWGk � Pmax

WGk; k ¼ 1; � � � ::;NWG ð16Þ

Pmin
SPVl � PSPVl � Pmax

SPVl; l ¼ 1; � � � :;NSPV ð17Þ

Qmin
TGi � Q TGi � Qmax

TGi ; i ¼ 1; � � � :;NTG ð18Þ

Qmin
WGk � QWGk � Qmax

WGk; k ¼ 1; � � � :;NWG ð19Þ

Qmin
SPVl � Q SPVl � Qmax

SPVl; l ¼ 1; � � � ;NS ð20Þ

Vmin
Gi � VGi � Vmax

Gi ; i ¼ 1; � � � :;NG ð21Þ

Vmin
Lp

� VLp � Vmax
Lp

; p ¼ 1; � � � ;NL ð22Þ

Slq � Smax
lq

; q ¼ 1; � � � :;nl ð23Þ

Here, NWG;NWG and NSPV characterize the number of thermal gener-

ators, wind plants and solar photovoltaics correspondingly. The

power production bounds of the thermal generators, wind genera-

tors and solar photovoltaic are represented in equations (15)–(17)

respectively. Similarly, the equations (18)-(20) represent the limits

of reactive power generators. Equations (21) and (22) represent the

voltage constraints of the generator buses and load buses individu-

ally. The total quantity of bus generators, load buses and transmis-

sion lines are provided by NG;NL and nl respectively.

3. Objective functions and study cases

Eight cases studies are accomplished here to highlight the

strength of the CSO algorithm in solving the 30-bus IEEE hybrid

power system problem. The first 4 cases under goes the single

objective functions of the HPS whereas the remaining 4 cases

assess the multi-objective functions. The multi-objective functions

are transformed into single objectives by adjusting suitable weight

factors available in the literature. The considered case studies are

listed as following.

3.1. Case No 1: Total cost minimization

The first case of the HPS combines all the cost functions of the

power producing units by overlooking the consequence of the

emission factor. Hence the first objective ðF1Þ is formulated to

reduce the total cost as.

F1 ¼Min Fuel costTG þ
X

NWG

k¼1

Direct costWGk PWGkð Þ½

(

þReserve costWGk PWGk � PWGakð Þ

þPenalty costWGkðPWGak � PWGkÞ� þ
X

NSPV

l¼1

Direct costSPVl PSPVlð Þ½

þReserve costSPVl PSPVl � PSPValð Þ þ Penalty costSPVlðPSPVal � PSPVlÞ�g ð24Þ

3.2. Case No 2: Fuel cost minimization with effect of valve point

To model the hybrid power system in more realistic way, the

effect of valve point is need to be reflected in the cost of the fuel.

Hence, this case minimizes the fuel cost by considering the valve

point effect as F2 ¼ MinðF1 þ Valve Point EffectÞ (25).

3.3. Case No 3: Power loss minimization

For the existence of natural resistance in the lines, it becomes

very difficult to avoid the transmission losses completely. Hence,

case 3 considers to reduce the real loss of the power.

ðMWÞ as F3 ¼ MinðPower lossÞ ð26Þ

3.4. Case No 4: Voltage deviation minimization

To maintain the voltage quality in hybrid power system it is

very much necessary to regulate the voltage deviations. Therefore,

the accumulative variation of the voltages of entire load buses is

need to be reduced. Therefore, the objective for the case 4 is pro-

vided as follows.

F4 ¼ MinðVoltage deviationÞ ð27Þ

3.5. Case No 5: Total cost minimization with inclusion of emission cost

In recent times, several nations are placing immense burden on

the whole energy area to lessen carbon emissions because of global

warming. In order to promote the green energy resources as wind

power, hydro power and solar power and carbon tax factor

ðCarbontaxÞ is levied on each unit of poisonous gasses. Hence, the

multi-objective scenario for the case is to reduce the total cost of

the fuel along with the emission cost is provided as.
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F5 ¼ MinðF1 þ Carbontax � EmissionÞ ð28Þ

3.6. Case No 6: Power loss minimization and total cost minimization

In this case, the objectives power loss and total cost are trans-

formed in to a solo objective by multiplying suitable weight factor

ðkp ¼ 40Þ(Mohamed et al., 2017). Hence, the total objective for the

case is to catch the best solution for both the objectives simultane-

ously as.

F6 ¼ MinðF1 � kpPower lossÞ ð29Þ

3.7. Case No 7: Voltage deviation and total cost minimization

The case 7 considers to reduce the cost of the fuel as well as the

cumulative voltage abnormality concurrently. Hence, the objective

function for the case is formed with help of suitable weight value

ðkVD ¼ 100Þ (Bouchekara et al., 2016; Mohamed et al., 2017). The

objective function is given as

F7 ¼ MinðF1 þ kVD � Voltage dev iationÞ ð30Þ

3.8. Case No 8: Total cost, carbon emission, voltage variation and

power loss minimization

The last case combines all the four primary objectives simulta-

neously to assess the overall result. Hence, the objective function is

formed by taking suitable weights ðkE; kVDand kPÞ(Mohamed et al.,

2017). The objective function for the last case is described as.

F8 ¼ MinðF1 þ kE � Emissionþ kVD � Voltage deviationþ kP

� Power lossÞ ð31Þ

The objective of all the above mention case analysis are summa-

rized in Table 4 for comparative analysis.

4. Optimization algorithm and implementation

The Competitive Swarm Optimizer (CSO) is a swarm inspired

algorithm introduced by Cheng and Jin (Cheng and Jin, 2014) in

2015. The method is motivated from the coordinated behavior of

ants, fishes, and birds. In recent times, the CSO algorithm has been

recognized (Liang et al., 2006) as a metaheuristic algorithm in deal-

ing challenging optimization problems easily. The CSO algorithm is

basically motivated from the particle swarm optimization algo-

rithm (PSO), but the operational technique of the CSO is much dif-

ferent from PSO and other evolutionary algorithms. The algorithm

evades the situation of early convergence by entirely getting freed

from global best position and personal best position. Hence, the

CSO algorithm does not involve any memory to update the parti-

cles. Rather, the concept of competitive mechanism is introduced

between the particles to get the work done. The first kind of such

work was introduced by Liang (Liang and Suganthan, 2005) short

of the global best position. Forth after, an identical idea was pro-

posed in a multi-swarm design (LaTorre et al., 2015). Following

to the idea, CSO exposed the exercise of pair wise competition

between the members in one single swarm. In this scenario, the

member that losses the competition motivates from the winner

particle in place of personal best position and global best position.

This notion of CSO algorithm is straight, however impressive

enough to solve many optimization problems.

4.1. Motivation

In the CSO algorithm, the 50 % of the population is modernized

in every iteration to move towards the winner particles for improv-

ing the convergence rate. The particles that win the competition

are promoted to the next iteration to preserve the good solutions.

This ensures the high diversity in the population. The inspiration

behind the partition of the whole population into two populations

is to maintain the balance between both the convergence speed

and the diversity. The pair-wise competitive scenario of the CSO

algorithm and the update process of loser particles are presented

in Fig. 4.

Let the considered problem is minFun xð Þwhere x�X and X 2 Rm

denotes the m-dimensional variable space and the primary swarm

be U comprising r members at tth iteration. Let the current position

and current velocity of every member at tth iteration are denoted

by xi tð Þ ¼ ðxi;1 tð Þ; xi;2 tð Þ; � � � ; xi;m tð ÞÞ and v i tð Þ ¼ v i;1 tð Þ;v i;2 tð Þ; � � � ;
�

v i;m tð ÞÞ: In each iteration t, the members in population P tð Þ are ran-

domly distributed into two different populations. At that time, a

pairwise competition is designed amid the members to choose

the winner particles and loser particles. The particles that lose

the competition (losers) improve their positions and velocities by

inspiring from the particles that win the competition (winners).

The position and velocity of the winner particles and loser particles

in the k-th round of competition at iteration t are given as

xwinner tð Þ; xlosser tð Þ and vwinner tð Þ;v losser tð Þ respectively : After the k
th

Table 4

Case studies of the 30-bus IEEE HPS.

Cases Total cost Emission Cost Power loss Voltage deviation effect of Valve point

Case No 1 U

Case No 2 U

Case No 3 U

Case No 4 U

Case No 5 U U

Case No 6 U U

Case No 7 U U

Case No 8 U U U U
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time competition, the next iteration velocity and position of the

losers are updated as.

v losser;k t þ 1ð Þ ¼ R1v losser;k tð Þ þ R2 xwinner;k tð Þ � xlosser;k tð Þ
� �

þu1R3 xk tð Þ
�

�xlosser;k tð Þ
� �

ð32Þ

xlosser;k t þ 1ð Þ ¼ xlosser;k tð Þ þ v losser;k t þ 1ð Þ ð33Þ

Here, R1;R2 and R3� 0;1½ �nare three arbitrarily produced vectors, xkðtÞ
�

is the mean position and u1 is the scalar factor. The pseudo-code of

the CSO method is presented in the following algorithm. The flow

chart for the adapted problem is provided in Fig. 5.

Algorithm: The pseudo code of the Competitive Swarm Opti-

mization algorithm (CSO).

Here, the notation U means the initially generated swarm, PðtÞ

signifies the population elements at a specific iteration ‘t’.

Similarly Xwinner tð Þ and Xlosser tð Þ denote the winner particles

and loser particles. The stopping criteria is the overall

function calculations.1. t ¼ 0;

2. Arbitrarily generate the population Pð0Þ;

3. Do while stopping criteria is not fulfilled

4. Calculate the objective function of the members in PðtÞ;

5. U ¼ P tð Þ; P t þ 1ð Þ ¼£;

6. Do while U–£

7. Choose two particles randomly X tð Þ and Y tð Þ from U;such

that.FunðX tð ÞÞ � FunðY tð ÞÞ

1. Assign Xwinner tð Þ ¼ X tð Þ andX losser tð Þ ¼ Y tð Þ;

2. Add Xwinner tð Þ into Pðt þ 1Þ;

3. Update Xlosser tð Þ to Xlosser t þ 1ð Þ by eqn. (32–33) and add to

Pðt þ 1Þ;

4. Eliminate X tð Þ; Y tð Þ from U;

5. End

6. t = t + 1;

7. End

5. Setup and analysis of the results

In this section, different case studies are carried out for the con-

sidered 30 bus IEEE hybrid power system problem. The eminent

CSO along with other state-of-the-art algorithms such as GA,

PSO, SHADE-SF, CSA, ABC, FPA and GPC are implemented to dis-

cover the outcomes for the case studies. In each case study, the size

of the population NPð Þ is taken at 60 for all the methods. As a stop-

ping criteria, the total function evaluations and total runs are fixed

at 24,000 and 5 times respectively. The optimized results of the

algorithms along with the 11 control variables and other parame-

ter settings are tabulated and explained later in this section. These

experiments are executed on a computer with Intel ðRÞ Core

ðTMÞi57200UCPU@2:7GHz and 16GBRAM configuration. The direct

cost coefficients ðukÞfor the first wind power generator ðWG1Þ

and second wind power ðWG2Þ generator are taken as 1.6 and

1.75 respectively. The penalty cost coefficients ðKPWG1;KPWG2Þ and

reserve cost coefficients ðKRWG1;KRWG2Þ for the wind power genera-

tors are fixed at 1.5 and 3 correspondingly. Similarly the coeffi-

cients for direct cost v lð Þ, penalty cost KPSPV1ð Þ and reserve cost

ðKRSPV1Þ for the solar power plant is fixed at 1.6, 1.5 and 3

respectively.

5.1. Cost effective scenarios

A number of cases studies are carried out to improve the perfor-

mance of the hybrid power system on six generators IEEE 30-bus

system consisting of three thermal power producing units, two

windfarms and one solar photovoltaic plant. The effectiveness of

the HPS is examined by considering three different configurations

such as TS, TW and TWS. The first configuration TS is designed with

thermal and solar power generating units. The second configura-

tion TW is planned with thermal and wind power generating units.

Similarly, the third configuration TWS is considered with thermal,

wind and solar generating units. Further, the capability of each

configuration is examined by introducing three different scenarios.

Three scenarios operate with 10 %, 25 % and 35 % of the renewable

energy respectively. The graphical representation of the configura-

tions along with the scenarios is presented in Fig. 6.

The total cost of the hybrid power system configurations along

with the scenarios are now optimized with the support of compet-

itive swarm optimization method. The results are graphically pic-

turized in Fig. 7. From this graph, it is clearly perceived that with

the increase uses of renewable energy, the operating cost of TWS

configuration is far superior to TS and TW models. The reason for

the type of behavior of the hybrid power system is due to the sub-

stantial dependency on other non-renewable energy power gener-

ating units when the percentage of the renewable energy is low.

The savings in operating cost of the TWS configuration with

Fig. 4. The pair wise competitive mechanism in CSO and the upgrading approach.
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respect to TS and TW configuration is recorded in Table 5. In this

table, it can be concluded that the selection of TWS configuration

over TS and TW can result superior savings in terms of operating

cost. Therefore, the TWS configuration is adapted in this paper to

carry out all the following investigations of the considered

problem.

5.2. Experimental results and comparison

In this part, first of all the state-of-the-art algorithms such as

CSO, SHADE-SF, CSA, ABC, FPA and GPC are applied to find the best

optimum values for all the eight cases acknowledged in section 3.

The best fitness values along with their control variables and the

parameters for the case 1 and case 5 are provided in Tables 6a

and 6b respectively. The overall results of each case study is

reflected in Table 7. From the Tables; it is witnessed that the fuel

cost of Case 1 is 781.889 =h for CSO is the best among all the

state-of-the-art algorithms. The CSO algorithm is able to provide

optimum fuel cost value than the other algorithms by balancing

all the constraints. It is also realized that, the violations for the con-

straints are adjusted crucially to achieve the result and all the

parameters and the control variables and are also balanced in their

permitted limits. Effect of valve point is undertaken in case 2 to

notice an increased cost for the algorithms. However the supre-

macy of CSO algorithm is remain unchanged. The case 3 considers

the performance of the algorithms in term of real power losses. As

the power loss is an important factor for optimum power flow

problem, hence the performance of the CSO algorithm cannot be

disregarded with respect to the other algorithms. The real power

loss for the algorithm CSO is 2.0751 MW . The voltage deviation

parameter examined in case 4 accomplishes very closed result

with SHADE-SF algorithm.

The remaining four cases are the multi-objective scenarios. The

case 5 represents the reduction of fuel cost with the inclusion of

emission cost. The current observation with CSO finds an enhanced

and better cost 810:31982=h than the cost of the SHADE-SF and

other algorithms. The CSO algorithm tries to provide the optimum

solution for both the objectives. Case 6 and case 7 consider fuel

Fig. 5. Flowchart of the CSO technique in handling the HPS problem.
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cost along with power loss and voltage deviation respectively,

whereas case 8 considers all the four primary objectives fuel cost,

power loss, emission and voltage deviation simultaneously. In all

these multi-objective cases, the effectiveness of the CSO algorithm

is much better to the SHADE-SF and other algorithms. It can be

clearly observed from the above analysis that the results of CSO

algorithm is promising and encouraging in 7 cases out of 8 consid-

ered cases when compared with the near competitor SHADE-SH

algorithm. The convergence graphs of the cases are also drawn in

Fig. 8 to justify the claim. The convergence graphs of the Fig. 8 also

confirm the superiority of the CSO algorithm in all the 7 cases. Fur-

ther, some statistical analyses are also performed in next section to

investigate the significant difference between the algorithms.

5.3. Statistical test

In this part, three types of statistical measures are considered to

analyze the results which are mention as follows.

5.3.1. Mean, standard deviation and t-test

Let x1; x2; � � � � � � � � � :xN be the attained solutions of the N inde-

pendent runs. Then the best result, worst result, meanðlÞ and
stdðrÞ for all the case studies are listed in Table 7. The mean ðlÞ and

Fig. 6. Hybrid power system configurations with different scenarios.

Fig. 7. Total cost of different hybrid power system configurations at different scenarios.

Table 5

Savings in operating cost of TWS with respect to TS and TW respectively.

Renewable

percentages

TWS compare

to TS

TWS compare

to TW

Savings in operating

cost ð=hÞ

10 % 19.3846 1.5389

25 % 21.2627 11.777

35 % 18.8079 15.2453

Savings in operating

cost ð=yearÞ

10 % 169809.09 13480.76

25 % 186261.25 103166.52

35 % 16477.20 133548.82
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Table 6a

Best computational results of the HPS for the case 1.

Control variables Min Max Case 1

Algorithms SHADE-SF CSO GA PSO CSA ABC FPA GPC

PTG1ðMWÞ 50 140 134.9079 134.9114 134.90 134.90 134.90 134.80 134.90 134.92

PTG2ðMWÞ 20 80 29.1983 28.4860 32.10 31.40 30.50 28.60 28.22 29.32

PTG3ðMWÞ 10 35 10.0000 10.0063 15.20 10.00 10.00 10.00 10.00 10.00

PWG1ðMWÞ 0 75 44.1585 43.7873 41.80 43.80 44.50 44.40 42.34 43.39

PWG2ðMWÞ 0 60 37.2400 36.8945 33.70 37.40 37.80 39.00 36.51 37.61

PSPV1ðMWÞ 0 50 33.7550 35.0902 31.80 32.50 31.90 32.40 37.29 33.97

V1ðp:u:Þ 0.95 1.10 1.0738 1.0718 1.02 1.050 1.040 1.060 1.069 1.068

V2ðp:u:Þ 0.95 1.10 1.0145 1.0567 1.01 0.950 0.900 1.030 1.056 1.050

V5ðp:u:Þ 0.95 1.10 1.0382 1.0339 1.02 1.000 0.900 1.010 1.027 1.036

V8ðp:u:Þ 0.95 1.10 1.0995 1.0590 1.00 1.030 1.000 1.040 1.074 1.096

V11ðp:u:Þ 0.95 1.10 1.0999 1.0970 1.03 0.950 1.010 1.090 1.088 1.098

V13ðp:u:Þ 0.95 1.10 1.0631 1.0498 1.05 1.010 1.040 1.01 1.061 1.100

QTG1ðMVArÞ �20 150 16.79819 �2.00046 �1.64 48.80 31.40 30.880 �5.548 2.768

QTG2ðMVArÞ �20 60 �20.00000 12.17394 6.57 �20.00 �20.00 �15.50 19.594 �6.701

QTG3ðMVArÞ �15 40 40.0000 40.00000 40.00 40.00 40.000 36.645 40.000 40.000

QWG1ðMVArÞ �30 35 30.13183 21.66628 35.00 35.00 30.030 23.794 16.207 27.391

QWG2ðMVArÞ �25 30 30.0000 29.63473 21.00 �3.40 15.600 29.636 26.420 28.966

QSPV1ðMVArÞ �20 25 20.45997 15.50949 20.00 22.70 25.00 10.40 20.480 25.000

Fuel cost ð=hÞ 782.86750 781.88998 787.84 785.82 784.770 782.859 782.859 782.422

Emission ðton=hÞ 1.76192 1.76140 2.760 2.360 1.960 1.762 1.762 1.764

Ploss ðMWÞ 5.897 5.7713 6.430 6.790 6.470 5.863 5.863 5.843

VD ðp:u:Þ 0.49450 0.45234 0.870 1.080 0.850 0.455 0.455 0.537

Table 6b

Best computational results of the HPS for the case 5.

Control variables Min Max Case 5

Algorithms SHADE-SF CSO GA PSO CSA ABC FPA GPC

PTG1ðMWÞ 50 140 123.525 123.7114 122.90 123.20 122.80 123.60 124.13 124.00

PTG2ðMWÞ 20 80 33.047 33.5415 35.60 33.80 31.40 34.40 34.22 34.00

PTG3ðMWÞ 10 35 10.0000 10.0029 14.40 10.00 10.00 10.00 10.01 10.00

PWS1ðMWÞ 0 75 46.021 46.3004 45.30 45.30 45.50 46.80 46.66 46.39

PWS2ðMWÞ 0 60 38.748 38.9339 36.90 36.90 38.30 37.30 38.57 39.04

PSPV1ðMWÞ 0 50 37.336 36.1895 33.70 39.40 40.60 36.30 35.09 35.27

V1ðp:u:Þ 0.95 1.10 1.071 1.0701 1.030 1.100 1.070 1.070 1.070 1.069

V2ðp:u:Þ 0.95 1.10 1.057 1.0564 1.020 1.030 1.060 1.060 1.055 1.054

V5ðp:u:Þ 0.95 1.10 1.036 1.0353 1.000 1.090 1.060 1.080 1.038 1.030

V8ðp:u:Þ 0.95 1.10 1.04 1.0424 1.020 1.070 1.040 1.040 1.052 1.099

V11ðp:u:Þ 0.95 1.10 1.099 1.0985 1.040 1.040 1.000 1.090 1.095 1.086

V13ðp:u:Þ 0.95 1.10 1.056 1.0534 1.020 1.040 1.050 1.050 1.053 1.099

QTG1ðMVArÞ �20 150 �2.678 �2.65848 �1.760 36.500 �1.560 �3.000 �0.379 �0.139

QTG2ðMVArÞ �20 60 12.319 10.44618 9.930 �20.00 20.830 12.840 4.145 6.648

QTG23ðMVArÞ �15 40 35.27 39.05657 40.00 40.00 40.00 27.430 40.00 40.00

QWG1ðMVArÞ �30 35 22.964 22.10929 28.660 35.00 35.00 35.00 25.942 19.021

QWG2ðMVArÞ �25 30 30 30.00000 21.280 9.880 �0.490 27.480 28.844 25.052

QSPV1ðMVArÞ �20 25 17.779 16.71581 20.450 12.750 21.550 15.190 17.018 25.00

Total cost ð=hÞ 810.346 810.31982 814.720 811.490 811.530 811.260 811.666 810.324

Emission ðton=hÞ 0.891 0.88467 1.360 0.980 0.920 0.890 0.923 0.916

Ploss ðMWÞ 5.276 5.2844 5.630 5.460 5.440 5.310 5.307 5.327

VD ðp:uÞ 0.469 0.46542 0.640 0.480 0.490 0.470 0.465 0.507

Table 7

Overall statistical summary of considered case studies for the HPS problem.

Cases CSO SHADE-SF t-value

Best Worst Mean Std Best Worst Mean Std

Case 1 781.889 782.193 782.020 0.14796 782.867 783.886 783.472 0.43394 �7.07E + 00

Case 2 249.243 249.243 249.242 0.00044 249.245 249.245 249.250 0.00000 �5.08E + 01

Case 3 2.07542 2.10603 2.07910 0.00721 2.1037 2.10371 2.10371 0.01621 �3.10E + 00

Case 4 0.37576 0.37578 0.37580 0.00001 0.37523 0.37576 0.37540 0.00029 3.08E + 00

Case 5 810.319 811.082 810.622 0.21356 810.346 811.694 811.180 0.46617 �2.44E + 00

Case 6 958.700 958.849 958.762 0.06739 958.790 959.552 959.090 0.26696 �2.68E + 00

Case 7 824.418 824.685 824.480 0.11664 824.673 825.598 825.350 0.38689 �4.81E + 00

Case 8 922.617 922.716 922.670 0.16818 922.953 923.804 923.360 0.38979 �3.63E + 00

w=t=l 7/0/1
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the stdðrÞof N independent runs are calculated by the following

equations (34) and (35) respectively.

Mean ðlÞ ¼
PN

i¼1xi
N

ð34Þ

Standard deviation ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

xi � lð Þ2

s

N
ð35Þ

Due to the small sample size ðN < 30Þ, the statistical t-test with

5 % of LOS is adopted to observe the statistical gap between the

means of the algorithms. Let the means and standard deviations

of the algorithms CSO and its competitor are given by l1, l2 and

r1,r2 individually. Then the t-values are generated by using the

equation (36) and the values are listed in Table 7. From the t-test

formula it is clear that, a negative t-value represents superior solu-

tion of the CSO algorithm than it’s near competitor SHADE-SF algo-

rithm. Similarly a positive t-value represents superior solution of

SHADE-SF algorithm than the CSO algorithm. Hence, the negative

t-values are considered as the wins and positive t-values are con-

sidered as losses. If the solutions are statistically insignificant to

each other then, the corresponding t-value is considered as a tie.

The t-values of the wins are boldfaced whereas the t-values of

the ties are highlighted with italic. The heading w=t=l totals the

number of win cases, tie cases and loss cases respectively.

t-test tð Þ ¼
l1 � l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1
2þr2

2

N

q ð36Þ

From the results of Table 7, the dominance behavior of the CSO

algorithm is witnessed at 7 cases in terms of best solutions. In the

remaining one case (Case 4) the SHADE-SF algorithm is capable to

achieve superiorly than the CSO algorithm. Similar analysis can

also be drawn from the w=t=l heading. For the CSO algorithm the

number of wins ðwÞ is 7, whereas the number of losses ðlÞ is 1 in

comparison to the SHADE-SF algorithm. There exists no case where

the solutions of both the algorithms are insignificant to each other.

This means that the number of ties ðtÞ is zero.

5.3.2. Friedman’s average ranking test and best count test

In this section, the Friedman ranking test (Mishra et al., 2020) is

applied to find the significance difference between the methods in

terms of multiple comparisons by considering all the fitness values.

The relative ranking of the algorithms are first computed according

to their performances in each objective function. Then the average

ranking is calculated by taking the mean of the relative rankings.

The average ranking of the algorithms for the four primary objec-

tives like total cost, carbon emission, voltage variation and power

loss in each case is computed and listed in Table 8. The best count

of a method is defined as the number of objective functions for

Fig. 8. Convergence graph between SHADE-SF and CSO algorithm.

Table 8

Average ranking and comparison of best count between CSO and SHADE-SF.

SHADE-SF CSO

Cases Average Ranking Best Count Average Ranking Best Count

Case No 1 2.00 0 1.00 4

Case No 2 1.75 1 1.25 3

Case No 3 1.75 1 1.25 3

Case No 4 1.75 1 1.25 3

Case No 5 1.75 1 1.25 3

Case No 6 1.5 2 1.5 2

Case No 7 1.25 3 1.75 1

Case No 8 1.75 1 1.25 3

Fig. 9. Radar chart for the average ranking and best count for CSO and SHADE-SF.
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which the method delivers the best solution in comparison to

other methods. Here also the four primary objectives are consid-

ered. The best count for both the algorithms is noted down subse-

quently to the average ranking in Table 8. From these results, it can

be observed that the average ranking and the best count for the

CSO algorithm are superior to the SHADE-SF algorithm in most of

the cases. It can also be pointed out that although the case 1 is

designed to optimize the total cost, but the CSO algorithm is cap-

able to provide the best solution for all the objectives. This results

the best average ranking and maximum best count values. To

describe the difference graphically, the average ranking and the

best count values are picturized in Fig. 9 with the help of radar

chart.

5.4. Case studies of variations in reserve and penalty coefficients

This section investigates the effects of reserve cost and penalty

cost coefficients on the four primary objectives of the considered

problem. At first reserve cost coefficients

(KRWG1 ¼ KRWG2 ¼ KRSPV1 ¼ KR) for the both wind and solar power

system are changed from 3 to 6 with difference of 1 unit whereas,

the penalty cost coefficients ðKPWG1 ¼ KPWG2 ¼ KPSPV1 ¼ KPÞ are

remain unchanged. In second case, the penalty cost coefficients

are varied from 1.5 to 3, 4 and 5 whereas the reserve cost coeffi-

cients are remain unchanged. The penalty cost and reserve cost

coefficients affect the energy output at the generators. With the

increase in reserve cost coefficients, the production at wind and

solar power generators decreases. This results in enhanced produc-

tion at thermal power generators. Hence it fuels the total cost. Sim-

ilarly, the demand at thermal power generators decreases with

increase of penalty cost coefficients. The increased penalty cost

coefficient catalyzes the production of renewable energies. The

Tables 9 and 10 list the results with the variations of the reserve

cost and penalty cost coefficients correspondingly. The generated

power from six plants with the variations of reserve cost and pen-

alty cost coefficients for both the algorithms are graphically pre-

sented in Fig. 10(a-f) and Fig. 12(a-f) respectively. Similarly, the

change of four types of costs with variations of the reserve cost

and penalty cost coefficients are picturized in Fig. 11 and Fig. 13

respectively. From these tables and figures, the contradictory char-

acteristics between the reserve cost coefficients and penalty cost

coefficients are clearly established. The reserve cost coefficients

in Table 9 represent the sharp increase of the thermal power cost

as well as the emission values which results in drop of renewable

energy power cost. But the penalty cost coefficients in Table 10

represent the firm decrease of the thermal power cost and surge

in cost of renewable energies.

5.5. Variations in voltage deviation

In hybrid power system problem, the constraints on load buses

voltage are very crucial in maintaining the voltage quality and

security. Often the operating voltages tend to fall near their bound-

ary limits. In the adopted problem, the load bus voltages are

needed to be retained in between 0.95 and p:u:1.05 p:u: in order

to achieve both the objectives. The voltage parameter for each

Table 9

Simulation results by variation in reserve cost coefficient for hybrid power system.

KP = 1.5 (Fixed) KR = 3 KR = 4 KR = 5 KR = 6

SHADE-SF CSO SHADE-SF CSO SHADE-SF CSO SHADE-SF CSO

TG1ðMWÞ 134.90 134.91149 134.90791 134.93261 137.65158 137.33158 140.00000 139.96904

TG2ðMWÞ 28.564 28.4860 41.8381 42.6195 53.7258 53.6453 58.2046 57.6622

TG3ðMWÞ 10 10.0063 10.0000 10.0380 10.0000 10.0693 13.9788 14.0775

WG1ðMWÞ 43.774 43.7873 37.6301 37.8827 32.4680 32.4660 27.8321 27.9728

WG2ðMWÞ 36.949 36.8945 32.3415 32.5717 28.2840 28.2617 24.4704 24.4741

SPVðMWÞ 34.976 35.0902 33.0105 31.5857 28.0642 28.4013 26.0504 26.3609

TOTAL COST ðÞ 782.503 781.88998 821.2068 821.1503 851.2262 850.9534 873.9042 873.5189

TG COST ðÞ 439.8337 442.06528 487.0547 490.1335 541.3847 540.171 583.1 581.2898

WG COST ðÞ 245.5489 248.0038 236.8486 238.6757 223.9132 223.8175 207.6672 208.2573

SPV COST ðÞ 97.1204 91.8209 97.3035 92.3411 85.9283 86.9649 83.1370 83.9718

Fuel valve cost ðÞ 439.9944 442.0653 487.0547 490.1336 541.3847 540.1710 583.1000 581.2899

Emission ðton=hÞ 1.762 1.76140 1.76003 1.76266 2.08700 2.04574 2.41758 2.41277

Real power loss ðMWÞ 5.770 5.7713 6.3281 6.2301 6.7936 6.7752 7.1363 7.1165

Cumulative voltage drop ðp:uÞ 0.463 0.45234 0.48247 0.47787 0.44758 0.44518 0.44496 0.44564

Table 10

Simulation results by variation in penalty cost coefficient for hybrid power system.

KR = 3 (Fixed) KP = 1.5 KP = 3 KP = 4 KP = 5

SHADE-SF CSO SHADE-SF CSO SHADE-SF CSO SHADE-SF CSO

TG1 (MW) 134.908 134.91149 134.90791 134.90784 134.90791 134.90360 134.90791 134.90790

TG2 (MW) 28.564 28.4860 20.0268 20.8696 20.0000 20.0008 20.0000 20.0049

TG3 (MW) 10 10.0063 10.0000 10.0098 10.0000 10.0029 10.0000 10.0020

WG1 (MW) 43.774 43.7873 45.1367 45.5900 47.0160 46.2159 45.2016 44.9044

WG2 (MW) 36.949 36.8945 38.9197 39.1164 40.8594 40.4433 39.6722 39.0367

SPV (MW) 34.976 35.0902 40.0219 38.5075 36.1350 37.3851 39.2107 40.1637

TOTAL COST ($) 782.503 781.88998 800.4754 800.2546 810.9795 810.8348 822.8737 822.2662

TG COST($) 439.8337 442.06528 413.4823 416.1114 413.4003 413.4039 413.4004 413.4233

WG COST($) 245.5489 248.0038 268.2662 270.3379 286.5469 282.8348 284.1433 281.6550

SPV COST($) 97.1204 91.8209 118.7269 113.8053 111.0323 114.5961 125.3300 127.1879

Fuel valve cost($) 439.9944 442.0653 413.4822 416.1114 413.4004 413.4040 413.4004 413.4233

Emission (ton/h) 1.762 1.76140 1.76457 1.76427 1.76458 1.76411 1.76458 1.76458

Real power loss (MW) 5.770 5.7713 5.6129 5.6012 5.5183 5.5516 5.5925 5.6196

Cumulative voltage drop (p.u) 0.463 0.45234 0.45733 0.46299 0.45557 0.45819 0.46558 0.46111
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Fig. 10. Optimum generated power ðMWÞ vs reserve cost coefficient for CSO and SHADE-SF.

Fig. 11. Comparison of optimum output for variation in reserve cost coefficient between CSO and SHADE-SF.
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Fig. 12. Optimum generated power ðMWÞ vs penalty cost coefficient for CSO and SHADE-SF.

Fig. 13. Comparison of optimum output for variation in penalty cost coefficient between CSO and SHADE-SF.
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bus for the case No 1 and case No 5 are drawn in Fig. 14 to notice

the variations. From the figure, it is clearly found that the voltage at

individual bus is falling within the recommended boundaries. Sim-

ilarly the load bus voltage analyses for other remaining cases are

also found to follow identical patterns.

6. Conclusion

In this paper, an IEEE 30-bus hybrid power system (HPS) con-

sisting of thermal and renewable energies is considered to mini-

mize the emission of greenhouse gases and generation cost. The

uncertain circumstances such as underestimation and overestima-

tion are addressed with penalty cost and reserve cost respectively.

A cost effective analysis also has been incorporated by proposing

three hybrid configurations such as TS, TW and TWS. This analysis

justifies the TWS configuration for substantial remunerations in

terms of minimizing operating cost. Several state-of-the-art meta-

heuristics are also implemented to provide the optimum schedul-

ing among the generators by considering several case studies of

single and multi-objectives. The experimental outcomes claim that

the CSO algorithm not only delivers improved robust solutions but

also it may be successfully applied in large scaled, non-convex and

nonlinear hybrid power system optimization problems due to its

better solution quality and fast convergence. However, the difficult

hybrid power system problem of 57 and 117 buses are yet to be

considered in the present work. This can be treated as the limita-

tions, nevertheless it may also be treated as a future scope of the

current work which needs to be addressed later.

Declaration of Competing Interest

The authors declare the following financial interests/personal

relationships which may be considered as potential competing

interests: I acknowledge VIT for providing VIT SEED GRANT for car-

rying out this research work.

References

I.E.A., 2019. Key World Energy Statistics. 6, 36.
Destek, M.A., Sinha, A., 2020. Renewable, non-renewable energy consumption,

economic growth, trade openness and ecological footprint: evidence from
organization for economic Co-operation and development countries. J. Cleaner
Prod. 242, 1–11.

Li, L.L., Liu, Y.W., Tseng, M.L., Lin, G.Q., Ali, M.H., 2020. Reducing environmental
pollution and fuel consumption using optimization algorithm to develop
combined cooling heating and power system operation strategies. J. Cleaner
Prod. 247, 119082.

Li, L.L., Zhao, X., Tseng, M.L., Tan, R.R., 2020. Short-term wind power forecasting
based on support vector machine with improved dragonfly algorithm. J. Cleaner
Prod. 242, 1–12.

Mahor, A., Prasad, V., Rangnekar, S., 2009. Economic dispatch using particle swarm
optimization: a review. Renew. Sustain. Energy Rev. 13, 2134–2141.

Chaib, A.E., Bouchekara, H., Mehasni, R., Abido, M.A., 2016. Optimal power flow with
emission and non-smooth cost functions using backtracking search
optimization algorithm. Int. J. Electr. Power Energy Syst. 81, 64–77.

Bouchekara, H., Chaib, A.E., Abido, M.A., El-Sehiemy, R.A., 2016. Optimal power flow
using an improved colliding bodies optimization algorithm. Appl. Soft Comput.
42, 119–131.

Mohamed, A.A.A., Mohamed, Y.S., El-Gaafary, A.A., Hemeida, A.M., 2017. Optimal
power flow using moth swarm algorithm. Electric Power Syst. Res. 142, 190–
206.

H.R., 1990. Congressional Amendment to the Constitution. 1490.
Lu, C., Tong, Q., Liu, X., 2010. The impacts of carbon tax and complementary policies

on Chinese economy. Energy Policy 38 (11), 7278–7285.
Panda, A., Mishra, U., Tseng, M.-L., Ali, M., 2020. Hybrid power systems with

emission minimization: multi-objective optimal operation. J. Cleaner Prod.
https://doi.org/10.1016/j.jclepro.2020.121418.

Hetzer, J., Yu, D.C., Bhattarai, K., 2008. An economic dispatch model incorporating
wind power. IEEE Trans. Energy Convers. 23, 603–611.

Jabr, R.A., Pal, B.C., 2009. Intermittent wind generation in optimal power flow
dispatching. IET Gener. Transm. Distrib. 3 (1), 66–74.

Liu, X., Xu, W., 2010. Minimum emission dispatch constrained by stochastic wind
power availability and cost. IEEE Trans. Power Syst. 25, 1705–1713.

Liu, X., 2011. Emission minimization dispatch constrained by cost and wind power.
IET Generat. Transmission Distrib. 5, 735–742.

Wei, Z., Yu, P., Hui, S., 2011. Optimal wind–thermal coordination dispatch based on
risk reserve constraints. Eur. Transact Elect Power 21 (1), 740–756.

Henerica, T., Bing, Z., Xiaohua, X., 2015. Optimal power flow management for
distributed energy resources with batteries. Energy Convers. Manage. 102, 104–
110.

Kanzumba, K., 2016. Optimal scheduling for distributed hybrid system with
pumped hydro storage. Energy Convers. Manage. 111, 253–260.

Chang, T.P., 2010. Investigation on frequency distribution of global radiation using
different probability density functions. Int. J. Appl. Sci. Eng. 8 (2), 99–107.

International Electrotechnical Commission., 2005. Wind turbines part 1: Design
requirements. International Electrotechnical Commission. 61,400–1.

Nanda, J., Khotari, D.P., Lingamurthy, K.S., 1988. Economic- emission load dispatch
through goal programming techniques. IEEE Trans. Energy Convers. 3, 26–32.

El-Keib, A., Ma, H., Hart, J., 1994. Environmentally constrained eco- nomic dispatch
using the Lagrangian relaxation method. Power Syst. IEEE Trans. 9 (4), 1723–
1729.

Anantasate, S., Bhasaputra, P., 2011. A multi-objective bees algorithm for multi-
objective optimal power flow problem, Electrical Power Engineering and Power
System. The 8th Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI) Association of
Thailand-Conference.

Chen, S.D., Chen, J.F., 2003. A direct Newton-Raphson economic emission dispatch.
Int. J. Electr. Power Energy Syst. 25 (5), 411–417.

Ganjefar, S., Tofighi, M., 2011. Dynamic economic dispatch solution using an
improved genetic algorithm with non-stationary penalty functions. Eur. Trans.
Electrical Power 21 (3), 1480–1492.

Abdullah, M.N., Bakar, A.H.A., Rahim, N.A., Moklis, H., 2013. Economic load dispatch
with nonsmooth cost functions using evolutionary particle swarm
optimization. IEEJ Trans. Electric. Electron. Eng. 8 (S1), S30–S37.

Peng, C., Sun, H., Guo, J., Liu, G., 2012. Dynamic economic dispatch for wind-thermal
power system using a novel bi-population chaotic differential evolution
algorithm. Int. J. Electrical Power Energy Syst. 42 (1), 119–126.

Fig. 14. Load bus voltage distribution for case 1 and case 5.

P. Mohapatra Journal of King Saud University – Computer and Information Sciences 34 (2022) 8955–8971

8970



Karakonstantis, I., Vlachos, A., 2018. Hybrid ant colony optimization for continuous
domains for solving emission and economic dispatch problems. J. Inf. Optim.
Sci. 39, 651–671.

Hota, P.K., Barisal, A.K., Chakrabarti, R., 2010. Economic emission load dispatch
through fuzzy based bacterial foraging algorithm. Int. J. Electric. Power Energy
Syst. 32, 794–803.

Hassanien, A.E., Rizk-Allah, R.M., Elhoseny, M. 2018. A hybrid crow search algorithm
based on rough searching scheme for solving engineering optimizationproblems,
J. Ambient Intell. Hum. Comput. pp. 1–25, doi: 10.1007/s12652-018-0924-y.

Adaryani, M.R., Karami, A., 2013. ‘Artificial bee colony algorithm for solving multi-
objective optimal power flow problem’. Int. J. Elect. Power Energy Syst. 53, 219–
230.

Harifi, S., Mohammadzadeh, J., Khalilian, M., Ebrahimnejad, S. 2020. Giza pyramids
construction: An ancient-inspired metaheuristic algorithm for optimization.
Evol. Intell. pp. 1–9, doi: 10.1007/s12065-020-00451-3.

Yang, X.S. 2012. ‘Flower pollination algorithm for global optimization, in
Unconventional Computation and Natural Computation (Lecture Notes in
Computer Science), vol. 7445, J. Durand-Lose and N. Jonoska, Eds. Berlin,
Germany: Springer, 2012, pp. 240–249, doi: 10.1007/978-3-642-32894-7_27.

Yao, F., Dong, Z.Y., Meng, K., Xu, Z., Iu, H.H.C., Wong, K.P., 2012. Quantum-inspired
particle swarm optimization for power system operations considering wind
poweruncertainty and carbon tax inAustralia. IEEE Trans. Ind. Inf. 8 (4), 880–888.

Cheng, R., Jin, Y., 2014. A competitive swarm optimizer for large scale. IEEE Trans. 45
(2), 191–204.

Biswas, P.P., Suganthan, P.N., Amaratunga, G.A., 2017. Optimal power flow solutions
incorporating stochastic wind and solar power. Energy Convers. Manage. 148,
1194–1207.

Alsac, O., Stott, B., 1974. Optimal load flow with steady-state security. IEEE Trans.
Power Apparatus Syst., 745–751

Chen, C., Lee, T., Jan, R.M., 2006. Optimal wind-thermal coordination dispatch in
isolated power systems with large integration of wind capacity. Energy Convers.
Manage. 47 (18), 3456–3472.

Panda, A., Tripathy, M., 2015. Security constrained optimal power flow solution of
wind-thermal generation system using modified bacteria foraging algorithm.
Energy 93, 816–827.

Shi, L., Wang, C., Yao, L., Ni, Y., Bazargan, M., 2012. Optimal power flow solution
incorporating wind power. IEEE Syst. J. 6 (2), 233–241.

Mohapatra, P., Das, K.N., Roy, S., Kumar, R., Kumar, A., 2019. CSO technique for
solving the economic dispatch problem considering the environmental
constraints. Asian J. Water Environ. Pollut. 16 (2), 43–50.

Liang, J.J., Qin, A., Suganthan, P.N., Baskar, S., 2006. Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions. IEEE Trans.
Evolut. Comput. 10 (3), 281–295.

Liang, J.J., Suganthan, P.N., 2005. Dynamic multi-swarm particle swarm optimizer.
Proc. IEEE Swarm Intell. Symp., 124–129

LaTorre, A., Muelas, S., Pena, J.M., 2015. comprehensive large 316, 517–549.
Mishra, U., Wu, J.-Z., Sarkar, B., 2020. A sustainable production-inventory model for

a controllable carbon emissions rate under shortages. J. Cleaner Prod. https://
doi.org/10.1016/j.jclepro.2020.120268.

Roy, P.K., Ghoshal, S.P., Thakur, S.S., 2010. Combined economic and emission
dispatch problems using biogeography based optimization. Electric. Eng. 92 (4–
5), 173–184.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization.
Evolut. Comput. IEEE Trans. 1, 67–82.

P. Mohapatra Journal of King Saud University – Computer and Information Sciences 34 (2022) 8955–8971

8971


	Combined economic emission dispatch in hybrid power systems using competitive swarm optimization
	1 Introduction
	2 Mathematical formulation
	2.1 Thermal generators fuel cost
	2.2 Direct cost of renewable energies
	2.3 Uncertainty cost of renewable energies
	2.4 Emission cost
	2.5 Power loss with voltage deviation
	2.6 Equality constraints
	2.7 Inequality constraints

	3 Objective functions and study cases
	3.1 Case No 1: Total cost minimization
	3.2 Case No 2: Fuel cost minimization with effect of valve point
	3.3 Case No 3: Power loss minimization
	3.4 Case No 4: Voltage deviation minimization
	3.5 Case No 5: Total cost minimization with inclusion of emission cost
	3.6 Case No 6: Power loss minimization and total cost minimization
	3.7 Case No 7: Voltage deviation and total cost minimization
	3.8 Case No 8: Total cost, carbon emission, voltage variation and power loss minimization

	4 Optimization algorithm and implementation
	4.1 Motivation

	5 Setup and analysis of the results
	5.1 Cost effective scenarios
	5.2 Experimental results and comparison
	5.3 Statistical test
	5.3.1 Mean, standard deviation and [$]{\bi{t}}[$]‐test
	5.3.2 Friedman’s average ranking test and best count test

	5.4 Case studies of variations in reserve and penalty coefficients
	5.5 Variations in voltage deviation

	6 Conclusion
	Declaration of Competing Interest
	References


