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  COMBINED EFFECTS OF CHEMICAL 
REACTION AND TEMPERATURE 
DEPENDENT HEAT SOURCE ON MHD MIXED 
CONVECTIVE FLOW OF A COUPLE-STRESS 
FLUID IN A VERTICAL WAVY POROUS 
SPACE WITH TRAVELLING THERMAL WAVES

A mathematical model is developed to examine the effect of chemical reaction 
on MHD mixed convective heat and mass transfer flow of a couple-stress fluid 
in vertical porous space in the presence of a temperature dependent heat 
source with travelling thermal waves. The dimensionless governing equations 
are assumed to be made up of two parts: a mean part corresponding to the 
fully developed mean flow, and a small perturbed part, using amplitude as a 
small parameter. The analytical solution of the perturbed part has been carried 
out using the long-wave approximation. The expressions for the zeroth order 
and the first order solutions are obtained and the results of the heat and mass 
transfer characteristics are presented graphically for various values of 
parameters entering into the problem. It is noted that velocity of the fluid 
increases with the increase of the couple stress parameter and increasing the 
chemical reaction parameter leads suppress the velocity of the fluid. Cross 
velocity decreases with an increase of the phase angle. The increase of the 
chemical reaction parameter and Schmidt number lead to decrease the fluid 
concentration. The hydrodynamic case for a non-porous space in the absence 
of the temperature dependent heat source for Newtonian fluid can be captured 
as a limiting case of our analysis by taking α →1, 0H , aD → ∞  and a → ∞ . 

Keywords: mixed convection, wavy walls, porous space, couple-stress 
fluid and chemical reaction. 

 
 

Mixed convection flow in a vertical channel has 
attracted much attention because of its practical appli-
cations. These include cooling of electronic equip-
ment, heat exchangers, chemical processing equip-
ments, gas-cooled nuclear reactors and others. Tao 
[1] studied the laminar, fully developed mixed con-
vection in a vertical channel with uniform wall tempe-
ratures. Later, Aung and Worku [2] discussed the 
theory of combined free and forced convection in a 
vertical channel with flow reversal conditions for both 
developing and fully developed flows. Due to its wide-
spread applications, several authors have studied the 
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work on mixed convection [3-9]. Eldabe et al. [7] 
discussed the problem of mixed convective heat and 
mass transfer in a non-Newtonian fluid at a peristaltic 
surface with temperature dependent viscosity. Sri-
nivas and Muthuraj [8] have discussed the effects of 
thermal radiation and space porosity on MHD mixed 
convection flow in a vertical channel using homotopy 
analysis method. Also, they have reported the prob-
lem of mixed convective heat and mass transfer in a 
vertical wavy channel through porous medium with 
travelling thermal waves [9]. Zheng et al. [10] have 
examined the unsteady flow and heat transfer on a 
permeable stretching sheet in the presence of non-
uniform heat source/sink. Kumar et al. [11] have dis-
cussed the mixed convective flow and heat transfer in 
a vertical channel with one region filled with con-
ducting fluid and another region with non-conducting 
fluid. 
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The study of couple-stress fluids has applica-
tions in a number of processes that occur in industry 
such as the extrusion of polymer fluids, solidification 
of liquid crystals, cooling of metallic plate in a bath, 
exotic lubricants, and colloidal solutions, etc. The con-
stitutive equations for couple-stress fluids are given 
by Stokes [12]. The theory proposed by Stokes is the 
simplest one for micro-fluids, which allows polar ef-
fects such as the presence of couple-stress, body 
couple, and non-symmetric tensors. Various studies 
on couple stress fluid have been made under different 
physical aspects. However, some recent contributions 
in the field may be mentioned in Refs. [12-21]. Mek-
heimer [17] analyzed the MHD flow of a conducting 
couple stress fluid in a slit channel with rhythmically 
contracting walls. Sobh [18] studied the effect of slip 
velocity on peristaltic flow of a couple-stress fluid in 
uniform and non-uniform symmetric channels using 
long wavelength approximation. Srinivasacharya et 
al. [19] have reported the incompressible laminar flow 
of a couplestress fluid in a porous channel with ex-
panding or contracting walls using similarity transfor-
mation. Pandey and Chaube [20] have studied the 
wall properties on peristaltic transport of a couple-stress 
fluid using perturbation technique. More recently, Na-
deem and Akram [21] have examined the peristaltic 
transport of a couplestress fluid in an asymmetric 
channel with the effect of the induced magnetic field 
under the assumptions of long wave length and low 
but finite Reynolds number. 

Mixed convection flows with simultaneous heat 
and mass transfer under the influence of a magnetic 
field and chemical reaction arise in many transport 
processes both naturally and in many branches of sci-
ence and engineering applications. Some recent inte-
resting contributions on this topic can be found in the 
studies [22-27]. Pal and Talukdar [26] have analyzed 
the unsteady magnetohydrodynamic convective heat 
and mass transfer in a boundary layer slip flow past a 
vertical permeable plate with thermal radiation and 
chemical reaction using perturbation technique. Hayat 
et al. [27] have described the unsteady flow with heat 
and mass transfer characteristics in a third grade fluid 
bounded by a stretching sheet. Most recently, Srini-
vas and Muthuraj [28] have examined the effects of 
chemical reaction and space porosity on MHD mixed 
convective flow in a vertical asymmetric channel with 
peristalsis. They considered the flow is examined in a 
wave frame of reference moving with the velocity of 
the wave. The channel asymmetry is produced by 
choosing the peristaltic wave train on the walls to 
have different amplitude and phase. To the best of our 
knowledge, no investigation has been made to ana-
lyze the heat and mass transfer effects on MHD flow 

of couple stress fluid in a vertical channel with che-
mical reaction. Keeping this in view and motivated by 
the earlier studies, an attempt has been made to 
understand the combined effects of chemical reaction 
and temperature dependent heat source on MHD flow 
of a couple stress fluid in a vertical wavy porous space 
with traveling thermal waves. The governing equa-
tions of the problem are solved by the perturbation 
technique using amplitude as a small parameter. The 
results for flow, heat and mass transfer characteristics 
have been discussed in detail with the help of graphs. 

FORMULATION OF THE PROBLEM 

Consider the unsteady, mixed convective heat 
and mass transfer, MHD flow of a couple stress fluid 
between two vertical wavy walls embedded in a po-
rous medium. We consider the wavy wall in which the 
x axis is taken vertically upward, and parallel to the 
direction of buoyancy, and the y axis is normal to it 
(Figure 1). A uniform magnetic field is applied normal 
to the flow direction. The wavy walls are represented 
by 1cos( )y d a xλ ϑ= − + +  and λ= + 1cosy d a x . 

 

Figure 1. Flow geometry of the problem. 

The governing equations for this problem are 
based on the balance laws of mass, linear momentum 
and energy modified to account for the presence of 
the magnetic field, thermal buoyancy and heat gene-
ration or absorbing effects. These can be written as:  

∂ ∂+ =
∂ ∂

0
u v
x y

 (1) 
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2 4

2 ' '
0 1 1( ) ( )t c

u u u p
u v u u

xt x y

u B u g T T g C C
k

ρ μ η

μϕ σ ρ β ρ β

 ∂ ∂ ∂ ∂+ + − + ∇ − ∇ −   ∂∂ ∂ ∂ 

− − + − + −

=
 (2) 

2 4v v v p
u v v v v

y kt x y

μϕρ μ η
 ∂ ∂ ∂ ∂
 + + = − + ∇ − ∇ −
  ∂∂ ∂ ∂ 

 (3) 

2 '
1( - )p

T T T
C u v K T Q T T

t x y
ρ

 ∂ ∂ ∂
 + + = ∇ +
 ∂ ∂ ∂ 

 (4) 

2
1m

C C C
u v D C k C

t x y

 ∂ ∂ ∂
 + + = ∇ −
 ∂ ∂ ∂ 

 (5) 

where 

2 2
2

2 2x y

 ∂ ∂∇ = +  ∂ ∂ 
 

The boundary conditions of the problem are: 

2

2
0

u

y

∂ =
∂

, u = 0, v = 0, T = 1
'T , C = '

1C , at 

1cos( )y d a xλ ϑ= − + +  (6) 

2

2
0

u

y

∂ =
∂

, u = 0, v = 0, T = 2
'T , C = 2

'C , at 

λ= + 1cosy d a x  (7) 

where T1[1 + εcos(λx + ωt)] = '
1T , T2[1 +εcos(λx + ωt)] 

= '
2T , C1[1+ εcos(λx + ωt)] = '

1C , C2[1+ εcos(λx + ωt)] 
= '

2C , B0 is the transverse magnetic field, Dm is the 
coefficient of mass diffusivity, u and v are velocity 
components, C is the concentration, K is the thermal 
conductivity of the fluid, k1 is the first order chemical 
reaction rate, T is the temperature, p is the pressure, 
ρ is the density, μ is the dynamic viscosity, ϑ is the 
phase angle, ν is the kinematic viscosity, ϕ is the 
porosity of the medium, k is the permeability of the 
medium, σ is the coefficient of electric conductivity, η 
is a constant associated with the couple stress, βc is 
the concentration expansion coefficient, βt is the ther-
mal expansion coefficient, g is the gravitational acce-
leration, ω is the frequency, T1 and T2 are the wall 
temperatures, C1 and C2 are the wall concentrations. 

We introduce the non-dimensional variables:  

1
( *, *) ( , )x y x y

d
= , *

tU
t

d
= , *

u
u

U
= , *

v
v

U
= , 

2*
p

p
Uρ

= , 
'

1
' '

2 1

T T

T T
θ

−

−
= , 

'
1

' '
2 1

C C

C C
φ

−
=

−
 (8) 

Invoking the above non-dimensional variables, 
the basic field Eqs. (1)–(7) can be expressed in the 
non-dimensional form, dropping the asterisks: 

0
u v
x y

∂ ∂+ =
∂ ∂

 (9) 

2 2

12 2

1
Pr

Re
u v

t x y x y

θ θ θ θ θ α θ
    ∂ ∂ ∂ ∂ ∂  + + = + +    ∂ ∂ ∂ ∂ ∂     

 (12) 

φ φ φ

φ φ γφ

 ∂ ∂ ∂
 + + =
 ∂ ∂ ∂ 

  ∂ ∂ = + − +   ∂ ∂   

2 2

12 2

11

Re Sc

u v
t x y

K
x y

 (13) 

The corresponding boundary conditions are: 

2

2
0

u

y

∂ =
∂

, u = 0, v = 0, θ = 0, φ = 0 at 

y = -1+ εcos(λx + ϑ) (14) 

2

2
0

u

y

∂ =
∂

, u = 0, v = 0, θ = 1, φ = 1 at 

y = –1+ εcosλx (15) 

where H2 = M2 + 1/Da, K1 = –k1d
2 '

1C /( '
2C – '

1C )ν), Gr = 
d3βtg( '

2T – '
1T )/ν2 is the Grashof number, Gr = d3βcg( '

2C – 
- '

1C )/ν2 is the local mass Grashof number, Re = 
ρU d/μ is the Reynolds number, M2 = σ 2

0B d2/μ is the 
Hartmann number, Pr = μCp/K is the Prandtl number, 
ν = μ/ρ is the kinematic viscosity, λ(= λ*) = λd is the 
non dimensional wave number, U  is the mean velo-
city, λx is the wall wavinesss parameter, ε = a1/d (ε <<  
<< 1) is the non-dimensional amplitude parameter, Sc 
= μ/ρDm is the Schmidt number, Da = k/ϕd2 is the 
porosity parameter, a2 = μd2/η is the couple stress 
parameter, α1 = Qd2/K is the heat source/sink para-
meter and γ = k1d

2/ν is a chemical reaction parameter. 
It has been assumed that the solution consists 

of a mean part and a perturbed part so that the velo-
city, temperature and concentration field are [3,9]: 

θ φ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + − + − + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

22 2 2 2
2

2 2 2 2 2

1 1

Re r c

u u u p u u
u v u H u G G

t x y x x y a x y
 (10)

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

22 2 2 2

2 2 2 2 2

1 1 1

Re a

v v v p v v
u v v v

t x y y x y a x y D
 (11)
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ε= +0 1( , , ) ( ) ( , , )u x y t u y u x y t ; 

ε= 1( , , ) ( , , )v x y t v x y t ; 

θ θ εθ= +0 1( , ) ( ) ( , , )x y y x y t ;  

0 1( , ) ( ) ( , )p x y p x p x yε= + ;  

φ φ εφ= +0 1( , , ) ( ) ( , , )x y t y x y t  

(16)

where the perturbed quantities u1, v1, θ1, φ1 and p1 are 
small compared to their mean quantities u0, v0, θ0, φ0 
and p0, respectively. 

SOLUTION OF THE PROBLEM 

In view of the form of Eq. (16), the governing 
Eqs. (9)-(15) yield: 

4 2
2 2 2 20 0

0 0 04 2

2 *

d d
(Gr Gc )

d d

Re

u u
a a H u a

y y

a C

θ φ− + − + =

=

 (17) 

2
0

1 02

d
0

dy

θ α θ+ =  (18) 

2
0

0 12

d
Sc Sc 0

d
K

y

φ γ φ− + =  (19) 

1 1 0
u v
x y

∂ ∂+ =
∂ ∂

 (20) 

θθ θ

θ θ α θ

 ∂∂ ∂+ + = ∂ ∂ ∂ 
  ∂ ∂ = + +   ∂ ∂   

01 1
0 1

2 2
1 1

1 12 2

Pr

1

Re

u v
t x y

x y

 (23) 

01 1
0 1

2 2
1 1

12 2

1 1

Re Sc

u v
t x y

x y

φφ φ

φ φ γφ

∂∂ ∂+ + =
∂ ∂ ∂

  ∂ ∂ = + −   ∂ ∂   

 (24) 

where  

* 0p
C

x
∂= −
∂

 and 2 2 1

a
H M

D

 
= +  
 

 (25) 

The boundary conditions become: 

''
0 0u = , u0 = 0, θ0 = 0, φ0 = 0, at y = –1 (26) 

''
0 0u = , u0 = 0, θ0 = 1, φ0 = 1 at y = 1 (27) 

and 

'' ( ) '''
1 0

i xu e uλ ϑ+= − , ( ) '
1 0

i xu e uλ ϑ+= − , v1 = 0, 

( )
1 0

'i xe λ ϑθ θ+= − , λ ϑφ φ+= − ( )
1 0

'i xe  at y = –1 (28) 

'' '''
1 0

i xu e uλ= − , '
1 0

i xu e uλ= − , v1 = 0, 1 0
'i xe λθ θ= − , 

λφ φ= −1 0
'i xe  at y = 1 (29) 

Let us introduce the stream function Ψ defined by: 

Ψ∂= −
∂1u
y

 and 
Ψ∂= −

∂1v
x

 (30) 

Using Eq. (30) in Eqs. (21)-(24) and eliminating 
pressure gradients, we get:  

ψ ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ
ψ ψ

ψ θ φ ψ

− + − + =

= − + + +

+ + + + 
+ + 

+ +  
 

+ + + + 
 

0 0

2
0 0

2
1 1

( ) ( )

1
[ 2 ]

Re

1

2( )Re

1 1

Re

x yy xxt yyt xyy xxx

xxxx xxyy yyyy

yyyyyy yyxxxx xxyyyy xxxxxx

xxy yyy xxyy yy

yy r y c y xx
a

u u

u ua

H G G
D

 (31) 

1 0 1 0 1 1 1
1

Pr[ ]
Ret x x y xx yyuθ θ ψ θ θ θθ α + + + + =  (32) 

1 0 1 1 1 1
1 1

[ ]
Ret x x oy xx yyu

Sc
φ ψ φ φ γφφ φ + + + −  

=  (33) 

The boundary conditions (28) and (29) become:  

λ ϑΨ += ( ) '''
0

i x
yyy e u , λ ϑΨ += ( ) '

0
i x

y e u , Ψx = 0, 

( )
1 0

'i xe λ ϑθ θ+= − , λ ϑφ φ+= − ( )
1 0

'i xe  at y = –1 (34) 

λΨ = '''
0

i x
yyy e u , λΨ = '

0
i x

y e u , Ψx = 0, 

1 0
'i xe λθ θ= − , λφ φ= −1 0

'i xe  at y = 1 (35) 

We assume that the solution in the form: 

λ ωΨ Ψ+= ( )
1( , , ) ( )i x tx y t e y  (36) 

λ ωθ θ+= ( )
1 1( , , ) ( )i x tx y t e y  (37) 

θ φ
   ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + − + + − + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

22 2 4 4 2
20 01 1 1 1 1 1 1 1

0 1 1 1 12 2 2 4 4 2 2

1 1
2

Re r c
u uu u p u u u u u

u v H u G G
t x y x x y a x y x y

 (21)

2 2 4 4
1 1 1 1 1 1 1

0 12 2 2 4 4

1 1 1

Re a

v v p v v v v
u v

t x y Dx y a x y

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ + = − + + − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 (22)
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λ ωφ φ+= ( )

1( , , ) ( )i x tx y t e y  (38) 

Using Eqs. (36)-(38), Eqs. (31)-(33) become:  

with the boundary conditions:  

ϑ ωΨ −="' ( ) '''
1 0

i te u , ϑ ωΨ −=' ( ) '
1 0

i te u , Ψ1 = 0, 

ϑ ωθ θ−= − ( )
1 0

'i te , ϑ ωφ φ−= − ( ) '
1 0

i te  at y = –1 (42) 

''' '''
1 0

i te uωΨ −= , ' '
1 0

i te uωΨ −= , Ψ1 = 0, 1 0
'i te ωθ θ−= − , 

ωφ φ−= − '
1 0

i te  at y = 1 (43) 

For small values of λ, we can expand Ψ1, 1θ
 
and 

1φ in terms of λ so that: 

1( , ) 1
0

r
r

r
yΨ λ λ Ψ

∞

=
=  , 1 1

0
( , ) r

r
r

yθ λ λ θ
∞

=
=  , 

1 1
0

( , ) r
r

r
yφ λ λ φ

∞

=
=   (44) 

Substituting Eq. (44) into Eqs. (39)–(43), we get 
the following set of ordinary differential equations and 
the boundary conditions: 

2 2 2 ''
10 10 10

'2 ' 2
10 10

( Re )

Gr Gc 0

vi iva a H i

a a

Ψ Ψ ω Ψ

θ φ

− + + +

+ + =
 (45) 

θ α ω θ+ − =''
10 1 10( RePr) 0i  (46) 

''
1010 Sc( Re) 0iφ γ ω φ− + =  (47) 

With boundary conditions: 

''' ( ) '''
10 0

i te uϑ ωΨ −= , ωΨ −=' '
10 0

i te u , Ψ10 = 0, 

( )
10 0

'i te ϑ ωθ θ−= − , ϑ ωφ φ−= − ( ) '
10 0

i te  at y = –1 (48) 

''' '''
10 0

i te uωΨ −= , ' '
10 0

i te uωΨ −= , Ψ10 = 0, 10 0
'i te ωθ θ−= − , 

ωφ φ−= − '
10 0

i te  at y = 1 (49) 

Zeroth-order solution. The solution of Eqs.(17)- 
–(19) subject to the boundary conditions (26)–(27) are: 

0u β β β
β α α β

β

= + + +
+ + + + +
+ +

2 2 2 2 2 3

2 3 6 7 8 1

9 1 10

( ) cosh sinh cosh

sinh cos sin cosh

sinh

y A y B y C y

D y T y T y T y

T y T
 (50) 

0( ) cos siny A y B yθ α α= +  (51) 

φ β β
β

= + + 1
0 1 1 1 1 2

1

Sc
( ) cosh sinh

K
y A y B y  (52) 

where: 

1 Scβ γ= ; 2 1

a

H M
D

= + ; 
2 2 2

2

4

2

a a a Hβ + −= ; 

2 2 2

3

4

2

a a a Hβ − −=  

First order solution. The solutions of Eqs. (45)- 
–(47), subjected to the conditions (48) and (49) are: 

10 5 5 5 7 5 7

5 8 5 8 15 5

16 5 17 4 18 4

cosh sinh

cosh sinh sin

cos sinh cosh

A B y C y D y

E y F y T y

T y T y T y

Ψ β β
β β β

β β β

= + + + +
+ + + +
+ + +

 (53) 

10 4 5 4 5cos sinA y B yθ β β= +  (54) 

10 3 4 3 4cosh sinhA y B yφ β β= +  (55) 

where: 

4 Sc( Re)iβ γ ω= + ; β α ω= +5 1 RePri ; 

2 2
6 ( Re )a i Hβ ω= + ; 

2 4
6

7

4

2

a a β
β

+ −
= ;  

2 4
6

8

4

2

a a β
β

− −
=  

The shear stress at any point in the fluid is given 
by: 

( )xy

u v
y x

τ μ ∂ ∂= +
∂ ∂

 (56) 

In nondimensionless form: 

2

2 xy

d u v
y x

τ τ
ρν

∂ ∂= = +
∂ ∂

 
(57) 

At the wavy walls y = –1 + εcos(λx+ϑ) and y = 1 
+ εcosλx, the skin friction τxy becomes: 

0 ε

u
1 1

( ) ' ' ( ) ' '
0 10

R. of

[ ( 1) ( 1)]i x i x t

P

e eλ ϑ λ ω

τ τ

Ψ+ +

= −

− + −
 (58) 

λψ λ ωψ ωψ λψ λ ψ λ ψ λ ψ ψ

λψ λ ψ λ ψ λ ψ λ ψ λ ψ ψ θ φ ψ

+ − − − = − − + + ×

 
 × + − − − + + + + +     

2 3 4 2
1 0 1 1 0 1 1 1 1 1 2

2
4 2 6 2 2 2

1 1 1 1 1 0 1 0 1 1 1 1

1 1
( ) ( ) [ 2 ]

Re Re

1
2( )

Re

yy yy yy yy yyyy

yyyyyy yy yyyy y yyy yy yy yy r y c y
a

i u i i u i i
a

u u H G G
D

 (39)

ωθ λ θ λψθ λ θ θ α θ + + + + = − 2
1 0 1 0 1 1 1 1

1
Pr[ ]

Rey yyi i u i  (40)

ωφ λ φ λψ φ λ φ φ γφ + + − + −  
= 2

1 0 1 1 1 1 1
1 1

( )
Re Scoy yyi i u i  (41)
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0 ε

u
2 2

' ' ( ) ' '
0 10

R. of

[ (1) (1)]i x i x t

P

e eλ λ ω

τ τ

Ψ+

= −

+
 (59) 

respectively, where: 

 0 u '
1 0( 1)τ = − − ; 0 u '

2 0(1)τ = −  (60) 

The heat transfer coefficient, characterized by 
Nusselt number (Nu) on the tube boundary is:  

*
T

h K
y

∂= −
∂

 (61) 

In dimensionless form it becomes: 

{ }
' '

' ' 0
2 1

'( )
10

( ) R.
*

[ ( )]i x t

y P of
T T

h K
d e yλ ω

θ

ε θ+

 + −  = −     
    

 (62) 

At the wavy walls y = –1 + εcos(λx+ϑ) and y = 1 + 
εcosλx, the Nusselt number becomes: 

{ }
ε0

1 1

'( ) ' ' ( )
100

Nu Nu . of

[ ( 1) ( 1)]
i x i x t

R P

e eλ ϑ λ ωθ θ+ +

= +

− + −  
(63) 

{ }ε
'0 ' ' ( )
102 2 0Nu Nu . of [ (1) (1)]i x i x tR P e eλ λ ωθ θ+= + +  (64) 

respectively, where: 

0 '
1 0Nu ( 1)θ= − ; 0 '

2 0Nu (1)θ=  (65) 

The dimensionless mass transfer number cor-
responding to the Nusselt number is the Sherwood 
number, written as 

Sh
y
φ∂=

∂  
(66) 

At the wavy walls y = –1 + εcos(λx+ϑ) and y = 1 + 
εcosλx, Sherwood number becomes: 

{ }
0

1 1

'( ) ' ' ( )
100

Sh Sh . of

[ ( 1) ( 1)]i x i x t

R P

e eλ ϑ λ ω

ε

φ φ+ +

= +

− + −  
(67) 

0 '' ( ) '
2 2 0 1Sh Sh . of[ (1) (1)]i x i x tR P e eλ λ ωε φ φ+= + +  (68) 

respectively, where: 

φ= −0 '
1 0Sh ( 1) ; φ=0 '

2 0Sh (1)  (69) 

and R.P denotes the real part. 

RESULTS AND DISCUSSIONS 

In order to get a clear insight of the physical pro-
blem, the heat and mass transfer characteristics of 

the fluid flow have been discussed by assigning 
numerical values to couple stress parameter (a), 
Hartmann number (M), permeability parameter (Da), 
Prandtl number (Pr), Grashof number (Gr), local 
Grashof number (Gc), chemical reaction parameter 
(γ), heat source parameter (α1) and Schmidt number 
(Sc). Figure 2 has been plotted in order to see the 
effects of M, Da, (α1, a, γ and Gr on velocity distri-
bution. Figure 2a shows that the velocity profiles de-
crease with an increase of the strength of the mag-
netic field. As M increases, the Lorentz force, which 
opposes the flow, also increases and leads to en-
hanced deceleration of the flow. The effect of the per-
meability parameter on u is illustrated in Figure 2b. As 
anticipated, the increase of permeability parameter 
reduces the drag force and hence causes the flow 
velocity to increase. Figure 2c is sketched to under-
stand the influence of heat source parameter (α1) on 
velocity distribution. It shows that the velocity in-
creases significantly with increasing α1. A similar ef-
fect to that is shown in Figure 2d, if α1 is replaced by 
couple stress parameter (a). The influence of chemi-
cal reaction parameter (γ) on u is shown in Figure 2e. 
It shows that increasing γ lead to suppress the velo-
city. The effect of Gr on velocity is shown in Figure 2f. 
It depicts that the velocity enhances with an increase 
of Gr. This is because increasing the buoyancy ratio 
tends to accelerate the fluid flow. 

The cross velocity (v) is plotted in Figure 3 for 
different values of ϑ, α1 and Sc. Figure 3a depicts 
how cross velocity decreases with an increase of ϑ. 
Figure 3b displays that in the presence of α1, the fluid 
velocity decreases. In Figure 3c, increasing Sc velo-
city profiles are decreased steadily near the walls, 
while in center of the channel u is an increasing func-
tion of y. The behavior of temperature profiles for 
different values of α1is shown in Figure 4. It is well 
known that the heat generation (i.e., α1 > 0) causes 
the fluid temperature to increase, which has a ten-
dency to increase the thermal buoyancy effects. On 
the other hand, heat absorption (i.e., α1 < 0) produces 
opposite effect. 

The effect of γ and Sc on concentration distri-
bution is analyzed through Figure 5. To be realistic, 
the values of Schmidt number are chosen to be 0.5, 
0.6, 0.78, 1 and 2 (which corresponds to hydrogen 
gas, water vapor, ammonia, carbon dioxide at 25 °C, 
and ethyl benzene in air, respectively). Figure 5a in-
dicates that φ decreases significantly with both γ and 
y. A similar result can be observed in Figure 5b, if γ is 
replaced by Sc. The variation in skin friction (τ) for 
various values of γ and a is displayed in Figure 6. Fi-
gure 6a displays skin friction decreases with increasing
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Figure 2. Velocity distribution; Gc = 1, Re = 1, K1 = 1, t  = 1, ω = 1, ε = 0.001, ϑ  =  0, C* = 1, Pr = 0.71, λx = 0.02; a) (−) M = 0, () M = 2, 
() M = 4, () M = 6, Da = 0.5, γ = 0.5, Gr = 1, Sc = 0.5, a = 0.2, α1 = 0.5; b) (−) Da = ∞, () Da = 0.1, () Da = 0.2, () Da = 0.3, M = 2, 

Gr = 1, γ = 0.5, a = 0.2, Sc = 0.5; c) (−) α1 = 0, () α1 = 0.1, () α1 = 0.2, () α1 = 0.3, Da = 0.5, Gr = 1, a = 0.2, M = 2, Sc = 0.5; 
d) (−) a = 0.2, () a = 0.4,( ) a = 0.6, () a = 0.8, Da = 0.5, Gr = 1, M = 2, γ = 0.5, Sc = 0.5; e) (−) γ = -0.5, () γ = 0.5, () γ = 5, 

() γ = 15, Da = 0.5, M = 2, Gr = 1, a = 0.2, γ = 0.5, Sc = 0.5; f) (−) Gr = 0, () Gr = 2,( ) Gr = 4, () Gr = 6, 
Da = 0.5, M = 2, γ = 0.5, Sc = 0.5, a = 0.2. 
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Figure 3. Cross velocity distribution; Gc = 5, Gr = 5, C* = 1, t = 1, ω = 1, Da = 0.5, ε = 0.001, M = 2, γ = 0.5, K1 = 1, a = 0.2, λx = 0.02, 
Pr = 0.71; a) (−) ϑ = 0, () ϑ = π/8, () ϑ = π/6, () ϑ = π/4, α1 = 0.5, Sc = 0.5; b) (−)α1 = 0.1, () α1 = 0.2, () α1 = 0.3, 

() α1 = 0.4, Sc = 0.5, ϑ = 0; c) (−) Sc = 0, () Sc = 0.1, () Sc = 0.2, () Sc = 0.3, α1 = 0.5 , ϑ = 0. 

γ at both the walls. Also, it may be noted that skin 
friction enhances with an increase of Gc while it 
decreases with increasing γ at the wall y = -1 whereas 
skin friction decreases with increasing γ as well as Gc 
at the other wall y = 1. The reverse trend can be seen 
for the case of increasing the value of couple stress 
parameter, as shown in Figure 6b. 

The effects of various values of Pron Nusselt 
number distribution have been shown in Figure 7. Fi-
gure 7a illustrates that Nusselt number enhances with 
increase in value of Pr and α1 at the wall y = 1 but it is 
reversed at the other wall y = -1. From Figure 7b, we 
may note that Nu decreases with increasing ϑ at both 
the walls. Further we observe from the same figure that 
Nu increases with an increase of α at the wall y = -1 
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Figure 4. Temperature distribution; Pr = 0.71, 
t = 1, Re = 1, ω = 1, ε = 0.001, ϑ = 0, λx = 0.02; 
(−) α1=-5, () α1 = -3, () α1 = 0, () α1 = 1. 

Figure 5. Concentration distribution; Re = 1, K1 = -1, t = 1, ω = 1, ε = 0.001, ϑ = 0, 
λx = 0.02; a) (−) γ =-0.5, () γ =0.5, () γ =1 .5, () γ = 3, Sc = 0.5; b) (−) Sc = 0.5, 

() Sc = 0.6, () Sc = 0.78, () Sc = 1, (+) Sc =2, γ = 1. 
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Figure 6. Skin friction distribution; Gr = 5, Re = 1, C* = 1, t = 1, ω = 1, M = 2, Da = 0.5, ε = 0.001, α1 = 6, ϑ = π/2, K1 = 1, Pr = 0.71, 
λx = 0.02; a) (−) γ = 0.1, () γ = 0.2, () γ = 0.3, () γ = 0.4, a = 0.2; b) (−) a = 0.05, () a = 0.1, () a = 0.15, () a = 0.2, γ = 0.5. 
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Figure 7. Nusselt number distribution; Re = 1, t = 1, ω =1, ε = 0.3, λx = 0.02; a) (−) Pr = 1, () Pr = 3, () Pr = 5, () Pr = 7, ϑ = 0; 
b) (−) ϑ = 0, () ϑ = π/8, () ϑ = π/4, () ϑ = π/2, Pr = 0.71. 

but the opposite effect can be noticed at the other 
wall. Figure 8 illustrates the effect of Sc and γ on 
Sherwood number distribution at the channel walls. It 
reveals that an increase in γ leads to increase in the 
rate of mass transfer. 

CONCLUSIONS 

The problem of MHD mixed convective heat and 
mass transfer flow of a couple-stress fluid in a vertical 

wavy porous space in the presence of chemical re-
action and temperature dependent heat source with 
travelling thermal waves has been studied. Such flow 
analysis plays an important role in many engineering 
applications, such as oil recovery, food processing, 
paper making and slurry transporting. The dimension-
less governing equations are perturbed into: mean 
(zeroth-order) part and a perturbed part, using ampli-
tude as a small parameter. Analytical solutions for ve-
locity, temperature and concentration field have been 



R. MUTHURAJ, S. SRINIVAS, D.L. IMMACULATE: COMBINED EFFECTS OF CHEMICAL… CI&CEQ 18 (2) 305−314 (2012) 

 

 313

obtained. The heat and mass transfer characteristics 
on fluid flow are discussed with the help of graphs. 
The main findings are summarized as follows. 

• The velocity of the fluid increases with an 
increase of Da, α1 and a while it decreases with in-
creasing M and γ. 

•  Increasing α1 leads to enhance fluid tempe-
rature. 

• The parameters γ and Sc lead to decrease 
the fluid concentration. 

• Increasing γ lead to decrease skin friction at 
both the walls. Increasing Gc lead to increase τ at the 
wall y = -1 but the opposite trend can be seen at the 
other wall.  

• Sherwood number decreases with an in-
crease of Sc at the wall y = -1 while it increases at the 
other wall. 
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3
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Sh
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Figure 8. Sherwood number distribution, Re = 1, t = 1, ω = 1, 
ϑ = 0,  ε = 0.01, α1 = 0.5, K1 = 1, Pr = 0.71, λx = 0.02; 

(−) γ =-0.1, () γ = 0.5, () γ = 1, () γ = 1.5. 
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Nomenclature 

a - Couple stress parameter 
B0 - Magnetic field 
C1, C2 - Wall concentrations 
C - Concentration of the fluid 
Da - Porosity parameter 
Dm - Coefficient of mass diffusivity 
g - Gravitational acceleration 
Gr - Grashof number 
Gc - Local mass Grashof number 
K - Thermal conductivity of the fluid 
k1- First order chemical reaction rate 
k - Permeability of the medium 

M - Hartmann number 
p – Pressure 
Pr – Prandtl number 
Re - Reynolds number 
Sc - Schmidt number 
T - Temperature of the fluid 
T1, T2 - Wall temperatures 
u, v - Velocity components 

U  - Mean velocity 

Greek symbols 

α1 - Heat source/sink parameter 
βc - Concentration expansion coefficient 
βt  - Thermal expansion coefficient 
γ - Chemical reaction parameter 
μ - Dynamic viscosity 
ρ - Density 
ϑ - Phase angle 
ν - Kinematic viscosity 
ϕ - Porosity of the medium 
σ - Coefficient of electric conductivity 
η - A constant associated with the couple stress 
ω - Frequency 
λ - The nondimensional wave number 
λx - Wall wavinesss parameter 
ε - Nondimensional amplitude parameter 

Subscripts 

0 - Mean quantities 
1 – Perturbed quantities  
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NAUČNI RAD 

  KOMBINOVANI UTICAJI HEMIJSKE REAKCIJE I 
TOPLOTNOG IZVORA PROMENLJIVE 
TEMPERATURE NA MHD PRELAZNOG 
KONVEKTIVNOG STRUJANJA FLUIDA SA 
NAPONSKIM SPREGOM KROZ VERTIKALNI 
TALASASTI POROZNI PROCTOR SA PUTUJUĆIM 
TOPLOTNIM TALASIMA 

Razvijen je matematički model u cilju istraživanja efekta hemijske reakcije na MHD pre-

laznog konvektivnog prenosa toplote I mase strujanjem fluida sa naponskim spregom 

kroz vertikalni porozni proctor u prisustvu toplotnog izvora promenljive temperaturesa 

putujućim toplotnim talasima. Pretpostavljeno je da se bezdimenzionalne jednačine sas-

toje iz dva dela: srednji deo koji odgovara potpuno razvijenom toku i malog poremeće-

nog dela, koristeći amplitude kao mali parameter. Analitička rešenja drugog dela is na-

đena korišćenjem aproksimacijom dugih talasa. Dobijeni su izrazi za resenja nultog i 

prvog reda, a rezultati toplotnih i maseno-prenosnih karakteristika su prikazani grafički 

za različite vrednosti parametara uključenih u problem. Zapaženo je da se brzina fluida 

povećava sa povećanjem parametra naposnkog sprega, dok povećanje parametra he-

mijske reakcije vodi smanjenju brzine fluida. Poprečna brzina se smanjuje sa poveća-

njem faznog ugla. Povećanje parametra hemijske reakcije i Šmitovog broja vodi smanje-

nju koncentracije fluida. Hidrodinamički slučaj za neporozni prostor u odsustvu toplotnog 

izvora promenljive temperature za njutnovski fluid se može smatrati graničnim slućajem 

sprovedene analize uzimajući da je H,α1→∞, Da→∞ and a→∞. 

Ključne reči: prelazna konvekcija, talasasti zidovi, porozni prostor, fluid sa na-
ponskim spregom, hemijska reakcija. 
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