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We use the notions of left- and right-complete quasi-b-metric spaces and partial ordered sets to obtain a couple of common fixed-
point results for strictly weakly isotone increasing mappings and relatively weakly increasing mappings, which satisfy a pair of
almost generalized contractive conditions. To illustrate our results, throughout the paper, we give several relevant examples.
Further, we use our results to establish sufficient conditions for existence and uniqueness of solution of a system of nonlinear
matrix equations and a pair of fractional differential equations. Finally, we provide a nontrivial example to validate the sufficient

conditions for nonlinear matrix equations with numerical approximations.

1. Introduction and Preliminaries

We denote by R the set of real numbers; R, = [0, +00); we
denote by N the set of natural numbers and N* = NU {0}.
Also, for the mappings 7, §, %: E — E, we denote by CFP
(7,8) and CFP (9,8, R) the set of all common fixed
points of 7,8 and 7, §, R, respectively.

The metric fixed-point theory has been extended in
many directions by many renowned mathematicians. One
important direction of such ones is to revise the underlying
metric space to some other spaces by making suitable
changes obtained by Czerwik. He introduced the notion of
b-metric spaces (see [1]), which is further extended as quasi-
b-metric spaces by Shah and Hussain [2].

Definition I (see [2]). Let E(# &) be asetand let b>1be a
given real number. A function d,: 22 — R is a quasi-
b-metric on E if, for all {,&,¢ € &,

M1) d,(£,6)>0

M2) d,((,§) =0e(=¢

M3) d,,($,6)<bld, (¢, ) +d, (&, 9)]

The pair (E,d,) is then termed as a quasi-b-metric space
with constant b.

It is to be noted that every metric space is quasi-metric
space, and quasi-metric space is a quasi-b-metric space but
the converses need not be true. The above space is further
extended with the introduction of right and left quasi-
b-metric spaces (in the line of [3]).

Definition 2 (see [4]). Let (E,d,) be a quasi-b-metric space
and let {9,} be a sequence in E. Then {9,} is said to be
(i) left-Cauchy if, for every § >0, we get N = N (§) € N
such that d,(9,,9,) < forall r>s>N
(i) right-Cauchy if, for every 46>0, we get
N=N() eN such that d,(9,,9)<d for all
s>r>N

Definition 3 (see [4]). Let (E,d,) be a quasi-b-metric space.
Then (E,d,) is called
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(i) left-complete if every left-Cauchy sequence in Z is
convergent

(ii) right-complete if every right-Cauchy sequence in 2
is convergent

On the other hand, an extension of fixed-point results for
various types of contractions in metric spaces is secured by
adding an (partial) ordering structure on the underlying
structure (E,d). Some early results in this direction were
established by Turinici in [5, 6]; one may note that their
starting points were “amorphous” contributions in the area
due to Matkowski [7, 8]. These types of results have been
reinvestigated by Ran and Reurings [9] and also by Nieto
and Rédriguez-Lopez [10, 11]. In 2019, Gu and Shatanawi
[12] obtained some common coupled fixed-point results in
partial metric spaces and some recent results of Latif et al.
[13] and Malhotra et at. [14] are also important. In [15],
Nashine et al. used the concept of T -weakly isotone in-
creasing mappings to extend Ciri¢’s [16] result in ordered
metric spaces. The main importance of their results is that
they obtained their results without considering any kind of
commutativity condition. After all such generalizations and
extensions, Nashine and Altun [17] introduced a new notion
of increasing mapping, which they designated as 7 -strictly
weakly isotone increasing mapping, and then they obtained
some results by considering this new type of increasing
mappings. After this, in [18], Nashine and Samet introduced
relatively weakly increasing mappings and proved some
fixed-point results in ordered metric spaces and applied their
results to integral equations. In this sequel, we like to recall
some useful definitions in the context of a partially ordered
set (B, <).

Definition 4 (see [17-20]). Let (E, < ) be a partially ordered
set and let 8,7, #: E — E be three mappings. Then,
(1) 7 is called dominating if { < I for each { € E.
(2) the pair (8,9) is called weakly increasing if
S < T8 and T < T for each { € B.
(3) & is called T -weakly isotone increasing if, for each
(e B, wehave §{ < T8 < 8T SC.

(4) the mapping & is said to be T -strictly weakly isotone
increasing if, for { € E satisfying { < &, we have
S(<TS(< 8T SC.

(5) 9 and & are said to be weakly increasing with re-
spect to X if TEC RE and SE € %E and, for each
{ € B, we have

forallé € 21 (T0),
forallé € B~ (80).

Tl < SE,
SC < TE,

(1)

Let (E,d,) be a b-metric space. Then two mappings
J,8§:E— E are said to be compatible if
lim, , d,(TS8s,,8T,) =0, for each sequence {¢,} in E
with lim, | d,(7¢,,4) =0 and lim, ., d,(S¢,u) =0
for some p € E. If (E,d,) is a quasi-b-metric space and
(E, <) isa partially ordered set, then the triplet (E,d,, <)
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is called an ordered quasi-b-metric space. The space
(B,dy, <) is called regular if whenever {c,} is a nonde-
creasing sequence in E with respectto < and¢, — ¢€ B
as n — 00, then ¢, < ¢ holds.

In the literature of fixed point, one may note that, to find
common fixed point of two or more mappings in the setting
of different abstract spaces, more specifically in left- and
right-complete quasi-b-metric spaces, commutativity con-
dition of the mappings plays crucial roles. So it is a chal-
lenging work to obtain common fixed point of two or more
mappings in such spaces without considering the commu-
tativity condition. One of the main motivations of the paper
is to resolve this issue. To proceed with this, we utilize the
approaches of Nashine and Altun [17] and Nashine and
Samet [18] to obtain some common fixed-point results in the
setting of ordered left-complete and right-complete quasi-
b-metric spaces. Firstly, we establish some common fixed-
point theorems for a pair of mappings using the I -strictly
weakly isotone increasing condition and without using any
kind of commutativity condition in ordered left-complete
quasi-b-metric spaces. Secondly, we obtain a common fixed-
point result for a triplet of mappings satisfying relatively
weakly increasing condition and almost generalized con-
tractive conditions in ordered right-complete quasi-b-metric
spaces.

Another important motivation of this paper is to show
how we can apply our obtained results in at least two dif-
ferent applicable areas. These are connected to get solutions
of a pair of nonlinear matrix equations and also a pair of
fractional differential equations. Further, we provide some
nontrivial examples to illustrate our obtained results. Finally,
our attempts give extensions of the works discussed in
[2,3,9-11, 15, 18, 21] and other related results in the sense of
generalized contractive conditions and generalized weakly
increasing mappings in the crucial setting with new appli-
cations to the functional equations.

2. Results for Pair of Mappings

In this section, at first, we prove a common fixed-point result
of a pair of mappings involving J -strictly weakly isotone
increasing condition. Before this, we state the following
important lemma regarding the left- (right-) Cauchyness of a
sequence in quasi-b-metric context.

Lemma 1. Let (E,d,) be a quasi-b-metric space and let {x,}
be a sequence in E. Then, we have the following:

(1) If there exists r € [0, 1) satisfying

dy (%42 Xpir) <7dy (X415 x,),  foralln e N, (2)

then {x,} is a left-Cauchy sequence.
(2) If there exists r € [0, 1) satisfying

Ay (Xp1> Xppn) <7y (%, %,,,1),  forallm e N, (3)

then {x,} is a right-Cauchy sequence.
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Proof. The proof of this lemma can be done in the line of = Theorem 1. Let (E,d,, <) be an ordered left-complete
([22], p. 3, Lemma [23]). quasi-b-metric space with constant b>1. Suppose that
J,8: E — E are two mappings such that

d, (T, $9) < aA (v,9) + Lmin{d, (v, Tv),d, (9, §9), d,, (v, $9), d, (9, Tv)}, (4)

dy (87, T9) <aY (v,9) + Lmin{d, (v, $v),d, (9, T9),d,, (v, T9),d,, (9, $v)}, (5)

for all comparable v,9 € E, where a € [0,1), L>0, and

d, (89,9) +d, (Tv,v) d,(Tv,9) +d,(S$9,
A(V,S)=max{db(v,9),db(9v,v), b(é) )‘; b(J'V 'V)) b(J'V )2'; b(‘g V)}’ (6)
o o
Y(r,.9) = max{dh (5, 9),dy (59, 7), d,(79,9) ;— d, (S, V)’ dy, ($v,9) ;bdb (79, V),}. )
In addition, let § be T -strictly weakly isotone increasing, Let 8, = d;, (7,1, v,)- Then, for all n € N, we show that
there exists an v, € B such that v, < $v,, and one of $ and T 5 <ad (11)
n n-1-

is continuous. Then CFP(J, S) + O.
From (10), we have that v, <v,,, for all n € N. Then,
Proof. Let v, be such that 7, < §v, and construct a sequence .0 (4), with ¥ = v,,,, and 9 = »,,,, we get
{v,} in B satisfying " !
db (V2n+2’ V2n+1) = dh (9v2n+1 > (5’1;2”),

) =&, andv =T forn e {0,1,...}. 8
2n+1 2n 2n+2 2n+1 { } ( ) <ah (V2n+1) Vzn)’

As § is T -weakly isotone increasing, [ Ay (V21 T Va11)s Ay (Vo S¥20)5
V=8V < TSV =TV =1, <S8T SV =8Tv, =S8v, =, +me{ d, (V2n+1)&Vzn)»db(vznrgvzwrl)a}
V3= SV < TSV, =TV, =1, < ST SV, = ST vy = §v, = 75, = d), (Va2 Vani1) S OA (Vi1 Van)-

(9) (12)
and, proceeding with this argument, we get By (8), we have
VIV < e <Y, <Y, <L (10)

A (V2n+1 > v2n)

d, ($v,,, a, (7 , d, (T , dy ($7,,,
:maX‘Idb(Vznn’Vzn),db(972n+1’vzn+1)a b (Va0 v2,) + 2b( Vont1 V2n+1), b (T Vo Vzn)z'; b (S, V2n+1)}’

13
Ay (Vane1> V20) + Ay (Va2 Vaner) Gy (Vapens Van) + dp (Vanars ”2n+1)} (13)

= max<|db (”2n+1’ V2n)» d, (V2n+2’ Von+l )’ 2 > b

d d d
= max{db (V2n+1) VZn), db (V2n+2a V2n+1)) b (V2n+1) Vzn) +2 b (VZMZ’ V2n+1), b (7/2;)2’ ’VZn)}'



(@) If A(ape1s Van) = Ay (Vapaas Vaper)> bY (12), we have

Ay (Vanszs Vani1) € €Ay (V2425 Vani1)) <Ay (Vanizs Vane1)»
(14)

a contradiction.
(ii) If A(Vypi1> Van) = (dy (Vpi25 v2,)/2b), we have

d
db (V2n+2; V2n+1) < “W’

o
< 3 {dy, (V212> Vanar) + Ay (Va1 V20)}

= dy, (Vans2s Va1 )s

(o4

< 5 adb (v27!+1’ v2n) - db (v2n+2’ v2ﬂ+1 )’

< (de (v2n+l’ VZn) == 62n+1’

<ad,,.

(15)
(iii) If A(Vy15> Vo) = dp (Vo015 ¥2,,)> We have

Ay (Vanezs Vans1) Sy (Va1 V20) = 0301 <005, (16)

(iv) IEA 030015720) = (dp (V2415V20) + dp (V210025 V2001))/2)s
we have

d,(S0,0)

<b [db (CS)Q’ ngnH) + db (‘C]v2n+1’ 9)]’
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Ay (V201> V20) + Ay (Vansa V21
2

db (V2n+2’ v2n+1) sa

= d}, (Van12 Vane1)>

a
< 5 (xdb (Vans1> Y20) == Ap (Vanazs Vans )s

< “db (V2n+1’ VZn) = 62n+1’

< ad,,.

(17)

Consequently, 8,,,,, < ad,,, for all n € N. Similarly, using
(5) with (7), we can show that §,, < «d,,_,. Therefore, (11)
holds for all n € N and so, from Lemma 1, we can conclude
that {»,} is a left-Cauchy sequence.

From the left-completeness of E, there exists ¢ € Z such
that v, — p as n — + 00. Clearly, if & or J is contin-
uous, then p = §p or p = . Thus, CFP (7, &) # &.By the
next result, we show that the continuity of & or  in the
previous theorem can be replaced by some other
conditions.

Theorem 2. If one replaces the continuity in Theorem 1 by
regularity of &, then conclusion of Theorem 1 is valid provided
ab< 1.

Proof. Following the lines of proof of Theorem 1, we have
that there exists o € & such that

lim »,= lim &v,= lim Jv,,, =o. (18)
n—+00 n—+00 n—+00

Using (5) for 9 = v,,,; and v = g, we have

<ab max{db (0, Vani1 ) dp, (S0, 0),

Ay (T Va1 Vapi1) + 4 (S0,0) Ay (S0, V241) + Ay (T V20415 9)} (19)
2 ’ 2b ’

+Lb min{db (0, S0),d, (V2n+1’ ‘ij2n+l)’ dy, (9’ g”zn+1)> d, (Vzn+1> 5@)}>

+ bdb (9v2n+1’ Q)
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Letting n — oo in the above equation, we get

1 1
dy(S0,0) < max ab{dy (S, 0). 3, (52,005 (S.0)} = abit (S0.0) (20)

Hence d, ($0,0) = 0 and so 8¢ = p. Analogously, using
(4) for v=p and 9 =,,, we get T =p. It follows that
0 € CFP(T,8); that is, CFP (7, S8) # &.

Next, we characterize the common fixed-points set
CFP(T, ) in the following theorem.

dy(0,0) =d, (T 0,80 <al(o,0),

Theorem 3. Let all the conditions of Theorems 1 and 2 hold.
Then CFP (T, 8) is totally ordered if and only if CEP(T, §)
contains exactly one element.

Proof. First, we assume that CFP (7, &) is totally ordered.
Let o,0 € CFP(T, &) with o # 0. Consider (4) for v = 0 and
9 = o, and we get

+ L min{db (0) 570), db (Q) SQ)) db (0) CSjQ)) db (Q) 90)},

dy,(S$e,0)+d,(T0,0) d,(T0,0)+d,(S0,0)

= ocmax«ldb (0,0),d,(T0,0),

2 2b } (21)

=« max{ dy,(o,0), b

- %{db(a, ) +d, (0,0},

that is,
d, (0, 0) Sz% {dy(0,0) +d, (0, 0)}. (22)

Again, using (5) for v = u and 9 = ¢ and by calculation
we get

d, (0,0) Sz%{db(g, o) +d, (0,0} (23)

Adding (22) and (23), we get

dy(0,0)+d,(p,0) })

d, (0,0) +d, (0, 0) gg (d, (0,0) +d, (0, 0)), (24)

which gives a contradiction. Thus, CFP (7, &) is singleton.
The converse is trivial.

Putting & = in Theorem 3, we obtain the following
result.

Corollary 1. Let (E,d, <) be an ordered left-complete
quasi-b-metric space with constant b>1. Suppose that
J: E — E is a mapping such that

d,(Tv,T9) <al (v,9) + Lmin{d, (v, Tv),d,, (9,7 9),d, (v, T79),d, (9, Tv)}, (25)

for all comparable v,9 € E, where L>0, « € [0,1), and

d,(79,9) +d,(Tv,v) d,(Tv9) +d,(T9,7)

A (9 = max{db(v, 9),d, (T, v),

Also suppose that T v< T (T v) forall v € E withv< T .
If there exists an element v, € B such that vy < T v, and either
T is continuous at v, or B is regular, then I has a fixed point.
Moreover, fix(T) is totally ordered if and only if it is a
singleton.

2 ’ 2b } (26)

Next, we come up with the following example, which
illustrates Theorem 1.

Example 1. Let & = [0,5] and define d,: ExE — R by



0, ifv=29;
dy(»n9)=4v-9, ifv>9; (27)
2(9-v), ifv<d.
We define a relation “ <” on E by v < 9 if and only if
either v, y € [0,3] and »>9 or »,9 € (3,5] and v = 9. Then
(E,dy,, <) isan ordered left-complete quasi-b-metric space

with constant b =2. Next, we define two mappings
I,8:E— E by

Y
-, ifv e [0,3];
S if v € [0, 3]
Tv =1
3
-, ifve (3,5],
L 8 (28)
-, if v € [0, 3];
Sy =4
| 2, ifve (3,5]

For ve€ [0,3] with v<&v, we have J&v= (x/7),
TSy = (v/56), and ST v = (v/392). So Sv>T Sv>
8T Sy and hence $v> T $v> ST $v. Again, for v € (3,5]
and v<J8v, we have Sv=2, TS8v=(1/4), and
STSv=(1/28). So Sv>TSv>8T Sy and hence
SV < T8 < ST 8. Thus, § is T -strictly weakly isotone
increasing. It is clear that  is continuous. We choose
a = (4/10).

Now assume that v, 9 € E is arbitrary such that v and 9
are comparable. Then the following cases arise:

CaseI:letv,9 € [0,3] and v < 9; thatis, v> . First, we
assume that v > 9. Then

d, (T, §9) < (29)

min{d, (v, T7), d, (9, $9),d, (v, §9),d,, (9, T7)} = min{(v - g) (v— z)} —(v-2),
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and ad,(v,9) = (4/10)(v-9) and ad,(Tv,») =
(7/10). Therefore,

vy 9
d, (v,9), if->-;
ad, (v,9), i 8>7

d, (T, $9) < (30)

7 e Y
ad, (T v,v), 1f8<7.

Next, we assume that v = 9. Then d, (T v, $9) = (v/28)
and so

dy, (T, 89) <ad, (T»,»). (31)

Thus,

dy (T v, $9) <aA (v, 9). (32)
On the similar arguments, we can get
dy, (8, T9) <aY (v,9). (33)

Case II: let »,9 € [0,3] and 9 < ; that is, v<9. Then,
we can show in a similar manner that

d, (T, 89) <ah(v,9)),

(34)
dy, (8, T9) <aY (v,9).

Case III: let v, 9 € (3,5] and v = 9. Then d, (T7, §9) =
13/4 and d, ($v, T9) = 13/8. Also, we have

(35)

min{d, (v, $v),d, (9, T79), d, (v, T9), d, (9, S¥)} = (v —2).

Therefore,

d, (T, 89) < Lmin{d, (v, Tv),d, (9, $9),d, (v, §9),d, (9, T )},
dy (v, 7°9) < Lmind, (v, $v),d, (9, T9), dy (, T9), d, (9, S},

where L = 10.

(36)
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Hence, from all three cases, we have

dy (Tv, 89 <ak (v 9) + Lmin{d, (v, T),d, (9, 59),d,, (v, $9), d, (9, T )},
dy ($,T9) <aY (,9) + Lmin{d, (v, $7),d, (9, T 9),d, (v, T 9),d,, (9, Sv)}.

Thus, all the conditions of Theorem 1 are fulfilled and the
pair 7,8 has a unique common fixed point (which is
0 € CFP(T7,9)).

3. Results for Three Mappings

In this section, we obtain a result for three mappings in-
volving weakly increasing condition.

(37)

Theorem 4. Let (E,d,, <) be an ordered right-complete
quasi-b-metric ~ space  with  constant b>1.  Let
T,8,R: E — B be three mappings such that TECRE
and SECRE, and

d, (T, $9) < ah, (v, 9) + Lmin{d, (v, Tv),d, (R, $9),d, (R, $9),dy (R, T),}, (38)

dy (87, T9) <aY | (»,9) + Lmin{d, (%v, $v),d, (R9, T 9),d, (Rv, T9),d, (9, S»)}, (39)

for all comparable v, Ry € E, where a € [0,1), L>0, and

d, (B9, 89) +dy (B, T) dy (T, RI) + dyy (R, $9)

A (9,9) = max{db (Rv, R9),dy, (Rv, T ),

2 2b }

Y, (v,9) = max{db (Rv, #9),dy, (R, Sv),

We assume the following hypotheses:

(i) 7 and & are weakly increasing with respect to %
(ii)  and & are dominating maps

Assume either of the following:

(a) & and & are compatible; & is continuous at v,
(b) I and & are compatible; & is continuous at v,
Then CFP (8,9, R) + @. In addition, CFP (S, T, R) is

totally ordered if and only if CFP (&, 7, ) contains exactly
one element.

Proof. Start with defining a sequence {7,} in E as

RV = SVy,and R, = T v,,,, forne{0,1,...}.
(41)
We claim that
Ry, < Rv,,;, ¥neN". (42)

dy (A9, T9) +d, (Rv, $v) dy,(Sv, R9) + d, (R, 99)} o
2 ’ 2b ’
Using hypothesis (i) and (41),
Ry =8V, < T, VyeR (S (43)
Since Rv, = Sy, v, € B (S,), and we get
Ry, =8vy < TV, = Rv,. (44)
Again,
Ry, =Tv, <89, YyeR "(Tv). (45)
Since v, € B~ (T ), we get
Ry, =TV, < SV, = Rv,. (46)

Hence, by induction, (42) holds.
Let A, =d, (Rv,, ®v,,;). Now we claim that, for all
n € N, we have

n+1

A, <aA, . (47)

Using (38) and (42) with xv =v,,_; and 9 = v,,,



dp (BV3s RVps1) = A (T V215 SV2)5
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<ahy (VZn—l’ Vzn) +L min{db ('%yZn—l’ ngn—l)’ dy (9?1/2,,, ‘S’/zﬂ)’ d, (‘%Vzrkl» SVZn)’ d, (‘%‘VZn’ 91}271—1)}’

= dy (B BVps1) D (V015 V20)s

where

A (‘VZn—l’ Vzn)

(48)

dy (B2 $V2) + Ay (B30 T Vanr) (T Va1 BV2,) + Ay (RV1, SV5)

= maxidb (‘%v2n—l’ ‘%V2n)’ db (‘%VZn—l’ ngn—l)’

2 ’ 2b }

= max{db (‘%VZn—l’ ‘%VZn)’ db (‘%VZn—l’ ‘%VZH)’

(1) If Ay (Vapi1s Vo) = Ay (RBVyy 1> Ry,), by (48), we
have
dy, (RVys RV311) S 0y (RV3 1, RY,,)s (50)

that is, A,, <aA,, ;.
(ii) A (Vy_15 ¥2,) = (172b)dy (R vy, 1 RV,,,1), We get

o
Ay (RV 3 RV3i1) < Z_bdb (BVyp1> RV3p1)>
« o
= Edb (BVyp1> Rvy) + Edb (B3> RV2p11)
= db (‘%VZW ‘%v2n+l )’
o
< mdh (Rva 1> RVy)>

<ady, (RVy-1> RVy,) = Ay,

<ah,, .
(51)
(111) If Al (VZn—l’ 1/Zn) = ((db (&%’Vzn, (%7/2”+1) + db
(BV31> RV,,))]2), we get
@ o
<—d, (R RVop1) + =dy (RVy 1, BVy,) = D0
’ ’ (52)

<al,, ;.

dy (*07V2n+1> CS"%Vzmz)

d, (‘%VZW ‘%v2n+1) +d, (‘%Vzn—p ‘%VZn) dy (%”m—p ‘%v2n+l)}
2 ’ 2b '

(49)

Thus, in all cases, we have A,, <aA,, , for all n e N.
Similarly, using (39), we can show A,, ; <aA,, for alln>1.

Therefore, we conclude that (47) holds for all n € N; that is,
dy (R, BVyiy) < adyy (R,_1, Rv,), foralln e N.
(53)
Therefore, from Lemma 1, it follows that {%v,} is a
right-Cauchy sequence. From the right-completeness of &,
there exists p € E such that

Ry, — pasn — 00. (54)

We will prove that g is a common fixed point of the three
mappings &, 7, and X.

We have
RVypp1 = SV, — 0, ASN — 00, (55)
RVopin = T Vypyy — 0, SN — 00. (56)
First, suppose that (a) holds. Then
nli_r)noo SREYy00 = n@m%5v2n+2 = Ro. (57)
From (54) and the continuity of %, we have
R(Rv,) — Rz, asn— oo. (58)

Also, we have v,,,; < Iv,,.1 = %V,,,,. Then, from
(38), we get

<al, (”2n+1> ‘%verZ) +L min{db (RV215 T Vapi1)> Ay (‘% (‘%Vzmz)’ SRV312)> Ay (‘%%nw SRV312)> Ay (‘% (‘%Vzmz)) 9V2n+1)}’

(59)
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where

Ay (Va1 BV34) = max{dy, (R0 B(RV342))> A (RV315 T Vo )s

Ay (R (RV2002)s SRY212) + Ay (RV20015 T Vo) Ay (T Vi1 R (RV310)) + Ay (RV30015 CS)%Vzmz)}

2 2b
(60)
Limiting n — oo in (59) and using (55)-(58), we obtain Now, ¥,,,1 < T ,y,,; and T v,,,,; — 0 as n —> 09, SO
by the assumption we have v < 0. Then, using (38), we
d, (0, #0) + dy (0, Ro) i
db(g,%g)Samax{db(g,%g), AL b AL shd , get

= ad, (9, Rp) = d,, (0, Ro),

=0, i.e., Ro=op.
(61)

Ay (T V3415 S0) S Ay (V3415 0) + Lmin{dy, (RV15 T Vapi1 )> Ay (R0, S@)s Ay (RV2415 S0)> Ay (RO T V301 )5 (62)
where

dy, (Ro, S0) +dy, (R T
Al(v2n+1’9):max{db(‘%yhﬁl"%@)’dh(‘%v2n+1"7v2n+1)’ (R 50) + dy (Rry V2n+1),

2

(63)
db (ngrHl’ ‘%9) + db ('%vZnJrl’ ‘5)9)
2b '
Letting n — oo in (62) and using (55) and (56), we get
d, (Ro, So) d, (0, Ro) +d, (0, S
db(g,cfg)S(xmax{db(Q,oS’Q), b 29 Q), A Q)Zb ble Q)},
_ amax{db(e, é’g)’db(e, 59)})

2 2b (64)

o
= Edb (g> CS)Q) - db (Q) ‘SQ))

=0, ie,S0=0.

Again, v,, < &,,and §v,, — gasn — 00, so by the
assumption we have v,, < ¢ and hence using (39) gives

dyp (S T @) <Y, (V35 0) + L min{db (A3 S3.) Ay (R0, T @), Ay (BV35 T 0), Ay, (R, OS3”27:)}” (65)
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where

dy (R, T 0) + dy, (RVy, SVap,) Ay (S, R0) + dyy (BYy, T
Ylm,,e)=max{du%n,%e),db(%wos’vz,», (R T Q) + Ay (Fa §¥2n) dy (7o ) + (7, @)}. (66)

2 2b

Letting n — o0 in (65) and using (55) and (56), we have

d, (Ro,T0) d, (o, Zo)+d, (0, T
db<e,9@>samax{db(e,%9>, b ¢ o) dy (e Q)Zb A @)},

o o
_ amax{db(e,d 0) d, (7 Q)},

272
i (67)
=54 (e 70)=dy(e. T 0),
= O’
ie,J90=op.

Therefore, So = J 9 = Rp = 0. Hence g is a common Now, suppose that CFP (&, T, &) is totally ordered. We
fixed point of &, §, and 7. The proof is similar when (b) claim that there is a unique CFP (&, 7, %). Assume to the
holds. contrary that p € CFP (8,7, %) and 0 € CFP (8, T, %) but

o #v. Using (38) with v = p and 9 = g, we have
d,(o,0) =d, (T, S0),
<aA, (p,0) + Lmin{d, (R, T 0),d, (Rv, SV),d, (R, S0),d, (R0, T 9)} = d,, (0, v), (68)
<ah, (p,0),
where
d,(Ro, S dy, (R, T 0) dp (T 0, R d, (%o,
A (0,0) = max{db(ﬁg,ﬂa),db(@g,gg), , (Ro U)er » (Ro Q)) v (T 0 0)2-;7 » (R 0)}’
d >
=d, (0, 0).
Therefore, Taking £ = the identity mapping on E in Theorem 4, we
d, (0,0) < ady (0, 0) <d, (0, @), (70) have the following consequence.

a contradiction. Hence, o = 0. The converse is trivial.
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Corollary 2. Let (E,d,, <) be an ordered right-complete

quasi-b-metric space with constant b>1. Let the pair of

mappings I, 8: E — B satisfy

d, (T v, 89 <ah| (»,9) + Lmin{d, (v, Tv),d, (y,$9),d, (v, $9),d, (9, T )},

dy ($v, T9) <Y/ (% 9) + Lmin{d, (v, $),dy (3, T, d,, (v, T9),d, (, SV},

for all comparable v,9 € B, a € [0,1), L>0, and

A{(%,9) = max{ dy (%,9),d, (v, T),

11

(71)
d, (3, 89) +dy (v, Tv) dy(T,9) +d, (v, SI) }
, o ,

(72)

d, (3, T9) +dy (v, §) d (57,9) +d,, (v, T9)

Y[(9) = max{ d, (v, 9),d, (v, §),

Further, assume that

(i)  and & are weakly increasing mapping

(ii)  and & are dominating maps

Then CFP (8,7 )+ . In addition, CFP (&, J) is totally
ordered if and only if CFP (&, 97) contains exactly one element.

Now, we provide the following example to authenticate
Theorem 4.

Example 2. We consider E={0}UN and define
db: ExE—R by

(0, ifv=9;
2y £ 7, 9is 0 and the other is not 0;
4, 9) = | m, if any one of v, vis 0 and the other is not 0;
1 2
———|, ifv#9andy,9#0.
Llv 9

(73)

Also, we define a relation < on Eby» < 9ifand only if
v < 9. Then, we can easily check that (8, d,, <) isan ordered
right-complete quasi-b-metric space with constant b = 2.
Next, we define three mappings 7,8, #: E — E by

0, ifv = 0;
Ty =
20(v+2), ifv+0,
0, ifv = 0;
= (74)
40(v+3), ifv+0,

{o, ifv=0;
Ry =
v+1, ifv#0.

Then, clearly JECHE and SECRHE. We choose
a = (19/20). Now we assume that »,9 € B are arbitrary such
that Zv and #9 are comparable. Then the following cases arise:

2b }

Case I: let v, 9+ 0 and #v < &#9. First, we assume that
v#9. Then dy (Tv,89) = (1/20) ((1/ (v + 2))-
(1/(9+3))) and d, (Fr,Tv) = (9v+19)/(10(v + 1)
(v + 2))). Therefore, we have

dy (Tv,89) <ad, (Rv, Tv) <al; (v,9). (75)

Next, we assume that v=9. Then d,(Iv 89) =
(1/(20(v+ 1)(v+3))) and d,(£v,Tv) = ((9v +19)/
(10(v+ 1) (v + 2))), and so we have

dy, (T v, 89) <ady, (Rv, Tv) <al, (v,9). (76)
In a similar way, we can show that
d, (v, T <ay, (v,9). (77)

Case IT: let v, 9# 0 and %9 < Rv. Then, proceeding in
the same way as that in Case I, we can show that

d, (T, $9) <ah, (v,9),

(78)
d, ($v, T9) <aY, (v,9).

Case III: let =0 and 9#0. Then d,(J7,§9) =
(1/(20(9+3))), d,($%T9) = (1/10(9+2)), and
dy (R, #9) = (2/ (9 + 1)). Therefore,

d, (Tv, 89) <ady, (Rv, %Y),

(79)
dy (8, T9) <ady, (Rv, %),
which implies that
d, (Tv, 89) <aA; (v,9),
b( ) <ah, ( (80)

d, (Sv, T <aY, (v9).
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Case IV: let 9 = 0 and v # 0. This case is similar to the
previous case and so is omitted.

Case V:let v = 0 = 9. In this case, it is trivial to check
that (38) and (39) hold.

So, combining all the five cases, we see that (38) and (39)
hold for all comparable #v, Zy € E.

Now let 9 € Z ' (T»). Then, we have 9 = 20v + 39 if
v#0and 9 = 0if v = 0. Therefore, if v# 0, then Tv = 20(v +
2)and 9 =40(20v +42),s0 T v < $9.If v =0, then Tv =
§9=0 and so Tv < &Y. Similarly, for Y € %~ L($), we
can show that §v < 79. Hence I and § are weakly in-
creasing with respect to &. Further, we can easily show that
J and & are dominating maps; & and & are compatible;
and % is continuous. Thus, we can apply Theorem 4 to
deduce that 7, &, and & have a unique common fixed point

0=0.
4. Application to Nonlinear Matrix Equations

In this section, we will apply the common fixed-point results
in quasi-b-metric spaces of the previous section to obtain
variants of the results of Garai and Dey [23] on existence of
common solution to systems of NMEs. For other variants on
solution to systems of NMEs, one is referred to [24, 25]. For a
matrix o/, any singular value of &/ will be denoted by s (<),
and the sum of these values, that is, the trace norm of &/, will
be denoted by s* (&) = || /||. We will use the standard partial
order on H (n) given by &/>3 if and only if &/ - RB is a

positive semidefinite matrix. We define a function
dy: H(n)x H(n) — R by
0, ifX =9,
(X, Y) = L (81)
‘ -= ifr+v.

Then (H (n),d,, <) is an ordered right-complete quasi-
b-metric space with b = 2.

(=30

Py (X, Y) = max %[

I

=

i=1

N»—-

R, (X, Y) = min+

k
s+<?/—§Zﬂ:‘g<?/)ﬂi—§%z>
i=1
2
<Zﬂ @), +931—?>
o S 1
( —Zgj(%)%—;%) ,

1< 1
+ *
s <&”—2;dig<%ﬂ,~—2%z>
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Utilizing this quasi-b-metric space, we now prove the
following theorem regarding the solution (s) of a pair of
nonlinear matrix equations.

Theorem 5. Consider the system

k
X =B+ A f(X)d

i;l (82)
XL=By+ ) d; g(X)d,,

i=1

where $B,,%B, € P(n), ;e M(n), i=1,...,k, and the
operators f,g: H(n) — H (n) are continuous in the trace
norm. Let, for some M, N, € R, and, for any & € P(n) with
ZN<M, s(f(X)),s(g(X)<N, hold for all singular
values of f () and g (), respectively. Assume the following:

(1) 1B\, 1B, < M = NN, where Y /7 o/l = N

(2) For any ¥ € H(n) with |FI<M, Y5 o f(K)
QY}?O (O stands for null matrix of order n) or
Y i g(K)d =0 holds

(3) For any K € H (n) with ||%||<M F < 931*’21 1
d; f(K)d;and K < %2+Zl g (F)A; hold

(4) For any K € H(n) with |Z|<M, if X < B+
Zl V4 f FK)dl; then

B, +Zl A (F)A <9§2+Zl g (B +
Zzldf(‘% D, <‘%1+Z:{1df9§2

+ Y8 5271*9(%’1 + Y, ] f(H)A)el; hold
(5) There exists L>0 such that, for any s (%, — B,),

(a) s(RB, - (1/2)RB,) + Ns(f () - (1/2) iq(?))<
(2/3n) (2, (X, Y)+ LA, (X, ?)

holds ~ for all  s(f(X)- (1/2)g(¥)) and
X, Y eH(n) with |ZILI1YI<M, & <Y or
Y < X, where
<&’—Zd (@), —‘%> ,
Z;(z_ziwf(m_zg)z] :
2577 27T
(5{—2% (W)t~ ggz> ] (83)

2 2

1%

>

k
*<y—§2wzg<%m—§%>
i=1

k 2

2
. 1 . 1
s (?—Zgﬂiﬂ%m—z%) ,
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(b) (B, - (1/2)B,) + Ns(g(X) - (1/2) f (¥)) <
(2/31) (B (X, Y) + LR, (X, Y]V

2
>

“(r-37)

R (X, Y) = max <

M=

i

o

I
—_

i=1

Ry (L, Y) = min 5

Then system (82) has a solution, and if Z is a solution of
the system, then 2 € P(n) with ||| < M. Further, the it-
erative sequence {2}, where, for j>0,

k
Lo = By + Z o} (X)),
o (85)
X yjrn = By + Z’Q{;g(%yﬂ)di’
i=1
and &, is an arbitrary element of H (n) satistying ||l < M,

converges to a unique solution of the system, if 2'; < Z';,,
or iy <.

Proof. Let us consider the set & = {2 € H(n): ||| < M}.
Then, E is right-complete with respect to the metric d,,. For
any 2 € B, we have

k
'@1 + Y ] ()

i=1

<+

k
Zﬁﬂ%%w

i=1

k
<[ + Y |l i f 2,
i=1
=[%,| + NI f (D)l
(86)

Since | Xl < M, we have s(f(2)) <N, for all singular
values s(f (X)) of f(X) so, by summing the n singular

k
s+<?_%2ﬂ;f(g)ﬂi—%ggl> +

i=1
d:g(&")ﬂi+932—%?> +
' 1 & 1 ’
s+<%—52d:g($)di—gﬁz>

k 2
s*(fl"—% Zﬂ?‘f(%%—%%)
L i=1

13

holds for all s(g(X) - (1/2)f (%)) and X, Y € H (n)
with XL N YN<M, L < Y or Y < X, where

2

1< B
* __E iy 2
s <5L” 2i:1.szilg(3”)szfl 2>

2

1 & 1
+ *
s<&’—§i§lﬂig(5l”)ﬂi—595’2> -

(84)

k
s*<5l"—§ Z&f?f(%%—%%)
i=1

2 9

k
s*(?—% > (@D, —}%) ,
i=1

>

>

. 1& 1
s <?—5 Z%g(&”)%—;%)
i=1

values of f (), we get || f ()|l <nN,. Using this in (86), we
get

k
Hg;l + > f( X)) <| B, | +nNN <M. (87)
i=1
Similarly, for any & € E, we can show that
k
’@2 + Y o} g(X)el;)| < | B, + nNN, <M. (88)
i=1
Therefore, the mappings 7, § defined on E by
k
T(X) =B, + ) d} (D),
i=1 (89)

k
S(X) =By + Y d; g(0)d,.

i=1

for X € E are self-maps on E. Next, for any X € &, using
assumption (3), we have & < 7 () and & < S(X). So
the mappings I, S are dominating mappings. Again, for
X €8, we have () € E and &(X) € E. So, for any
& € E, using assumption (4), we have () < T8 ()
and T(X) < ST (X). Therefore, 7,8 are weakly in-
creasing mappings. We choose « = (17/18). Now let
X, Y € E be arbitrary such that either & < Y or ¥ < X.
Then, we have
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k k
7@ -3 @) B0+ Yot f @t - 38,5 Zszf?g(%szfc”,
i=1 i=1
k
<|. -2+ Yo (r ) -39,
i=1 (90)
1 S 1
<l 32| < Dl 0 -3 0]
|z, -La,)| + n|f2) -2
|, -3, 4 8@ - S0 )|
If Ry (L, Y) =|st (X - (1/2)?)|2, then we have
1 1 2 [ 1 \]? 12
s<931—5%2)+Ns<f(z)—5g(y))g§ s+<5l"—£?> +L@12(z,%] ,
1 1 2 1/2
= B, — 5%, + N\ f (2) -5 +L9?12(5l”,%] ,
(91)
= T (X) 1 [ -= +L9?12(3” ?)]
—lr@-Jsw| <[z -39 s 9]
If 2,(0% = |s9(X-0R)Y, o f( D)o, - Again if
(1/2)%B,)I?, then we can similarly show that
2 2
Hy(sz’) ; gg[ 3’-%9(5{) +L<%12(.%,%].

(92)

%u(%,;m:;{

(8

k
s+<2ﬂjf(z)di+%1 —%9)

: 1
2. g(;ﬂ)ﬂi—z%a)

2
S I
2
], (94)

NM—'

or

%(m%{[

then we can show that

-

2 1
+ 5[—59‘(3")

S

2
) LA (L, %], (95)
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or
1 2 2
HQ‘(&[) [ <H9‘(5l”)——? )+L9?12(5l”,?)]. (96)
Thus, combining equations (91)-(96) and using the
definition of the quasi-b-metric d,, we get
1_ 1_

-

o i -3l
o5 )l

" gmu (X, Y) = dy (T (L), S (V)

)

;Lmax{db(fl"?)db(fl" (e%'))*(dh(?é)(?))‘*dh(z T (1)), (dh(g(fl”),?)+dh(5l”>c$’(%))})

+§L%12<%, Y) = d, (T (L), S (X)),

<(xmax{db(5l" ), dy (L, T (T), dy (%, S (¥) +d, (X, T (X)) db(g(%):?)"'db(&ﬂs&(?))}’

2 ’ 2b
+§L@12<5r, Y) = d, (T (L), S (¥)),

<aA{ (X, Y) + Lmin{d, (L, T (X)), dy (¥, S (¥)), dp (L, S (Y)), A, (¥, T (X))}
(97)

In a similar way, we can show that

dy (S(X), T (¥) <aY (X, ¥) + Lmin{d, (L, S (X)), dy (¥, T (¥)), 4y (X, T (¥)), 4y (¥, S (1))}. (98)

Hence, by Corollary 2, it is implied that the pair of Now we present an example in order to validate the
mappings 7, & has a common fixed point in E, say £.So &  above theorem.
is a solution to system (82). By assumption (2), we see that
any solution of system (82) must be positive definite, and Example 3. Consider system (82) for k = 2 and = 4, with
since 2 € 8, we have | 2] <M. Again, by the order pre- (Z) = 2°2 and g(Z) = 2% that i
serving (or order reversing) of the successive elements of the f - and g - s Hhat s,
sequence {,} converging to ', we see that system (82) L =B, +d; XA, + A XAy,
cannot have more than one solution. Thus, system (82) has a . 03 .03 (99)
unique solution Z € E with & € P(n) and | 2] < M. X =B+ A\ X+ A, XA,
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where

R
Il

[0.50241365
0.80309106
0.74147738

| 1.0008952

[0.57489671

1.04590664

0.9683583

| 0.96680342

[1.76535051

1.19912087

0.80309106
1.51926454
1.55315745
1.68489937
1.04590664
2.5508309
1.90415829
2.05691324
1.19912087
2.02881606
1.6487913 1.62300354

0.74147738
1.55315745
2.24960894
2.07448592
0.9683583
1.90415829
2.09247523
1.61626038
1.6487913
1.62300354
1.879647 2.10149668 |
[ 2.01599104 1.7232668 2.10149668 2.44522015 ]
[—10.643334057848985 —23.874210038032118 -23.420523624735278 —23.908390438513909

—23.874210038032118 —48.926958696625590 —48.676364597578200 —50.163509103606913

~23.420523624735285 —48.676364597578200 —49.153540195555415 —50.862360333937076 |
[ —23.908390438513909 —50.163509103606913 —50.862360333937083 —52.535431964591425

After calculations, we get |5, = 8.11903372, | %,| =

163.0367049758027,

N =96.052515868700326, N, =

6.183163814689865, and L = 3.

where,

X1l = 9.97771955,

[2.9958423
2.77146661
2.54547199

[ 2.33145834

[7.91454201

7.07030238

7.30633152

| 6.80248367

2.77146661
2.70100098
2.2073693
2.16196261
7.07030238
7.64595944
6.49795464
6.58540998

%] = 29.58158651,
IF | = 3.696727823991004.

2.54547199
2.20736932
2.40532238
2.03543311
7.30633152
6.49795464
7.50461026
6.76707205

(102)

1.0008952 ]
1.68489937
2.07448592 |
2.41733981 |
0.96680342 1
2.05691324
1.61626038 |
1.94523108
2.01599104 1
1.7232668
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(100)

Let M = 1.038194798043281 x 10°. The conditions of
Theorem (99) can be checked numerically, taking various
special values for matrices involved. For example, they can
be tested (and verified to be true) for

2.33145834 7
2.16196261

2.03543311 |

1.87555389 |
6.80248367 7
6.58540998

6.76707205 |

6.5164748 |

(101)

[0.244895463279295 0.446163048925549 0.536423236239700 0.581367922915251
0.446163048925549 0.820430394467024 0.994442779832152 1.065859543793928
0.536423236239700 0.994442779832152 1.232631898474834 1.304057463080299 |
[ 0.581367922915251 1.065859543793928 1.304057463080299 1.398770067769852

To see the convergence of the sequence {X,} defined in

(85), we start with initial values,
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2.046172298403625 3.404527441644321
3.404527441644321 6.364569270588873
2.953394842790926 5.449300388429052
2.942886557017088 5.499469136857805

with |2, = 18.168408965757408,

10.293364321414856 12.838879399150237
12.838879399150237 17.873328031056058
13.601326678824901 19.385378724242695
13.518191855227126 19.662286105737081

N
Il

with %, = 73.237247641915687,
8.383022 9.0642937  9.05273 9.8551909
9.0642937 9.95876169 10.0729775 10.8741133
9.05273 10.0729775 10.424364 11.1353359
9.8551909 10.8741133 11.1353359 12.02731569

0=

17
2.953394842790926 2.942886557017088
5.449300388429051 5.499469136857805 (103)
4.867308622636568 4.789598061118900 |
4.789598061118900 4.890358774128345
13.601326678824901 13.518191855227126
19.385378724242695 19.662286105737081 (104)

22.111211997385734 22.244839258390460 |
22.244839258390460 22.959343292059014

with |7l = 40.793463379999992 and, after 20 iterations,
we have the following approximation of the unique positive
definite solution of system (99):

18.838973862713779

~ 35.660700810728507
B 36.046104062493811
37.656448431121959

with | Z]| = 2.416333808567245 x 102.

18.838973862713768

~ 35.660700810728478
B 36.046104062493797
37.656448431121930

with [|%]| = 2.416333808567243 x 102.

18.838973862713765

- 35.660700810728471
B 36.046104062493782
37.656448431121930

(105)

35.660700810728500
72.239396779986436
70.690005868946088
73.105053026182759

35.660700810728478
72.239396779986379
70.690005868946059
73.105053026182702

35.660700810728486
72.239396779986379
70.690005868946031
73.105053026182702

36.046104062493825
70.690005868946088
72.345460354729028
74.914965627691828

36.046104062493797
70.690005868946031
72.345460354728971
74.914965627691771

36.046104062493811
70.690005868946031
72.345460354728971
74.914965627691743

37.656448431121959
73.105053026182759

, (106)
74.914965627691828

78.209549859295251

37.656448431121945
73.105053026182688

; (107)
74.914965627691771

78.209549859295194

37.656448431121930
73.105053026182702

, (108)
74.914965627691785

78.209549859295180
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with |7 = 2.416333808567243 x 10%. Also, the elements of
each sequence are order preserving. The graphical repre-
sentation of convergence is shown below.

anvergence behaviour

Error

—-15 }

=20 }+

225 |

-30

Iterations

—+— Initial value, X0
- e - Initial value, U0

—a— Initial value, VO

5. Application to Nonlinear Fractional
Differential Equations

Consider a pair of nonlinear fractional differential equations

(FDEs, in short):
DP(9(t)) + 1y (£,9(2)) = 0,
(109)
DF(9(t)) + 1, (£,9(2)) = 0,

where 0<t<l,
conditions

1<B, with the two-point boundary

9(0) =0,

9(1) =0, (110)

where i, f1,: J = [0,1] x R — R is a continuous function.
The Caputo derivative of fractional-order 8 is defined as

‘D (o(t) = j; (t-9)"F 1™ (5)ds,

1
['(n-p)

(n-1<B<nn=[p]+1),

(111)

where g: [0,00) — R is a continuous function, [3] denotes
the integer part of the positive real number f, and T is the
gamma function.

The Riemann-Liouville fractional derivative of order 3
for a continuous function (t) is defined by

5 __ b (4N [ e
Pe® _F(n—ﬁ)(dt> jo - of

(n-1<B<nn=[p]+1),

(112)
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provided the right-hand side is point-wise defined on
(0, 00).
The FDEs (109) are equivalent to the integral equation
1
9 = | BEOR OO foralle e J.j=1.2
0
(113)
where the Green function is
(=0 - -0, 0si<ts1

R (t,() =
(0 -

NGO 0<t<({<1.

(114)

Following [4], consider that £ = C([0, 1], R) endowed
with the metric

[ (=97, +17ls, forally,9 € Lwithv+9,

dy, (v,9) =
’ { 0, otherwise.
(115)

is a right-complete quasi-b-metric space with b =2,
where

91, = max |9 (o), (116)

is the usual supremum norm. It is noticed that (2, d,,2, <)
is a right-complete ordered quasi-b-metric space, where <
denotes v < 9 if v(t) <9(t) for all ¢ € J.

Theorem 6. Let T, 8: X — I be two operators defined by

1
T9() = j B (£, Oy (9L,
0 (117)

1
$9(t) = jo B (£, Oy (,9(0)dL,

where t € J. Assume the following:

(i) hy, by ] X R — Ris a continuous function, which is
nondecreasing in the second variable

(ii) For all t € ],

7y (69(8) < hz(t, I; B (t, D, (7, 9(7))dr),

1 (118)
hz(t,S(t))§h1<t,J %(t,r)hz(,S(T))dT),
0
(iii) For all t € ],
1
9(t) < Jogg(t,()hj((n()(f))df, (119)

(iv) For all t,s e J, i+ j=1,2,
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0<n;(t,v(s)) —h;(t,9(s)) S% (v(s) = 9(s)),

1nde,v <9,

|1 (8, (9))] S%v(s).
(120)

Then, the integral equations (113) have a solution
u* € C(J,R).

Proof. Using (II), for all t € ], we have

TI() = jl B (L, ), (5,9(s))ds,
J At s)h2<s J B (s, T)hl(T,S(T))dT)ds

:I B(t, ), (5, T9(s))ds,

=STI(t).
(121)
Similarly,

S9(t) = J: B (t, ), (5, 9(s))ds,

1 1
SJ %’(t,s)hl(s,J. @(s,r)hz(r,S(T))dT)ds,
0 0
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Then, we have 99 < 9 and 9 < T &9 for all
9 € C(J,R). This implies that J and & are weakly in-
creasing. Using (III), for all t € J, I and & are dominating
operators.

To check contraction conditions, we start with

[, #wod=[ [ca-of -0 a
0 0

1 _ a—1
+J %d(, (123)
Fe Ll B
+r(ﬁ) [c(1-9)],
that is, for ¢ € (0, 1),
J B (O = ¢ +Wc(l—c)]ﬁ—)tsay (124)

Now

t 1 /1
7901 < | B9 @3)ds< [ B9 19Nds
0 0 b
= 21900

t 1
159(1)| < JO%(t,s)|h2(t,9(s))|dss Jogg(t,s)%w(s)ms

1 A
- J B (¢, ), (s, $9(s))ds, =219l
0
=T S9(t). (125)
(122) Also
1
|Tv(t) - $9(t)| < .[olhl (t,v(s)) - hy (t,9(s))|ds,
1 1 1 1
J B (t,s)—|v(s) —9(s)|ds = - J B (t, )\ (v(s) - 9(s))*ds,
0 b blo
/\
<3 0= 9] (126)

1
|[Sv(t) -TI()| < J |7y (1,7 (5)) = 1y (£,9(s))|ds < JO%(t,s)%Iv(s)—S(s)lds,

@‘l'—'

j B (1,5)\ (v(s) - 8()) ds<—\/ (v -9
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Therefore, we get
A
1790 < EIISIIOO,
/\2
[Ty =897 <51 - 9oy
(127)

A
1690 <7 19l0o-

/‘2
lv- 707, <097l

Hence

u' () - (t) =

Journal of Mathematics

A
dy (T, §9) <7y (7,9,

(128)
d, (7, T9) < %db 1,9),

for all comparable v,9 € & such that Tv# §9. Also, it is an
obvious fact that the above inequality holds true if 7v = §9.
Therefore, for « = (A/b) and L = 0, Corollary 2 implies that
there is a unique common fixed point u* € 2 of the op-
erators (7, &); that is, u™ is also a solution to the integral
equation (117) and the FDEs (109). To see the uniqueness of
solution, let w* € & be another solution of integral equation
(117); then, using condition (II), we have

jo B (1 Oy (Cu” (O)dL - jo B (1 Oy (0" ()AL,

1
< jo B, Ol (" (D) - 1y (G0 (O)]dC,

<

j; B(t,0)

S =

S| o>

<

™ ()~ ™ (),

that is, |u* — w*[l, < AD)|lu* — w*||,,, a contradiction, as
Ae (0,1),b=>1.

6. Concluding Remark

We obtain some common fixed-point results for a pair of
mappings and also for a triplet of mappings in quasi-
b-metric spaces using the left- and right-completeness in the
absence of commutativity condition. We utilize these results
to obtain solutions of a pair of nonlinear matrix equations
and a pair of fractional differential equations.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first and second authors are thankful to SERB, India, for
providing fund under the project CRG/2018/000615. The
third author is thankful to CSIR, New Delhi, India, for their
financial support under CSIR-SRF fellowship scheme
(Award no. 09/973 (0018)/2017-EMR-I).

(129)

u" () - w" (]dS,

References

[1] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta
Mathematica et Informatica Universitatis Ostraviensis, vol. 1,
no. 1, pp. 5-11, 1993.

[2] M. H. Shah and N. Hussain, “Nonlinear contractions in

partially ordered quasi b-metric spaces,” Communications of

the Korean Mathematical Society, vol. 27, no. 1, pp. 117-128,

2012.

H. Aydi, M. Jellali, M. Jellali, and E. Karapinar, “On fixed

point results for a-implicit contractions in quasi-metric spaces

and consequences,” Nonlinear Analysis: Modelling and

Control, vol. 21, no. 1, pp. 40-56, 2016.

[4] N. Hussain, C. Vetro, and F. Vetro, “Fixed point results for
a-implicit contractions with application to integral equa-
tions,” Nonlinear Analysis: Modelling and Control, vol. 21,
no. 3, pp. 362-378, 2016.

[5] M. Turinici, “Abstract comparison principles and multivar-
iable gronwall-bellman inequalities,” Journal of Mathematical
Analysis and Applications, vol. 117, no. 1, pp. 100-127, 1986.

[6] M. Turinici, “Fixed points for monotone iteratively local
contractions,” Demonstratio Mathematica, vol. 19, no. 1,
pp. 171-180, 1986.

[7] J. Matkowski, “Integrable solutions of functional equations,”
Dissertationes Mathematicae, vol. 127, p. 68, 1975.

[8] J. Matkowski, “Fixed point theorems for mappings with a
contractive iterate at a point,” Proceedings of the American
Mathematical Society, vol. 62, no. 2, p. 344, 1977.

[9] A.C.M. Ran and M. C. B. Reurings, “A fixed point theorem in
partially ordered sets and some applications to matrix

[3



Journal of Mathematics

equations,” Proceedings of the American Mathematical Society,
vol. 132, no. 5, pp. 1435-1443, 2004.

[10] J. J. Nieto and R. Rodriguez-Lopez, “Contractive mapping
theorems in partially ordered sets and applications to ordinary
differential equations,” Order, vol. 22, no. 3, pp. 223-239,
2005.

[11] J.J. Nieto and R. Rodriguez-Lopez, “Existence and uniqueness
of fixed point in partially ordered sets and applications to
ordinary differential equations,” Acta Mathematica Sinica,
English Series, vol. 23, no. 12, pp. 2205-2212, 2007.

[12] F. Gu and W. Shatanawi, “Some new results on common
coupled fixed points of two hybrid pairs of mappings in partial
metric spaces,” Journal of Nonlinear Functional Analysis,
vol. 2019, p. 13, 2019.

[13] A. Latif, T. Nazir, and M. Abbas, “Stability of fixed points in

generalized metric spaces,” Journal of Nonlinear and Varia-

tional Analysis, vol. 2, no. 3, pp. 287-294, 2018.

S. K. Malhotra, S. Prakash, and S. Shukla, “A generalization of

Nadler theorem in cone b-metric spaces over Banach alge-

bras,” Communications in Optimization Theory, vol. 2019,

p. 10, 2019.

[15] H. K. Nashine, B. Samet, and C. Vetro, “Monotone gener-

alized nonlinear contractions and fixed point theorems in

ordered metric spaces,” Mathematical and Computer Mod-

elling, vol. 54, no. 1-2, pp. 712-720, 2011.

L. Ciri¢, N. Caki¢, M. Rajovi¢, and J. S. Ume, “Monotone

generalized nonlinear contractions in partially ordered metric

spaces,” Fixed Point Theory and Applications, vol. 2008, Ar-

ticle ID 131294, 2008.

[17] H.K. Nashine and I. Altun, “New fixed point results for maps
satisfying implicit relations on ordered metric spaces and
application,” Applied Mathematics and Computation, vol. 240,
no. 1, pp. 259-272, 2014.

[18] H.K. Nashine and B. Samet, “Fixed point results for mappings
satisfying (v, ¢)-weakly contractive condition in partially
ordered metric spaces,” Nonlinear Analysis, vol. 74, no. 4,
pp. 2201-2209, 2011.

[19] M. Abbas, T. Nazir, and S. Radenovi¢, “Common fixed points
of four maps in partially ordered metric spaces,” Applied
Mathematics Letters, vol. 24, no. 9, pp. 1520-1526, 2011.

[20] C. Vetro, “Common fixed points in ordered banach spaces,”
Le Matematiche, vol. 63, no. 2, pp. 93-100, 2008.

[21] H. K. Nashine, B. Samet, and J. K. Kim, “Fixed point results
for contractions involving generalized altering distances in
ordered metric spaces,” Fixed Point Theory and Applications,
vol. 2011, no. 1, pp. 1-16, 2011.

[22] T. Suzuki, “Basic inequality on a b-metric space and its ap-
plications,” Journal of Inequalities and Applications, vol. 2017,
p. 256, 2017.

[23] H. Garai and L. K. Dey, “Common solution to a pair of
nonlinear matrix equations via fixed point results,” Journal of
Fixed Point Theory and Applications, vol. 21, no. 2, p. 61, 2019.

[24] A. Bera, L. K. Dey, H. Garai, and S. Raha, “Common fixed
points via asymptotic contraction and application to matrix
equations,” Computational and Applied Mathematics, vol. 39,
p. 301, 2020.

[25] H. Garai, L. K. Dey, W. Sintunavarat, S. Som, and S. Raha, “On
new existence of a unique common solution to a pair of non-
linear matrix equations,” 2020, https://arxiv.org/abs/2006.
10863.

[14

(16

21


https://arxiv.org/abs/2006.10863
https://arxiv.org/abs/2006.10863

