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We use the notions of left- and right-complete quasi-b-metric spaces and partial ordered sets to obtain a couple of common fixed-
point results for strictly weakly isotone increasing mappings and relatively weakly increasing mappings, which satisfy a pair of
almost generalized contractive conditions. To illustrate our results, throughout the paper, we give several relevant examples.
Further, we use our results to establish sufficient conditions for existence and uniqueness of solution of a system of nonlinear
matrix equations and a pair of fractional differential equations. Finally, we provide a nontrivial example to validate the sufficient
conditions for nonlinear matrix equations with numerical approximations.

1. Introduction and Preliminaries

We denote by R the set of real numbers; R+ � [0,+∞); we
denote by N the set of natural numbers and N

∗ � N∪ 0{ }.
Also, for themappingsT,S,R: Ξ⟶ Ξ, we denote by CFP
(T,S) and CFP (T,S,R) the set of all common fixed
points of T,S and T,S,R, respectively.

-e metric fixed-point theory has been extended in
many directions by many renowned mathematicians. One
important direction of such ones is to revise the underlying
metric space to some other spaces by making suitable
changes obtained by Czerwik. He introduced the notion of
b-metric spaces (see [1]), which is further extended as quasi-
b-metric spaces by Shah and Hussain [2].

Definition 1 (see [2]). Let Ξ(≠∅) be a set and let b≥ 1 be a
given real number. A function db: Ξ2 ⟶ R is a quasi-
b-metric on Ξ if, for all ζ, ξ, ς ∈ Ξ,

(M1) db(ζ, ξ)≥ 0
(M2) db(ζ, ξ) � 0⇔ζ � ξ

(M3) db(ζ, ς)≤ b[db(ζ, ξ) + db(ξ, ς)]
-e pair (Ξ, db) is then termed as a quasi-b-metric space

with constant b.
It is to be noted that every metric space is quasi-metric

space, and quasi-metric space is a quasi-b-metric space but
the converses need not be true. -e above space is further
extended with the introduction of right and left quasi-
b-metric spaces (in the line of [3]).

Definition 2 (see [4]). Let (Ξ, db) be a quasi-b-metric space
and let ϑn  be a sequence in Ξ. -en ϑn  is said to be

(i) left-Cauchy if, for every δ > 0, we get N � N(δ) ∈ N

such that db(ϑr, ϑs)< δ for all r> s>N
(ii) right-Cauchy if, for every δ > 0, we get

N � N(δ) ∈ N such that db(ϑr, ϑs)< δ for all
s> r>N

Definition 3 (see [4]). Let (Ξ, db) be a quasi-b-metric space.
-en (Ξ, db) is called
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(i) left-complete if every left-Cauchy sequence in Ξ is
convergent

(ii) right-complete if every right-Cauchy sequence in Ξ
is convergent

On the other hand, an extension of fixed-point results for
various types of contractions in metric spaces is secured by
adding an (partial) ordering structure on the underlying
structure (Ξ, d). Some early results in this direction were
established by Turinici in [5, 6]; one may note that their
starting points were “amorphous” contributions in the area
due to Matkowski [7, 8]. -ese types of results have been
reinvestigated by Ran and Reurings [9] and also by Nieto
and Ródŕıguez-López [10, 11]. In 2019, Gu and Shatanawi
[12] obtained some common coupled fixed-point results in
partial metric spaces and some recent results of Latif et al.
[13] and Malhotra et at. [14] are also important. In [15],
Nashine et al. used the concept of T-weakly isotone in-
creasing mappings to extend Ćirić’s [16] result in ordered
metric spaces. -e main importance of their results is that
they obtained their results without considering any kind of
commutativity condition. After all such generalizations and
extensions, Nashine and Altun [17] introduced a new notion
of increasing mapping, which they designated as T-strictly
weakly isotone increasing mapping, and then they obtained
some results by considering this new type of increasing
mappings. After this, in [18], Nashine and Samet introduced
relatively weakly increasing mappings and proved some
fixed-point results in orderedmetric spaces and applied their
results to integral equations. In this sequel, we like to recall
some useful definitions in the context of a partially ordered
set (Ξ, ≺ ).

Definition 4 (see [17–20]). Let (Ξ, ≺ ) be a partially ordered
set and let S,T,R: Ξ⟶ Ξ be three mappings. -en,

(1) T is called dominating if ζ ≺ Tζ for each ζ ∈ Ξ.
(2) the pair (S,T) is called weakly increasing if

Sζ ≺ TSζ and Tζ ≺ STζ for each ζ ∈ Ξ.
(3) S is called T-weakly isotone increasing if, for each

ζ ∈ Ξ, we have Sζ ≺ TSζ ≺ STSζ.

(4) the mappingS is said to beT-strictly weakly isotone
increasing if, for ζ ∈ Ξ satisfying ζ ≺Sζ, we have
Sζ ≺TSζ ≺STSζ .

(5) T and S are said to be weakly increasing with re-
spect to R if TΞ⊆RΞ and SΞ⊆RΞ and, for each
ζ ∈ Ξ, we have

Tζ ≺ Sξ, for all ξ ∈R
− 1
(Tζ),

Sζ ≺ Tξ, for all ξ ∈R
− 1
(Sζ).

(1)

Let (Ξ, db) be a b-metric space. -en two mappings
T,S: Ξ⟶ Ξ are said to be compatible if
limn⟶∞db(TSςn,STςn) � 0, for each sequence ςn  in Ξ
with limn⟶∞db(Tςn, μ) � 0 and limn⟶∞db(Sςn, μ) � 0
for some μ ∈ Ξ. If (Ξ, db) is a quasi-b-metric space and
(Ξ, ≺ ) is a partially ordered set, then the triplet (Ξ, db, ≺ )

is called an ordered quasi-b-metric space. -e space
(Ξ, db, ≺ ) is called regular if whenever ςn  is a nonde-
creasing sequence in Ξ with respect to ≺ and ςn ⟶ ς ∈ Ξ
as n⟶∞, then ςn ≺ ς holds.

In the literature of fixed point, one may note that, to find
common fixed point of two or more mappings in the setting
of different abstract spaces, more specifically in left- and
right-complete quasi-b-metric spaces, commutativity con-
dition of the mappings plays crucial roles. So it is a chal-
lenging work to obtain common fixed point of two or more
mappings in such spaces without considering the commu-
tativity condition. One of the main motivations of the paper
is to resolve this issue. To proceed with this, we utilize the
approaches of Nashine and Altun [17] and Nashine and
Samet [18] to obtain some common fixed-point results in the
setting of ordered left-complete and right-complete quasi-
b-metric spaces. Firstly, we establish some common fixed-
point theorems for a pair of mappings using the T-strictly
weakly isotone increasing condition and without using any
kind of commutativity condition in ordered left-complete
quasi-b-metric spaces. Secondly, we obtain a common fixed-
point result for a triplet of mappings satisfying relatively
weakly increasing condition and almost generalized con-
tractive conditions in ordered right-complete quasi-b-metric
spaces.

Another important motivation of this paper is to show
how we can apply our obtained results in at least two dif-
ferent applicable areas. -ese are connected to get solutions
of a pair of nonlinear matrix equations and also a pair of
fractional differential equations. Further, we provide some
nontrivial examples to illustrate our obtained results. Finally,
our attempts give extensions of the works discussed in
[2, 3, 9–11, 15, 18, 21] and other related results in the sense of
generalized contractive conditions and generalized weakly
increasing mappings in the crucial setting with new appli-
cations to the functional equations.

2. Results for Pair of Mappings

In this section, at first, we prove a common fixed-point result
of a pair of mappings involving T-strictly weakly isotone
increasing condition. Before this, we state the following
important lemma regarding the left- (right-) Cauchyness of a
sequence in quasi-b-metric context.

Lemma 1. Let (Ξ, db) be a quasi-b-metric space and let xn 
be a sequence in Ξ. 5en, we have the following:

(1) If there exists r ∈ [0, 1) satisfying

db xn+2, xn+1( ≤ rdb xn+1, xn( , for all n ∈ N, (2)

then xn  is a left-Cauchy sequence.

(2) If there exists r ∈ [0, 1) satisfying

db xn+1, xn+2( ≤ rdb xn, xn+1( , for all n ∈ N, (3)

then xn  is a right-Cauchy sequence.
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Proof. -e proof of this lemma can be done in the line of
([22], p. 3, Lemma [23]).

Theorem 1. Let (Ξ, db, ≺ ) be an ordered left-complete
quasi-b-metric space with constant b≥ 1. Suppose that
T,S: Ξ⟶ Ξ are two mappings such that

db(T],Sϑ)≤ αΛ(], ϑ) + Lmin db(],T]), db(ϑ,Sϑ), db(],Sϑ), db(ϑ,T]) , (4)

db(S],Tϑ)≤ αΥ(], ϑ) + Lmin db(],S]), db(ϑ,Tϑ), db(],Tϑ), db(ϑ,S]) , (5)

for all comparable ], ϑ ∈ Ξ, where α ∈ [0, 1), L≥ 0, and

Λ(], ϑ) � max db(], ϑ), db(T], ]),
db(Sϑ, ϑ) + db(T], ])

2
,
db(T], ϑ) + db(Sϑ, ])

2b
 , (6)

Υ(], ϑ) � max db(], ϑ), db(S], ]),
db(Tϑ, ϑ) + db(S], ])

2
,
db(S], ϑ) + db(Tϑ, ])

2b
, . (7)

In addition, let S beT-strictly weakly isotone increasing,
there exists an ]0 ∈ Ξ such that ]0 ≺S]0, and one ofS andT
is continuous. 5en CFP(T,S)≠∅.

Proof. Let ]0 be such that ]0 ≺S]0 and construct a sequence
]n  in Ξ satisfying
]2n+1 � S]2n and ]2n+2 � T]2n+1 for n ∈ 0, 1, . . .{ }. (8)

As S is T-weakly isotone increasing,

]1 � S]0 ≺TS]0 � T]1 � ]2 ≺STS]0 � ST]1 � S]2 � ]3,

]3 � S]2 ≺TS]2 � T]3 � ]4 ≺STS]2 � ST]3 � S]4 � ]5,

(9)
and, proceeding with this argument, we get

]1 ≺ ]2 ≺ · · · ≺ ]n ≺ ]n+1 ≺ . . . . (10)

Let δn � db(]n+1, ]n). -en, for all n ∈ N, we show that

δn < αδn− 1. (11)

From (10), we have that ]n ≺ ]n+1 for all n ∈ N. -en,
from (4), with ] � ]2n+1 and ϑ � ]2n, we get

db ]2n+2, ]2n+1(  � db T]2n+1,S]2n( ,
≤ αΛ ]2n+1, ]2n( ,
+ Lmin

db ]2n+1,T]2n+1( , db ]2n,S]2n( ,
db ]2n+1,S]2n( , db ]2n,T]2n+1( , 

⟹ db ]2n+2, ]2n+1( ≤ αΛ ]2n+1, ]2n( .
(12)

By (8), we have

Λ ]2n+1, ]2n( 
� max db ]2n+1, ]2n( , db T]2n+1, ]2n+1( , db S]2n, ]2n(  + db T]2n+1, ]2n+1( 

2
,
db T]2n+1, ]2n(  + db S]2n, ]2n+1( 

2b
 ,

� max db ]2n+1, ]2n( , db ]2n+2, ]2n+1( , db ]2n+1, ]2n(  + db ]2n+2, ]2n+1( 
2

,
db ]2n+2, ]2n(  + db ]2n+1, ]2n+1( 

2b
 ,

� max db ]2n+1, ]2n( , db ]2n+2, ]2n+1( , db ]2n+1, ]2n(  + db ]2n+2, ]2n+1( 
2

,
db ]2n+2, ]2n( 

2b
 .

(13)
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(i) If Λ(]2n+1, ]2n) � db(]2n+2, ]2n+1), by (12), we have

db ]2n+2, ]2n+1( ≤ α db ]2n+2, ]2n+1( ( < db ]2n+2, ]2n+1( ,
(14)

a contradiction.

(ii) If Λ(]2n+1, ]2n) � (db(]2n+2, ]2n)/2b), we have

db ]2n+2, ]2n+1( ≤ αdb ]2n+2, ]2n( 
2b

,

≤ α
2
db ]2n+2, ]2n+1(  + db ]2n+1, ]2n(  

⟹db ]2n+2, ]2n+1( ,
≤ α

2 − α
db ]2n+1, ]2n( ⟹ db ]2n+2, ]2n+1( ,

≤ αdb ]2n+1, ]2n( ⟹ δ2n+1,

≤ αδ2n.
(15)

(iii) If Λ(]2n+1, ]2n) � db(]2n+1, ]2n), we have

db ]2n+2, ]2n+1( ≤ αdb ]2n+1, ]2n( ⟹ δ2n+1 ≤ αδ2n. (16)

(iv) IfΛ(]2n+1,]2n) �((db(]2n+1,]2n)+db(]2n+2,]2n+1))/2),
we have

db ]2n+2, ]2n+1( ≤ α
db ]2n+1, ]2n(  + db ]2n+2, ]2n+1( 

2

⟹ db ]2n+2, ]2n+1( ,
≤ α

2 − α
db ]2n+1, ]2n( ⟹db ]2n+2, ]2n+1( ,

≤ αdb ]2n+1, ]2n( ⟹ δ2n+1,

≤ αδ2n.

(17)
Consequently, δ2n+1 < αδ2n for all n ∈ N. Similarly, using

(5) with (7), we can show that δ2n < αδ2n− 1. -erefore, (11)
holds for all n ∈ N and so, from Lemma 1, we can conclude
that ]n  is a left-Cauchy sequence.

From the left-completeness of Ξ, there exists ϱ ∈ Ξ such
that ]n ⟶ϱ as n⟶ +∞. Clearly, if S or T is contin-
uous, then ϱ � S9 or ϱ � T9. -us, CFP(T,S)≠∅.By the
next result, we show that the continuity of S or T in the
previous theorem can be replaced by some other
conditions.

Theorem 2. If one replaces the continuity in 5eorem 1 by
regularity of Ξ, then conclusion of5eorem 1 is valid provided
αb< 1.

Proof. Following the lines of proof of -eorem 1, we have
that there exists ϱ ∈ Ξ such that

lim
n⟶+∞

]n � lim
n⟶+∞

S]2n � lim
n⟶+∞

T]2n+1 � ϱ. (18)

Using (5) for ϑ � ]2n+1 and ] � ϱ, we have

db(S9, ϱ)

≤ b db S9,T]2n+1(  + db T]2n+1, ϱ(  ,
≤ αbmax db ϱ, ]2n+1( , db(S9, ϱ), db T]2n+1, ]2n+1(  + db(S9, ϱ)

2
,
db S9, ]2n+1(  + db T]2n+1, ϱ( 

2b
 ,

+ Lbmin db(ϱ,S9), db ]2n+1,T]2n+1( , db ϱ,T]2n+1( , db ]2n+1,S9(  ,
+ bdb T]2n+1, ϱ( .

(19)
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Letting n⟶∞ in the above equation, we get

db(S9, ϱ)≤max αb db(S9, ϱ), 1
2
db(S9, ϱ), 1

2b
db(S9, ϱ)  � αbdb(S9, ϱ). (20)

Hence db(S9, ϱ) � 0 and so S9 � ϱ. Analogously, using
(4) for ] � ϱ and ϑ � ]2n, we get T9 � ϱ. It follows that
ϱ ∈ CFP(T,S); that is, CFP(T,S)≠∅.

Next, we characterize the common fixed-points set
CFP(T,S) in the following theorem.

Theorem 3. Let all the conditions of 5eorems 1 and 2 hold.
5en CFP(T,S) is totally ordered if and only if CFP(T,S)
contains exactly one element.

Proof. First, we assume that CFP(T,S) is totally ordered.
Let ϱ, σ ∈ CFP(T,S) with ϱ ≠ σ. Consider (4) for ] � σ and
ϑ � ϱ, and we get

db(σ, ϱ) � db(Tσ,S9)≤ αΛ(σ, ϱ),

+ Lmin db(σ,Tσ), db(ϱ,S9), db(σ,S9), db(ϱ,Tσ) ,
� αmax db(σ, ϱ), db(Tσ, σ),

db(S9, ϱ) + db(Tσ, ϱ)
2

,
db(Tσ, ϱ) + db(S9, σ)

2b
 ,

� αmax db(σ, ϱ),
db(σ, ϱ) + db(ϱ, σ)

2b
 ,

�
α

2b
db(σ, ϱ) + db(ϱ, σ) ,

(21)

that is,

db(σ, ϱ)≤
α

2b
db(σ, ϱ) + db(ϱ, σ) . (22)

Again, using (5) for ] � u and ϑ � σ and by calculation
we get

db(ϱ, σ)≤
α

2b
db(ϱ, σ) + db(σ, ϱ) . (23)

Adding (22) and (23), we get

db(σ, ϱ) + db(ϱ, σ)≤
α

2
db(ϱ, σ) + db(σ, ϱ)( , (24)

which gives a contradiction. -us, CFP(T,S) is singleton.
-e converse is trivial.

Putting S � T in -eorem 3, we obtain the following
result.

Corollary 1. Let (Ξ, d, ≺ ) be an ordered left-complete
quasi-b-metric space with constant b≥ 1. Suppose that
T: Ξ⟶ Ξ is a mapping such that

db(T],Tϑ)≤ αΛ′(], ϑ) + Lmin db(],T]), db(ϑ,Tϑ), db(],Tϑ), db(ϑ,T]) , (25)

for all comparable ], ϑ ∈ Ξ, where L≥ 0, α ∈ [0, 1), and

Λ′(], ϑ) � max db(], ϑ), db(T], ]),
db(Tϑ, ϑ) + db(T], ])

2
,
db(T], ϑ) + db(Tϑ, ])

2b
 , (26)

Also suppose thatT ]≺T(T]) for all ] ∈ Ξ with ]≺T].
If there exists an element ]0 ∈ Ξ such that ]0 ≺T]0 and either
T is continuous at ]0 or Ξ is regular, thenT has a fixed point.
Moreover, fix(T) is totally ordered if and only if it is a
singleton.

Next, we come up with the following example, which
illustrates -eorem 1.

Example 1. Let Ξ � [0, 5] and define db: Ξ × Ξ⟶ R by
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db(], ϑ) �

0, if ] � ϑ;

] − ϑ, if ]> ϑ;
2(ϑ − ]), if ]< ϑ.

⎧⎪⎪⎨⎪⎪⎩ (27)

We define a relation “ ≺ ” on Ξ by ] ≺ ϑ if and only if
either ], y ∈ [0, 3] and ]≥ ϑ or ], ϑ ∈ (3, 5] and ] � ϑ. -en
(Ξ, db, ≺ ) is an ordered left-complete quasi-b-metric space
with constant b � 2. Next, we define two mappings
T,S: Ξ⟶ Ξ by

T] �

]

8
, if ] ∈ [0, 3];

3

8
, if ] ∈ (3, 5],

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S] �

]

7
, if ] ∈ [0, 3];

2, if ] ∈ (3, 5].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(28)

For ] ∈ [0, 3] with ]≺S], we have S] � (x/7),
TS] � (]/56), and STS] � (]/392). So S]>TS]>
STS] and hence S]>TS]>STS]. Again, for ] ∈ (3, 5]
and ]≺S], we have S] � 2, TS] � (1/4), and
STS] � (1/28). So S]>TS]>STS] and hence
S] ≺ TS] ≺ STS]. -us, S is T-strictly weakly isotone
increasing. It is clear that T is continuous. We choose
α � (4/10).

Now assume that ], ϑ ∈ Ξ is arbitrary such that ] and ϑ
are comparable. -en the following cases arise:

Case I: let ], ϑ ∈ [0, 3] and ] ≺ ϑ; that is, ]≥ ϑ. First, we
assume that ]> ϑ. -en

db(T],Sϑ)≤

]

8
> ϑ
7
, if

]

8
> ϑ
7
;

2
ϑ

8
> ]
7

 , if
]

8
< ϑ
7
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(29)

and αdb(], ϑ) � (4/10)(] − ϑ) and αdb(T], ]) �
(7/10). -erefore,

db(T],Sϑ)≤
αdb(], ϑ), if

]

8
> ϑ
7
;

αdb(T], ]), if
]

8
< ϑ

7
.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(30)

Next, we assume that ] � ϑ. -en db(T],Sϑ) � (]/28)
and so

db(T],Sϑ)≤ αdb(T], ]). (31)

-us,

db(T],Sϑ)≤ αΛ(], ϑ). (32)

On the similar arguments, we can get

db(S],Tϑ)≤ αΥ(], ϑ). (33)

Case II: let ], ϑ ∈ [0, 3] and ϑ ≺ ]; that is, ]≤ ϑ. -en,
we can show in a similar manner that

db(T],Sϑ)≤ αΛ(], ϑ)),
db(S],Tϑ)≤ αΥ(], ϑ).

(34)

Case III: let ], ϑ ∈ (3, 5] and ] � ϑ. -en db(T],Sϑ) �
13/4 and db(S],Tϑ) � 13/8. Also, we have

min db(],T]), db(ϑ,Sϑ), db(],Sϑ), db(ϑ,T])  � min ] −
3

8
 , (] − 2)  �(] − 2),

min db(],S]), db(ϑ,Tϑ), db(],Tϑ), db(ϑ,S])  �(] − 2).
(35)

-erefore,

db(T],Sϑ)≤Lmin db(],T]), db(ϑ,Sϑ), db(],Sϑ), db(ϑ,T]) ,
db(S],Tϑ)≤Lmin db(],S]), db(ϑ,Tϑ), db(],Tϑ), db(ϑ,S]) , (36)

where L � 10.
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Hence, from all three cases, we have

db(T],Sϑ)≤ αΛ(], ϑ) + Lmin db(],T]), db(ϑ,Sϑ), db(],Sϑ), db(ϑ,T]) ,
db(S],Tϑ)≤ αΥ(], ϑ) + Lmin db(],S]), db(ϑ,Tϑ), db(],Tϑ), db(ϑ,S]) . (37)

-us, all the conditions of-eorem 1 are fulfilled and the
pair T,S has a unique common fixed point (which is
0 ∈ CFP(T,S)).

3. Results for Three Mappings

In this section, we obtain a result for three mappings in-
volving weakly increasing condition.

Theorem 4. Let (Ξ, db, ≺ ) be an ordered right-complete
quasi-b-metric space with constant b≥ 1. Let
T,S,R: Ξ⟶ Ξ be three mappings such that TΞ⊆RΞ
and SΞ⊆RΞ, and

db(T],Sϑ)≤ αΛ1(], ϑ) + Lmin db(R],T]), db(Rϑ,Sϑ), db(R],Sϑ), db(Rϑ,T]), , (38)

db(S],Tϑ)≤ αY1(], ϑ) + Lmin db(R],S]), db(Rϑ,Tϑ), db(R],Tϑ), db(Rϑ,S]) , (39)

for all comparable R],Ry ∈ Ξ, where α ∈ [0, 1), L≥ 0, and

Λ1(], ϑ) � max db(R],Rϑ), db(R],T]),
db(Rϑ,Sϑ) + db(R],T])

2
,
db(T],Rϑ) + db(R],Sϑ)

2b
 ,

Y1(], ϑ) � max db(R],Rϑ), db(R],S]),
db(Rϑ,Tϑ) + db(R],S])

2
,
db(S],Rϑ) + db(R],Tϑ)

2b
 .

(40)

We assume the following hypotheses:

(i) T and S are weakly increasing with respect to R

(ii) T and S are dominating maps

Assume either of the following:

(a) S and R are compatible; R is continuous at ]0
(b) T and R are compatible; R is continuous at ]0

-en CFP(S,T,R)≠∅. In addition, CFP(S,T,R) is
totally ordered if and only if CFP(S,T,R) contains exactly
one element.

Proof. Start with defining a sequence ]n  in Ξ as
R]2n+1 � S]2n andR]2n+2 � T]2n+1 for n ∈ 0, 1, . . .{ }.

(41)
We claim that

R]n ≺ R]n+1, ∀n ∈ N
∗. (42)

Using hypothesis (i) and (41),

R]1 � S]0 ≺ Tϑ, ∀y ∈R
− 1

S]0( . (43)

Since R]1 � S]0, ]1 ∈R− 1(S]0), and we get

R]1 � S]0 ≺ T]1 �R]2. (44)

Again,

R]2 � T]1 ≺ Sϑ, ∀y ∈R
− 1

T]1( . (45)

Since ]2 ∈R− 1(T]1), we get

R]2 � T]1 ≺ S]2 �R]3. (46)

Hence, by induction, (42) holds.
Let Δn � db(R]n,R]n+1). Now we claim that, for all

n ∈ N, we have

Δn ≤ αΔn− 1. (47)

Using (38) and (42) with x] � ]2n− 1 and ϑ � ]2n,
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db R]2n,R]2n+1(  � db T]2n− 1,S]2n( ,
≤ αΛ1 ]2n− 1, ]2n(  + Lmin db R]2n− 1,T]2n− 1( , db R]2n,S]2n( , db R]2n− 1,S]2n( , db R]2n,T]2n− 1(  ,
⟹ db R]2n,R]2n+1( ≤ αΛ1 ]2n− 1, ]2n( ,

(48)

where

Λ1 ]2n− 1, ]2n( 
� max db R]2n− 1,R]2n( , db R]2n− 1,T]2n− 1( , db R]2n,S]2n(  + db R]2n− 1,T]2n− 1( 

2
,
db T]2n− 1,R]2n(  + db R]2n− 1,S]2n( 

2b
 ,

� max db R]2n− 1,R]2n( , db R]2n− 1,R]2n( , db R]2n,R]2n+1(  + db R]2n− 1,R]2n( 
2

,
db R]2n− 1,R]2n+1( 

2b
 .

(49)

(i) If Λ1(]2n+1, ]2n) � db(R]2n− 1,R]2n), by (48), we
have

db R]2n,R]2n+1( ≤ αdb R]2n− 1,R]2n( , (50)

that is, Δ2n ≤ αΔ2n− 1.
(ii) If Λ1(]2n− 1, ]2n) � (1/2b)db(R]2n− 1,R]2n+1), we get

db R]2n,R]2n+1( ≤ α

2b
db R]2n− 1,R]2n+1( ,

≤ α
2
db R]2n− 1,R]2n(  + α

2
db R]2n,R]2n+1( 

⟹ db R]2n,R]2n+1( ,
≤ α

2 − α
db R]2n− 1,R]2n( ,

≤ αdb R]2n− 1,R]2n( ⟹Δ2n,

≤ αΔ2n− 1.
(51)

(iii) If Λ1(]2n− 1, ]2n) � ((db (R]2n,R]2n+1) + db
(R]2n− 1,R]2n))/2), we get

≤ α
2
db R]2n,R]2n+1(  + α

2
db R]2n− 1,R]2n( ⟹Δ2n,

≤ αΔ2n− 1.
(52)

-us, in all cases, we have Δ2n ≤ αΔ2n− 1 for all n ∈ N.
Similarly, using (39), we can show Δ2n+1 ≤ αΔ2n for all n≥ 1.
-erefore, we conclude that (47) holds for all n ∈ N; that is,

db R]n,R]n+1( ≤ αdb R]n− 1,R]n( , for all n ∈ N.

(53)
-erefore, from Lemma 1, it follows that R]n  is a

right-Cauchy sequence. From the right-completeness of Ξ,
there exists ϱ ∈ Ξ such that

R]n ⟶ϱ as n⟶∞. (54)

Wewill prove that ϱ is a common fixed point of the three
mappings S,T, and R.

We have

R]2n+1 � S]2n ⟶ϱ, as n⟶∞, (55)

R]2n+2 � T]2n+1 ⟶ϱ, as n⟶∞. (56)

First, suppose that (a) holds. -en

lim
n⟶∞

SR]2n+2 � lim
n⟶∞

RS]2n+2 �Rϱ. (57)

From (54) and the continuity of R, we have

R R]n( ⟶Rz, as n⟶∞. (58)

Also, we have ]2n+1 ≺ T]2n+1 �R]2n+2. -en, from
(38), we get

db T]2n+1,SR]2n+2( 
≤ αΛ1 ]2n+1,R]2n+2(  + Lmin db R]2n+1,T]2n+1( , db R R]2n+2( ,SR]2n+2( , db R]2n+1,SR]2n+2( , db R R]2n+2( ,T]2n+1(  ,

(59)
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where

Λ1 ]2n+1,R]2n+2(  � max db R]2n+1,R R]2n+2( ( , db R]2n+1,T]2n+1( ,
db R R]2n+2( ,SR]2n+2(  + db R]2n+1,T]2n+1( 

2
,
db T]2n+1,R R]2n+2( (  + db R]2n+1,SR]2n+2( 

2b
.
(60)

Limiting n⟶∞ in (59) and using (55)–(58), we obtain

db(ϱ,Rϱ)≤ αmax db(ϱ,Rϱ), db(ϱ,Rϱ) + db(ϱ,Rϱ)
2b

 ,
� αdb(ϱ,Rϱ)⟹ db(ϱ,Rϱ),

� 0, i.e., Rϱ � ϱ.
(61)

Now, ]2n+1 ≺ T]2n+1 andT]2n+1 ⟶ϱ as n⟶∞, so
by the assumption we have ]2n+1 ≺ ϱ. -en, using (38), we
get

db T]2n+1,S9( ≤ αΛ1 ]2n+1, ϱ(  + Lmin db R]2n+1,T]2n+1( , db(Rϱ,S9), db R]2n+1,S9( , db Rϱ,T]2n+1(  , (62)

where

Λ1 ]2n+1, ϱ(  � max db R]2n+1,Rϱ( , db R]2n+1,T]2n+1( , db(Rϱ,S9) + db R]2n+1,T]2n+1( 
2

,
db T]2n+1,Rϱ(  + db R]2n+1,S9( 

2b
.

(63)

Letting n⟶∞ in (62) and using (55) and (56), we get

db(ϱ,S9)≤ αmax db(ϱ,S9),
db(Rϱ,S9)

2
,
db(ϱ,Rϱ) + db(ϱ,S9)

2b
 ,

� αmax
db(ϱ,S9)

2
,
db(ϱ,S9)

2b
 ,

�
α

2
db(ϱ,S9)⟹ db(ϱ,S9),

� 0, i.e.,S9 � ϱ.

(64)

Again, ]2n ≺ S]2n andS]2n ⟶ϱ as n⟶∞, so by the
assumption we have ]2n ≺ ϱ and hence using (39) gives

db S]2n,T9( ≤ αΥ1 ]2n, ϱ(  + Lmin db R]2n,S]2n( , db(Rϱ,T9), db R]2n,T9( , db Rϱ,S]2n(  , (65)
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where

Y1 ]2n, ϱ(  � max db R]2n,Rϱ( , db R]2n,S]2n( , db(Rϱ,T9) + db R]2n,S]2n( 
2

,
db S]2n,Rϱ(  + db R]2n,T9( 

2b
 . (66)

Letting n⟶∞ in (65) and using (55) and (56), we have

db(ϱ,T9)≤ αmax db(ϱ,Rϱ), db(Rϱ,T9)

2
,
db(ϱ,Rϱ) + db(ϱ,T9)

2b
 ,

� αmax
db(ϱ,T9)

2
,
db(ϱ,T9)

2b
 ,

�
α

2
db(ϱ,T9)⟹ db(ϱ,T9),

� 0,

i.e.,T9 � ϱ.

(67)

-erefore, S9 � T9 �Rϱ � ϱ. Hence ϱ is a common
fixed point of R,S, and T. -e proof is similar when (b)
holds.

Now, suppose that CFP(S,T,R) is totally ordered. We
claim that there is a unique CFP(S,T,R). Assume to the
contrary that ϱ ∈ CFP(S,T,R) and σ ∈ CFP(S,T,R) but
ϱ ≠ v. Using (38) with ] � ϱ and ϑ � σ, we have

db(ϱ, σ) � db(T9,Sσ),

≤ αΛ1(ϱ, σ) + Lmin db(Rϱ,T9), db(Rv,Sv), db(Rϱ,Sσ), db(Rσ,T9) ⟹ db(ϱ, v),
≤ αΛ1(ϱ, σ),

(68)

where

Λ1(ϱ, σ) � max db(Rϱ,Rσ), db(Rϱ,T9),
db(Rσ,Sσ) + db(Rϱ,T9)

2
,
db(T9,Rσ) + db(Rϱ,Sσ)

2b
 ,

� max db(ϱ, σ),
db(ϱ, σ)

b
 ,

� db(ϱ, σ).

(69)

-erefore,

db(ϱ, σ)≤ αdb(ϱ, σ)<db(ϱ, σ), (70)

a contradiction. Hence, ϱ � σ. -e converse is trivial.

TakingR � the identity mapping on Ξ in-eorem 4, we
have the following consequence.

10 Journal of Mathematics



Corollary 2. Let (Ξ, db, ≺ ) be an ordered right-complete
quasi-b-metric space with constant b≥ 1. Let the pair of
mappings T,S: Ξ⟶ Ξ satisfy

db(T],Sϑ)≤ αΛ1′(], ϑ) + Lmin db(],T]), db(y,Sϑ), db(],Sϑ), db(ϑ,T]) ,
db(S],Tϑ)≤ αY1′(], ϑ) + Lmin db(],S]), db(y,Tϑ), db(],Tϑ), db(y,S]) , (71)

for all comparable ], ϑ ∈ Ξ, α ∈ [0, 1), L≥ 0, and

Λ1′(], ϑ) � max db(], ϑ), db(],T]),
db(y,Sϑ) + db(],T])

2
,
db(T], ϑ) + db(],Sϑ)

2b
 ,

Y1′(], ϑ) � max db(], ϑ), db(],S]),
db(y,Tϑ) + db(],S])

2
,
db(S], ϑ) + db(],Tϑ)

2b
 .

(72)

Further, assume that

(i) T and S are weakly increasing mapping

(ii) T and S are dominating maps

-en CFP(S,T)≠∅. In addition, CFP(S,T) is totally
ordered if and only if CFP(S,T) contains exactly one element.

Now, we provide the following example to authenticate
-eorem 4.

Example 2. We consider Ξ � 0{ }∪N and define
db: Ξ × Ξ⟶ R by

db(], ϑ) �

0, if ] � ϑ;

2

] + ϑ
, if any one of ], ϑ is 0 and the other is not 0;

1

]

−
2

ϑ


, if ]≠ ϑ and], ϑ≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(73)

Also, we define a relation ≺ on Ξ by ] ≺ ϑ if and only if
]≤ ϑ. -en, we can easily check that (Ξ, db, ≺ ) is an ordered
right-complete quasi-b-metric space with constant b � 2.
Next, we define three mappings T,S,R: Ξ⟶ Ξ by

T] �
0, if ] � 0;

20(] + 2), if ]≠ 0,


S] �
0, if ] � 0;

40(] + 3), if ]≠ 0,


R] �
0, if ] � 0;

] + 1, if ]≠ 0.


(74)

-en, clearly TΞ⊆RΞ and SΞ⊆RΞ. We choose
α � (19/20). Now we assume that ], ϑ ∈ Ξ are arbitrary such
thatR] andRϑ are comparable.-en the following cases arise:

Case I: let ], ϑ≠ 0 andR] ≺ Rϑ. First, we assume that
]≠ ϑ. -en db(T],Sϑ) � (1/20)((1/(] + 2))−
(1/(ϑ + 3))) and db(R],T]) � ((9] + 19)/(10(] + 1)
(] + 2))). -erefore, we have

db(T],Sϑ)≤ αdb(R],T])≤ αΛ1(], ϑ). (75)

Next, we assume that ] � ϑ. -en db(T],Sϑ) �
(1/(20(] + 1)(] + 3))) and db(R],T]) � ((9] + 19)/
(10(] + 1)(] + 2))), and so we have

db(T],Sϑ)≤ αdb(R],T])≤ αΛ1(], ϑ). (76)

In a similar way, we can show that

db(S],Tϑ)≤ αY1(], ϑ). (77)

Case II: let ], ϑ≠ 0 andRϑ ≺ R]. -en, proceeding in
the same way as that in Case I, we can show that

db(T],Sϑ)≤ αΛ1(], ϑ),
db(S],Tϑ)≤ αY1(], ϑ).

(78)

Case III: let ] � 0 and ϑ≠ 0. -en db(T],Sϑ) �
(1/(20(ϑ + 3))), db(S],Tϑ) � (1/10(ϑ + 2)), and
db(R],Rϑ) � (2/(ϑ + 1)). -erefore,

db(T],Sϑ)≤ αdb(R],Rϑ),

db(S],Tϑ)≤ αdb(R],Rϑ),
(79)

which implies that

db(T],Sϑ)≤ αΛ1(], ϑ),
db(S],Tϑ)≤ αY1(], ϑ).

(80)
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Case IV: let ϑ � 0 and ]≠ 0. -is case is similar to the
previous case and so is omitted.

Case V: let ] � 0 � ϑ. In this case, it is trivial to check
that (38) and (39) hold.

So, combining all the five cases, we see that (38) and (39)
hold for all comparable R],Ry ∈ Ξ.

Now let ϑ ∈R− 1(T]). -en, we have ϑ � 20] + 39 if
]≠ 0 and ϑ � 0 if ] � 0.-erefore, if ]≠ 0, thenT] � 20(] +
2) and Sϑ � 40(20] + 42), soT] ≺ Sϑ. If ] � 0, thenT] �

Sϑ � 0 and so T] ≺ Sϑ. Similarly, for ϑ ∈R− 1(S]), we
can show that S] ≺ Tϑ. Hence T and S are weakly in-
creasing with respect toR. Further, we can easily show that
T and S are dominating maps; S and R are compatible;
and R is continuous. -us, we can apply -eorem 4 to
deduce thatT,S, andR have a unique common fixed point
ϱ � 0.

4. Application to Nonlinear Matrix Equations

In this section, we will apply the common fixed-point results
in quasi-b-metric spaces of the previous section to obtain
variants of the results of Garai and Dey [23] on existence of
common solution to systems of NMEs. For other variants on
solution to systems of NMEs, one is referred to [24, 25]. For a
matrix A, any singular value of A will be denoted by s(A),
and the sum of these values, that is, the trace norm ofA, will
be denoted by s+(A) � ‖A‖. We will use the standard partial
order on H(n) given by A≽B if and only if A − B is a
positive semidefinite matrix. We define a function
db: H(n) ×H(n)⟶ R by

db(X,Y) �

0, ifX �Y;

X −
1

2
Y

�������
�������
2

, ifX≠Y.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (81)

-en (H(n), db, ≺ ) is an ordered right-complete quasi-
b-metric space with b � 2.

Utilizing this quasi-b-metric space, we now prove the
following theorem regarding the solution (s) of a pair of
nonlinear matrix equations.

Theorem 5. Consider the system

X �B1 +k
i�1

A
∗
i f(X)Ai,

X �B2 +k
i�1

A
∗
i g(X)Ai,

(82)

where B1,B2 ∈ P(n), Ai ∈M(n), i � 1, . . . , k, and the
operators f, g: H(n)⟶ H(n) are continuous in the trace
norm. Let, for someM,N1 ∈ R, and, for any X ∈ P(n) with
‖X‖≤M, s(f(X)), s(g(X))≤N1 hold for all singular
values of f(X) and g(X), respectively. Assume the following:

(1) ‖B1‖, ‖B2‖≤M − NN1n, whereki�1 ‖A∗
i ‖‖Ai‖ � N

(2) For any K ∈ H(n) with ‖K‖≤M, ki�1A∗
i f(K)

Ai ≽O (O stands for null matrix of order n) orki�1A∗
i g(K)Ai≽O holds

(3) For any K ∈ H(n) with ‖K‖≤M, K ≺ B1 + ki�1
A∗
i f(K)Ai andK ≺ B2 +ki�1A∗

i g(K)Ai hold

(4) For any K ∈ H(n) with ‖K‖≤M, if K ≺ B1+ki�1A∗
i f(K)Ai then

B1 +k
i�1A

∗
i f(K)Ai ≺ B2 +ki�1A∗

i g(B1 +ki�1A∗
i f(K)Ai)Ai ≺ B1 +ki�1A∗

i f(B2

+ki�1A∗
i g(B1 + ki�1A∗

i f(K)Ai)Ai hold

(5) 5ere exists L≥ 0 such that, for any s(B1 − B2),

(a) s(B1 − (1/2)B2) +Ns(f(X) − (1/2)g(Y))≤
(2/3n) [R11(X,Y) + LR12(X,Y)]

1/2

holds for all s(f(X) − (1/2)g(Y)) and
X,Y ∈ H(n) with ‖X‖, ‖Y‖≤M, X ≺ Y or
Y ≺ X, where

R11(X,Y) � max

s+ X −
1

2
Y 

2, s+ X −
1

2
k
i�1

A
∗
i f(X)Ai −

B2

2
⎛⎝ ⎞⎠


2

,

1

2
s+ Y −

1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

+ s+ X −
1

2
k
i�1

A
∗
i f(X)Ai −

1

2
B1

⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

1

4
s+ k

i�1

A
∗
i f(X)Ai +B1 −

1

2
Y⎛⎝ ⎞⎠


2

+ s+ X −
1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

R12(X,Y) � min

s+ X −
1

2
k
i�1

A
∗
i f(X)Ai −

1

2
B1

⎛⎝ ⎞⎠

2

, s+ Y −
1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

,

s+ X −
1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

, s+ Y −
1

2
k
i�1

A
∗
i f(X)Ai −

1

2
B1

⎛⎝ ⎞⎠

2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(83)
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(b) s(B1 − (1/2)B2) +Ns(g(X) − (1/2)f(Y))≤
(2/3n)[R21(X,Y) + LR22(X,Y)]

1/2
holds for all s(g(X) − (1/2)f(Y)) and X,Y ∈ H(n)

with ‖X‖, ‖Y‖≤M, X ≺ Y or Y ≺ X, where

R21(X,Y) � max

s+ X −
1

2
Y 

2, s+ X −
1

2
k
i�1

A
∗
i g(X)Ai −

B2

2
⎛⎝ ⎞⎠


2

s+ Y −
1

2
k
i�1

A
∗
i f(Y)Ai −

1

2
B1

⎛⎝ ⎞⎠

2

+ s+ X −
1

2
k
i�1

A
∗
i g(X)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

1

4
s+ k

i�1

A
∗
i g(X)Ai +B2 −

1

2
Y⎛⎝ ⎞⎠


2

+ s+ X −
1

2
k
i�1

A
∗
i f(Y)Ai −

1

2
B1

⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

R22(X,Y) � min

s+ X −
1

2
k
i�1

A
∗
i g(X)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

, s+ Y −
1

2
k
i�1

A
∗
i f(Y)Ai −

1

2
B1

⎛⎝ ⎞⎠

2

,

s+ X −
1

2
k
i�1

A
∗
i f(Y)Ai −

1

2
B1

⎛⎝ ⎞⎠

2

, s+ Y −
1

2
k
i�1

A
∗
i g(X)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(84)

-en system (82) has a solution, and if X is a solution of
the system, then X ∈ P(n) with ‖ X‖≤M. Further, the it-
erative sequence Xn , where, for j≥ 0,

X2j+1 �B1 +k
i�1

A
∗
i f X2j Ai,

X2j+2 �B2 +k
i�1

A
∗
i g X2j+1 Ai,

(85)

andX0 is an arbitrary element ofH(n) satisfying ‖X0‖≤M,
converges to a unique solution of the system, if Xj ≺ Xj+1

or Xj+1 ≺ Xj.

Proof. Let us consider the set Ξ � X ∈ H(n): ‖X‖≤M{ }.
-en, Ξ is right-complete with respect to the metric db. For
any X ∈ Ξ, we have

B1 +k
i�1

A
∗
i f(X)Ai

���������
���������≤ B1

���� ���� + k
i�1

A
∗
i f(X)Ai

���������
���������,

≤ B1

���� ���� +k
i�1

A
∗
i

���� ���� Ai

���� ����‖f(X)‖,
� B1

���� ���� +N‖f(X)‖.
(86)

Since ‖X‖≤M, we have s(f(X))≤N1 for all singular
values s(f(X)) of f(X) so, by summing the n singular

values of f(X), we get ‖f(X)‖≤ nN1. Using this in (86), we
get

B1 +k
i�1

A
∗
i f(X)Ai

���������
���������≤ B1

���� ���� + nNN1 ≤M. (87)

Similarly, for any X ∈ Ξ, we can show that

B2 +k
i�1

A
∗
i g(X)Ai

���������
���������≤ B2

���� ���� + nNN1 ≤M. (88)

-erefore, the mappings T,S defined on Ξ by

T(X) �B1 +k
i�1

A
∗
i f(X)Ai,

S(X) �B2 +k
i�1

A
∗
i g(X)Ai.

(89)

for X ∈ Ξ are self-maps on Ξ. Next, for any X ∈ Ξ, using
assumption (3), we have X ≺ T(X) and X ≺ S(X). So
the mappings T,S are dominating mappings. Again, for
X ∈ Ξ, we have T(X) ∈ Ξ and S(X) ∈ Ξ. So, for any
X ∈ Ξ, using assumption (4), we have S(X) ≺ TS(X)

and T(X) ≺ ST(X). -erefore, T,S are weakly in-
creasing mappings. We choose α � (17/18). Now let
X,Y ∈ Ξ be arbitrary such that either X ≺ Y or Y ≺ X.
-en, we have
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T(X) −
1

2
S(Y)

�������
������� � B1 +k

i�1

A
∗
i f(X)Ai −

1

2
B2 −

1

2
k
i�1

A
∗
i g(Y)Ai

���������
���������,

≤ B1 −
B2

2

�������
������� +

k

i�1

A
∗
i f(X) −

1

2
g(Y) Ai

�������
�������,

≤ B1 −
1

2
B2

�������
������� +

k

i�1

A
∗
i

���� ���� Ai

���� ���� f(X) − 1
2
g(Y)

�������
�������,

� B1 −
1

2
B2

�������
������� +N f(X) −

1

2
g(Y)

�������
�������.

(90)

If R11(X,Y) � |s
+(X − (1/2)Y)|2, then we have

s B1 −
1

2
B2  + Ns f(X) − 1

2
g(Y) ≤ 2

3n
s+ X −

1

2
Y 

2 + LR12(X,Y) 1/2,
⟹ B1 −

1

2
B2

�������
������� +N f(X) −

1

2
g(Y)

�������
�������≤ 23 X −

1

2
Y

�������
�������
2

+ LR12(X,Y) 1/2,
⟹ T(X) −

1

2
S(Y)

�������
�������≤ 23 X −

1

2
Y

�������
�������2 + LR12(X,Y) 1/2,

⟹ T(X) −
1

2
S(Y)

�������
�������2 ≤ 49 X −

1

2
Y

�������
�������2 + LR12(X,Y) .

(91)

If R11(X,Y) � |s+(X − (1/2)ki�1A∗
i f(X)Ai −

(1/2)B2)|
2, then we can similarly show that

T(X) −
1

2
S(Y)

�������
�������2 ≤ 49 X −

1

2
T(X)

�������
�������2 + LR12(X,Y) .

(92)

Again if

R11(X,Y) �
1

2
s+ Y −

1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2

+ s+ X −
1

2
k
i�1

A
∗
i f(X)Ai −

1

2
B1

⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (93)

or

R11(X,Y) �
1

4
s+ k

i�1

A
∗
i f(X)Ai +B1 −

1

2
Y⎛⎝ ⎞⎠


2

+ s+ X −
1

2
k
i�1

A
∗
i g(Y)Ai −

1

2
B2

⎛⎝ ⎞⎠

2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (94)

then we can show that

T(X) −
1

2
S(Y)

�������
�������2 ≤ 49 1

2
Y −

1

2
S(Y)

�������
�������2 + X −

1

2
T(X)

�������
�������2  + LR12(X,Y) , (95)
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or

T(X) −
1

2
S(Y)

�������
�������2 ≤ 49 1

4
T(X) −

1

2
Y

�������
�������2 + X −

1

2
S(Y)

�������
�������2  + LR12(X,Y) . (96)

-us, combining equations (91)–(96) and using the
definition of the quasi-b-metric db, we get

T(X) −
1

2
S(Y)

�������
�������2 ≤ 49max X −

1

2
Y

�������
�������2, X −

1

2
T(X)

�������
�������2, 1

2
Y −

1

2
S(Y)

�������
�������2 + X −

1

2
T(X)

�������
�������2 ,

·
1

4
T(X) −

1

2
Y

�������
�������2 + X −

1

2
S(Y)

�������
�������2 

+
4

9
LR12(X,Y)⟹db(T(X),S(Y)),

≤ 4
9
max db(X,Y), db(X,T(X)),

1

2
db(Y,S(Y)) + db(X,T(X))( , 1

2b
db(T(X),Y(  + db(X,S(Y)) ,

+
4

9
LR12(X,Y)⟹db(T(X),S(Y)),

≤ αmax db(X,Y), db(X,T(X)),
db(Y,S(Y)) + db(X,T(X))

2
,
db(T(X),Y) + db(X,S(Y))

2b
 ,

+
4

9
LR12(X,Y)⟹db(T(X),S(Y)),

≤ αΛ1′(X,Y) + Lmin db(X,T(X)), db(Y,S(Y)), db(X,S(Y)), db(Y,T(X)) .
(97)

In a similar way, we can show that

db(S(X),T(Y))≤ αY1′(X,Y) + Lmin db(X,S(X)), db(Y,T(Y)), db(X,T(Y)), db(Y,S(X)) . (98)

Hence, by Corollary 2, it is implied that the pair of
mappingsT,S has a common fixed point in Ξ, say X. So X
is a solution to system (82). By assumption (2), we see that
any solution of system (82) must be positive definite, and
since X ∈ Ξ, we have ‖ X‖≤M. Again, by the order pre-
serving (or order reversing) of the successive elements of the
sequence Xn  converging to X, we see that system (82)
cannot have more than one solution. -us, system (82) has a
unique solution X ∈ Ξ with X ∈ P(n) and ‖ X‖≤M.

Now we present an example in order to validate the
above theorem.

Example 3. Consider system (82) for k � 2 and n � 4, with
f(X) � X0.2 and g(X) � X0.3; that is,

X �B1 +A
∗
1X

0.2
A1 +A

∗
2X

0.2
A2,

X �B2 +A
∗
1X

0.3
A1 +A

∗
2X

0.3
A2,

(99)
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where

A1 �

0.50241365 0.80309106 0.74147738 1.0008952

0.80309106 1.51926454 1.55315745 1.68489937

0.74147738 1.55315745 2.24960894 2.07448592

1.0008952 1.68489937 2.07448592 2.41733981

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

0.57489671 1.04590664 0.9683583 0.96680342

1.04590664 2.5508309 1.90415829 2.05691324

0.9683583 1.90415829 2.09247523 1.61626038

0.96680342 2.05691324 1.61626038 1.94523108

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B1 �

1.76535051 1.19912087 1.6487913 2.01599104

1.19912087 2.02881606 1.62300354 1.7232668

1.6487913 1.62300354 1.879647 2.10149668

2.01599104 1.7232668 2.10149668 2.44522015

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B2 �

− 10.643334057848985 − 23.874210038032118 − 23.420523624735278 − 23.908390438513909

− 23.874210038032118 − 48.926958696625590 − 48.676364597578200 − 50.163509103606913

− 23.420523624735285 − 48.676364597578200 − 49.153540195555415 − 50.862360333937076

− 23.908390438513909 − 50.163509103606913 − 50.862360333937083 − 52.535431964591425

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(100)

After calculations, we get ‖B1‖ � 8.11903372, ‖B2‖ �

163.0367049758027, N � 96.052515868700326, N1 �

6.183163814689865, and L � 3.

Let M � 1.038194798043281 × 103. -e conditions of
-eorem (99) can be checked numerically, taking various
special values for matrices involved. For example, they can
be tested (and verified to be true) for

X �

2.9958423 2.77146661 2.54547199 2.33145834

2.77146661 2.70100098 2.20736932 2.16196261

2.54547199 2.2073693 2.40532238 2.03543311

2.33145834 2.16196261 2.03543311 1.87555389

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Y �

7.91454201 7.07030238 7.30633152 6.80248367

7.07030238 7.64595944 6.49795464 6.58540998

7.30633152 6.49795464 7.50461026 6.76707205

6.80248367 6.58540998 6.76707205 6.5164748

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

K �

0.244895463279295 0.446163048925549 0.536423236239700 0.581367922915251

0.446163048925549 0.820430394467024 0.994442779832152 1.065859543793928

0.536423236239700 0.994442779832152 1.232631898474834 1.304057463080299

0.581367922915251 1.065859543793928 1.304057463080299 1.398770067769852

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(101)

where,

‖X‖ � 9.97771955,

‖Y‖ � 29.58158651,

‖K‖ � 3.696727823991004.

(102)

To see the convergence of the sequence Xn  defined in
(85), we start with initial values,
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X0 �

2.046172298403625 3.404527441644321 2.953394842790926 2.942886557017088

3.404527441644321 6.364569270588873 5.449300388429051 5.499469136857805

2.953394842790926 5.449300388429052 4.867308622636568 4.789598061118900

2.942886557017088 5.499469136857805 4.789598061118900 4.890358774128345

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (103)

with ‖X0‖ � 18.168408965757408,

U0 �

10.293364321414856 12.838879399150237 13.601326678824901 13.518191855227126

12.838879399150237 17.873328031056058 19.385378724242695 19.662286105737081

13.601326678824901 19.385378724242695 22.111211997385734 22.244839258390460

13.518191855227126 19.662286105737081 22.244839258390460 22.959343292059014

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (104)

with ‖U0‖ � 73.237247641915687,

V0 �

8.383022 9.0642937 9.05273 9.8551909

9.0642937 9.95876169 10.0729775 10.8741133

9.05273 10.0729775 10.424364 11.1353359

9.8551909 10.8741133 11.1353359 12.02731569

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(105)

with ‖V0‖ � 40.793463379999992 and, after 20 iterations,
we have the following approximation of the unique positive
definite solution of system (99):

X ≈ X20 �

18.838973862713779 35.660700810728500 36.046104062493825 37.656448431121959

35.660700810728507 72.239396779986436 70.690005868946088 73.105053026182759

36.046104062493811 70.690005868946088 72.345460354729028 74.914965627691828

37.656448431121959 73.105053026182759 74.914965627691828 78.209549859295251

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (106)

with ‖ X‖ � 2.416333808567245 × 102.

U ≈ U20 �

18.838973862713768 35.660700810728478 36.046104062493797 37.656448431121945

35.660700810728478 72.239396779986379 70.690005868946031 73.105053026182688

36.046104062493797 70.690005868946059 72.345460354728971 74.914965627691771

37.656448431121930 73.105053026182702 74.914965627691771 78.209549859295194

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (107)

with ‖ U‖ � 2.416333808567243 × 102.

V ≈V20 �

18.838973862713765 35.660700810728486 36.046104062493811 37.656448431121930

35.660700810728471 72.239396779986379 70.690005868946031 73.105053026182702

36.046104062493782 70.690005868946031 72.345460354728971 74.914965627691785

37.656448431121930 73.105053026182702 74.914965627691743 78.209549859295180

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (108)
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with ‖ V‖ � 2.416333808567243 × 102. Also, the elements of
each sequence are order preserving. -e graphical repre-
sentation of convergence is shown below.

Convergence behaviour
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5. Application to Nonlinear Fractional
Differential Equations

Consider a pair of nonlinear fractional differential equations
(FDEs, in short):

Dβ
(ϑ(t)) + Z1(t, ϑ(t)) � 0,

Dβ
(ϑ(t)) + Z2(t, ϑ(t)) � 0,

(109)

where 0≤ t≤ 1, 1< β, with the two-point boundary
conditions

ϑ(0) � 0,

ϑ(1) � 0,
(110)

where Z1, Z2: J � [0, 1] × R⟶ R is a continuous function.
-e Caputo derivative of fractional-order β is defined as

cD
β
(ϱ(t)) � 1

Γ(n − β)
t
0
(t − s)n− β− 1ϱ(n)(s)ds,

(n − 1< β< n, n �[β] + 1),
(111)

where ϱ: [0,∞)⟶ R is a continuous function, [β] denotes
the integer part of the positive real number β, and Γ is the
gamma function.

-e Riemann-Liouville fractional derivative of order β
for a continuous function ϱ(t) is defined by

Dβ
(ϱ(t)) � 1

Γ(n − β)

d

dt
 n t

0

ϱ(s)
(t − s)β− n− 1

ds,

(n − 1< β< n, n �[β] + 1),
(112)

provided the right-hand side is point-wise defined on
(0,∞).

-e FDEs (109) are equivalent to the integral equation

ϑ(t) � 1
0
B(t, ζ)Zj(ζ, ϑ(ζ))dζ , for all t ∈ J, j � 1, 2,

(113)
where the Green function is

B(t, ζ) �

(t(1 − ζ))β− 1 − (t − ζ)β− 1, 0≤ ζ < t≤ 1

(t(1 − ζ))α− 1

Γ(β) , 0≤ t≤ ζ ≤ 1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(114)

Following [4], consider that X � C([0, 1],R) endowed
with the metric

db(], ϑ) �
(] − ϑ)2
���� ����∞ +‖]‖∞, for all], ϑ ∈ Xwith ]≠ ϑ,
0, otherwise.

⎧⎨⎩
(115)

is a right-complete quasi-b-metric space with b � 2,
where

‖ϑ‖∞ � max
t∈J

|ϑ(t)|, (116)

is the usual supremum norm. It is noticed that (X, db, 2, ≺ )
is a right-complete ordered quasi-b-metric space, where ≺
denotes ] ≺ ϑ if ](t)≤ ϑ(t) for all t ∈ J.

Theorem 6. LetT,S: X⟶ X be two operators defined by

Tϑ(t) � 1
0
B(t, ζ)Z1(ζ, ϑ(ζ))dζ ,

Sϑ(t) � 1
0
B(t, ζ)Z2(ζ, ϑ(ζ))dζ ,

(117)

where t ∈ J. Assume the following:

(i) Z1, Z2: J ×R⟶ R is a continuous function, which is
nondecreasing in the second variable

(ii) For all t ∈ J,

Z1(t, ϑ(t))≤ Z2 t,1
0
B(t, τ)Z1(τ, ϑ(τ))dτ ,

Z2(t, ϑ(t))≤ Z1 t,1
0
B(t, τ)Z2(, ϑ(τ))dτ ,

(118)

(iii) For all t ∈ J,

ϑ(t)≤ 1
0
B(t, ζ)Zj(ζ, ϑ(ζ))dζ , (119)

(iv) For all t, s ∈ J, i≠ j � 1, 2,
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0≤ Zi(t, ](s)) − Zj(t, ϑ(s))≤
1

b
(](s) − ϑ(s)),

], ϑ ∈ X, ] ≺ ϑ,

Zj(t, ](s))
 ≤ 1

b
](s).

(120)
5en, the integral equations (113) have a solution

u∗ ∈ C(J,R).

Proof. Using (II), for all t ∈ J, we have

Tϑ(t) � 1
0
B(t, s)Z1(s, ϑ(s))ds,

≤ 1
0
B(t, s)Z2 s,1

0
B(s, τ)Z1(τ, ϑ(τ))dτ ds,

� 1
0
B(t, s)Z2(s,Tϑ(s))ds,

� STϑ(t).

(121)
Similarly,

Sϑ(t) � 1
0
B(t, s)Z2(s, ϑ(s))ds,

≤ 1
0
B(t, s)Z1 s,1

0
B(s, τ)Z2(τ, ϑ(τ))dτ ds,

� 1
0
B(t, s)Z1(s,Sϑ(s))ds,

� TSϑ(t).

(122)

-en, we have Tϑ ≺ STϑ and Sϑ ≺ TSϑ for all
ϑ ∈ C(J,R). -is implies that T and S are weakly in-
creasing. Using (III), for all t ∈ J, T and S are dominating
operators.

To check contraction conditions, we start with

1
0
B(t, ζ)dζ � c

0
(t(1 − ζ))β− 1 − (t − ζ)β− 1 dζ

+ 1
c

(t(1 − ζ))α− 1

Γ(β) dζ ,

� cβ +
1

Γ(β)[c(1 − c)]
β,

(123)

that is, for c ∈ (0, 1),

1
0
B(t, ζ)dζ � cβ +

1

Γ(β)[c(1 − c)]
β
� λ, say. (124)

Now

|Tϑ(t)|≤ t
0
B(t, s) Z1(t, ϑ(s))

 ds≤ 1
0
B(t, s)

λ

b
|ϑ(s)|ds

�
λ

b
‖ϑ‖∞,

|Sϑ(t)|≤ t
0
B(t, s) Z2(t, ϑ(s))

 ds≤ 1
0
B(t, s)

λ

b
|ϑ(s)|ds

�
λ

b
‖ϑ‖∞.

(125)
Also

|T](t) − Sϑ(t)|≤ 1
0
Z1(t, ](s)) − Z2(t, ϑ(s))
 ds,

≤ 1
0
B(t, s)

1

b
|](s) − ϑ(s)|ds �

1

b
1
0
B(t, s)

������������
(](s) − ϑ(s))2


ds,

≤ λ
b

����������
(] − ϑ)2
���� ����∞

,

|S](t) − Tϑ(t)|≤ 1
0
Z2(t, ](s)) − Z1(t, ϑ(s))
 ds≤ 1

0
B(t, s)

1

b
|](s) − ϑ(s)|ds,

�
1

b
1
0
B(t, s)

������������
(](s) − ϑ(s))2


ds≤ λ

b

����������
(] − ϑ)2
���� ����∞

.

(126)
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-erefore, we get

‖Tϑ‖∞ ≤ λ

b
‖ϑ‖∞,

(T] − Sϑ)2
���� ����∞ ≤ λ2

b2
(] − ϑ)2
���� ����∞,

‖Sϑ‖∞ ≤ λ

b
‖ϑ‖∞,

(S] − Tϑ)2
���� ����∞ ≤ λ2

b2
(] − ϑ)2
���� ����∞.

(127)

Hence

db(T],Sϑ)≤ λ
b
db(], ϑ),

db(S],Tϑ)≤ λ
b
db(], ϑ),

(128)

for all comparable ], ϑ ∈ X such thatT]≠Sϑ. Also, it is an
obvious fact that the above inequality holds true ifT] � Sϑ.
-erefore, for α � (λ/b) and L � 0, Corollary 2 implies that
there is a unique common fixed point u∗ ∈ X of the op-
erators (T,S); that is, u∗ is also a solution to the integral
equation (117) and the FDEs (109). To see the uniqueness of
solution, let ω∗ ∈ X be another solution of integral equation
(117); then, using condition (II), we have

u∗(t) − ω∗(t) � 1
0
B(t, ζ)Z1 ζ, u∗(ζ)( dζ − 1

0
B(t, ζ)Z2 ζ,ω∗(ζ)( dζ

,
≤ 1

0
B(t, ζ) Z1 ζ, u∗(ζ)(  − Z2 ζ,ω∗(ζ)(  dζ,

≤ 1
b
1
0
B(t, ζ) u∗(ζ) − ω∗(ζ)

 dζ,
≤ λ

b
u∗(ζ) − ω∗(ζ)
 ,

(129)

that is, ‖u∗ − ω∗‖∞ ≤ (λ/b)‖u∗ − ω∗‖∞, a contradiction, as
λ ∈ (0, 1), b≥ 1.

6. Concluding Remark

We obtain some common fixed-point results for a pair of
mappings and also for a triplet of mappings in quasi-
b-metric spaces using the left- and right-completeness in the
absence of commutativity condition. We utilize these results
to obtain solutions of a pair of nonlinear matrix equations
and a pair of fractional differential equations.
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