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Abstract In this paper, we prove existence results for common fixed points of two

or three relatively asymptotically regular mappings satisfying the orbital continuity of

one of the involved maps under implicit relation on ordered orbitally complete metric

spaces. We furnish suitable examples to demonstrate the validity of the hypotheses

of our results. At the end of the results, an application to the study of existence and

uniqueness of solutions for a class of nonlinear integral equations is presented.
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1 Introduction

Fixed point theory has developed rapidly in metric spaces endowed with a partial

ordering. Most of the related results are a hybrid of two fundamental principles:

order iterative technique and various contractive conditions. Indeed, they deal with

a monotone (either order-preserving or order-reversing) mapping F satisfying, with

some restriction, a classical contractive condition, and are such that for some x0 ∈ X ,

either x0 � Fx0 or Fx0 � x0 holds. The first result in this direction was given by Ran

and Reurings [28] who presented its applications to matrix equations. Subsequently,
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184 H. K. Nashine

Nieto and Rodríguez-López [25] used the contractive condition

d(Fx,F y) ≤ kd(x, y) for y � x . (1.1)

where k ∈ [0, 1) and extended this result for nondecreasing mappings and applied it

to obtain a unique solution for a first order ordinary differential equation with periodic

boundary conditions. Later, in [27] O’Regan and Petruşel gave some existence results

for Fredholm and Volterra type integral equations. In some of the above works, the

fixed point results are given for non-decreasing mappings. In [3], Agarwal el al. used

the nonlinear contractive condition, that is,

d(Fx,F y) ≤ ψ(d(x, y)) for y � x, (1.2)

where ψ : [0,∞) → [0,∞) is a non-decreasing function with limn→∞ ψn(t) = 0

for t > 0, instead of (1.1). Also in [3], the authors proved a fixed point theorem using

generalized nonlinear contractive condition, that is,

d(Fx,F y) ≤ ψ
(

max
{

d(x, y), d(x,Fx), d(y,F y), 1
2
[d(x,F y) + d(y,Fx)]

})

(1.3)

for y � x , where ψ is as above.

Recently, Altun and Simsek [4] proved the fixed point results using implicit relations

for one map and two maps and generalized the results given in [3,25,27,28]. Also, an

application to an existence theorem for common solution of two integral equations is

given. The main results are the following:

Theorem 1 Let (X , d,�) be a partially ordered complete metric space. Suppose

F : X → X is a non-decreasing mapping such that for all comparable x, y ∈ X ,

T (d(Fx,F y), d(x, y), d(x,Fx), d(y,F y), d(x,F y), d(y,Fx)) ≤ 0,

where T : R
6
+ → R belongs to the set of functions T as given in [4]. Also suppose

that

F is continuous

or

{

if {xn} ⊂ X is a non-decreasing sequence with xn → x in X ,

then xn � x for all n

holds. If there exists an x0 ∈ X with x0 � F(x0) then F has a fixed point.

Theorem 2 Let (X , d,�) be a partially ordered complete metric space. Suppose

F ,G : X → X are two weakly increasing mappings such that for all comparable

x, y ∈ X ,

T (d(Fx,Gy), d(x, y), d(x,Fx), d(y,Gy), d(x,Gy), d(y,Fx)) ≤ 0
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Common fixed point theorems under implicit relations 185

where T :R6
+ →R belongs to the set of functions T′ as given in Definition 1 of Sect. 2.

Also suppose that

F is continuous or G is continuous

or

{

if {xn} ⊂ X is a non-decreasing sequence with xn → x in X ,

then xn � x for all n

holds. Then F and G have a common fixed point.

Thereafter, several authors worked in this direction and proved fixed point theorems

in ordered metric spaces. For more details see [1–8,10,11,14,18,21,23,24,27,29,31–

34] and the references cited therein.

The aim of this work is to generalize Theorem 1 and Theorem 2 (and, hence, some

other related common fixed point results) in two directions. The first is treated in

Sect. 3, where a pair of asymptotically regular mappings in an orbitally complete

ordered metric space is considered. The existence and (under additional assumptions)

uniqueness of their common fixed point is obtained under assumptions that these

mappings are strictly weakly isotone increasing, one is orbitally continuous and they

satisfy a implicit relation condition.

In Sect. 4 we consider the case of three self-mappings F ,G,R where the pair

F ,G is R-relatively asymptotically regular and relatively weakly increasing, with the

implicit relation.

We furnish suitable examples to demonstrate the validity of the hypotheses of our

results. We conclude the paper applying the obtained results to prove an existence

theorem for solutions of a system of integral equations.

2 Notation and definitions

First, we introduce some notation and definitions that will be used later.

2.1 Implicit relation and related concepts

In recent years, Popa [26] have used implicit functions rather than contraction condi-

tions to prove fixed point theorems in metric spaces whose strength lie in their unifying

power, as an implicit function can cover several contraction conditions at the same

time, which include known as well as some unknown contraction conditions. This fact

is evident from examples furnished in Popa [26].

In this section, in order to prove our results, we define a set of suitable implicit

functions involving six real non-negative arguments that was given in [4].

Definition 1 [4] Let R+ denote the set of non-negative real numbers and let T′ be the

set of all continuous functions T : R
6
+ → R satisfying the following conditions:
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186 H. K. Nashine

(T′
1): T (t1, . . . , t6) is non-increasing in variables t2, . . . , t6.

(T′
2): There exists a right continuous function f : R+ → R+, f (0) = 0, f (t) < t

for t > 0, such that for u, v ≥ 0,

T (u, v, u, v, 0, u + v) ≤ 0

or

T (u, v, v, u, u + v, 0) ≤ 0

or

T (u, v, 0, 0, v, v) ≤ 0

implies u ≤ f (v).

(T′
3): T (u, 0, u, 0, 0, u) > 0 and T (u, 0, 0, u, u, 0) > 0, ∀u > 0.

Example 1 T (t1, . . . , t6) = t1 − α max{t2, t3, t4} − (1 − α)[at5 + bt6], where 0 ≤
α < 1, 0 ≤ a < 1

2
, 0 ≤ b < 1

2
.

Example 2 T (t1, . . . , t6) = t1 − k max{t2, t3, t4,
1
2
(t5 + t6)}, where k ∈ (0, 1).

Example 3 T (t1, . . . , t6) = t1 − φ(max{t2, t3, t4,
1
2
(t5 + t6)}), where φ : R+ → R+

is right continuous and φ(0) = 0, φ(t) < t for t > 0.

Example 4 T (t1, . . . , t6) = t2
1 − t1(at2 +bt3 +ct4)−dt5t6, where a > 0, b, c, d ≥ 0,

a + b + c < 1 and a + d < 1.

2.2 Asymptotic regularity, orbitally completeness and related concepts

Browder and Petryshyn [12] introduced the concept of asymptotic regularity in Hilbert

spaces. It can be formulated for metric spaces as follows.

Definition 2 [13] A self-map F on a metric space (X , d) is said to be asymptotically

regular at a point x ∈ X if limn→∞ d(Fn x,Fn+1x) = 0.

Recall that the set O(x0;F) = {Fn x0 : n = 0, 1, 2, . . .} is called the orbit of the

self-map F at the point x0 ∈ X .

Definition 3 [13] A metric space (X , d) is said to be F-orbitally complete for some

x ∈ X if every Cauchy sequence contained in O(x;F) converges in X .

Here, it can be pointed out that every complete metric space is F-orbitally complete

for any F , but an F-orbitally complete metric space need not be complete.

Definition 4 [12] A self-map F defined on a metric space (X , d) is said to be orbitally

continuous at a point z in X if for some x ∈ X and for any sequence {xn} ⊂ O(x;F),

xn → z as n → ∞ implies Fxn → F z as n → ∞.

123



Common fixed point theorems under implicit relations 187

Clearly, every continuous self-mapping of a metric space is orbitally continuous,

but not conversely.

Sastry et al. [30] extended the above concepts to two and three mappings and

employed them to prove common fixed point results for commuting mappings. In

what follows, we collect such definitions for three maps.

Definition 5 Let G,F ,R be three self-mappings defined on a metric space (X , d).

(1) If for a point x0 ∈ X , there exits a sequence {xn} in X such that Rx2n+1 = Gx2n ,

Rx2n+2 = Fx2n+1, n = 0, 1, 2, . . ., then the set O(x0;G,F ,R) = {Rxn : n =
1, 2, . . .} is called the orbit of (G,F ,R) at x0.

(2) The space (X , d) is said to be (G,F ,R)-orbitally complete at x0 if every Cauchy

sequence in O(x0;G,F ,R) converges in X .

(3) The map R is said to be orbitally continuous at x0 if it is continuous on

O(x0;G,F ,R).

(4) The pair (G,F) is said to be asymptotically regular with respect to R at x0 if

there exists a sequence {xn} in X such that Rx2n+1 = Gx2n , Rx2n+2 = Fx2n+1,

n = 0, 1, 2, . . ., and d(Rxn,Rxn+1) → 0 as n → ∞.

(5) If R is the identity mapping on X , we omit “R” in respective definitions.

2.3 Partially ordered sets and related concepts

If (X ,�) is a partially ordered set then x, y ∈ X are called comparable if x � y or

y � x holds. A subset K of X is said to be well ordered if every two elements of K

are comparable. If F : X → X is such that, for x, y ∈ X , x � y implies Fx � F y,

then the mapping F is said to be non-decreasing.

Definition 6 Let (X ,�) be a partially ordered set and G,F : X → X .

(1) [1] The mapping F is called dominating if x � Fx for each x ∈ X .

(2) [15,16] The pair (G,F) is called weakly increasing ifGx � FGx and Fx � GFx

for all x ∈ X .

(3) [15,16,35] The mapping G is said to be F-weakly isotone increasing if for all

x ∈ X we have Gx � FGx � GFGx .

(4) [24] The mapping G is said to be F-strictly weakly isotone increasing if, for all

x ∈ X such that x ≺ Gx , we have Gx ≺ FGx ≺ GFGx .

(5) [23] Let R : X → X be such that FX ⊆ RX and GX ⊆ RX , and denote

R−1(x) := {u ∈ X : Ru = x}, for x ∈ X . We say that F and G are weakly

increasing with respect to R if and only if for all x ∈ X , we have:

Fx � Gy, ∀ y ∈ R−1(Fx)

and

Gx � F y, ∀ y ∈ R−1(Gx).

Example 5 [1] Let X = [0, 1] be endowed with the usual ordering. Let F : X → X

be defined by Fx = n
√

x , n ∈ N. Since x ≤ n
√

x = Fx for all x ∈ X , F is a

dominating map.
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Remark 1 (1) None of two weakly increasing mappings need be non-decreasing.

There exist some examples to illustrate this fact in [4].

(2) If G,F : X → X are weakly increasing, then G is F-weakly isotone increasing.

(3) G can be F-strictly weakly isotone increasing, while some of these two mappings

can be not strictly increasing (see the following example).

(4) If R is the identity mapping (Rx = x for all x ∈ X ), then F and G are weakly

increasing with respect to R if and only if they are weakly increasing mappings.

Example 6 Let X = [0,+∞) be endowed with the usual ordering and define G,F :
X → X as

Gx =
{

2x, if x ∈ [0, 1],
3x, if x > 1; Fx =

{

2, if x ∈ [0, 1],
2x, if x > 1.

Clearly, we have x ≺ Gx ≺ FGx ≺ GFGx for all x ∈ X , and so, G is F-strictly

weakly isotone increasing; F is not strictly increasing.

Definition 7 [19,20]. Let (X , d) be a metric space and f, g : X → X .

(1) If w = f x = gx , for some x ∈ X , then x is called a coincidence point of f

and g, and w is called a point of coincidence of f and g. If w = x , then x is a

common fixed point of f and g.

(2) The mappings f and g are said to be compatible if limn→∞ d( f gxn, g f xn) = 0,

whenever {xn} is a sequence in X such that limn→∞ f xn = limn→∞ gxn = t

for some t ∈ X .

Definition 8 Let X be a nonempty set. Then (X , d,�) is called an ordered metric

space if

(i) (X , d) is a metric space,

(ii) (X ,�) is a partially ordered set.

The space (X , d,�) is called regular if the following hypothesis holds: if {zn} is a

non-decreasing sequence in X with respect to � such that zn → z ∈ X as n → ∞,

then zn � z.

3 Common fixed point theorem for F -trictly weakly isotone increasing

mappings

In this section, we improve the results of Altun and Simsek [4] by considering the

following:

(1) a pair of asymptotically regular mappings;

(2) orbital continuity of one of the involved maps;

(3) strictly weakly isotone increasing condition;

(4) implicit condition, and

(5) an ordered orbitally complete metric space.

The first main result of this section is as follows:
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Common fixed point theorems under implicit relations 189

Theorem 3 Let (X , d,�) be an ordered metric space. Let G,F : X → X be two

mappings satisfying

T (d(Fx,Gy), d(x, y), d(x,Fx), d(y,Gy), d(x,Gy), d(y,Fx)) ≤ 0 (3.1)

for all x, y ∈ O(x0;G,F) such that x and y are comparable, where T ∈ T′.
We assume the following hypotheses:

(i) (F ,G) is asymptotically regular at some x0 ∈ X ;

(ii) X is (G,F)-orbitally complete at x0;

(iii) G is (G,F)-orbitally continuous at x0;

(iv) G is F-strictly weakly isotone increasing;

(v) x0 ≺ Gx0.

Then G and F have a common fixed point. Moreover, the set of common fixed points

of G,F in O(x0;G,F) is well ordered if and only if it is a singleton.

Proof First of all we show that, if F or G has a fixed point, then it is a common fixed

point of F and G. Indeed, let z be a fixed point of F . Assume that d(z,Gz) > 0. If we

use the inequality (3.1), for x = y = z, we have

T (d(z,Gz), 0, 0, d(z,Gz), d(z,Gz), 0) ≤ 0,

which is a contradiction to (T′
3). Thus d(z,Gz) = 0 and so z is a common fixed point

of F and G. Analogously, one can observe that if z is a fixed point of G, then it is also

a fixed point of F . Now let x0 be a point assumed in (i). If x0 = Fx0, the proof is

finished, so assume x0 �= Fx0.

Since (F ,G) is asymptotically regular at x0 in X , there exists a sequence {xn} in

X such that

x2n+1 = Gx2n and x2n+2 = Fx2n+1 for n ∈ {0, 1, . . .} (3.2)

and

lim
n→∞

d(xn, xn+1) = 0. (3.3)

If xn0 = Gxn0 or xn0 = Fxn0 for some n0, then the proof is finished. So assume

xn �= xn+1 for all n.

Since G is F-strictly weakly isotone increasing, we have

x1 = Gx0 ≺ FGx0 = Fx1 = x2 ≺ GFGx0 = GFx1 = Gx2 = x3,

x3 = Gx2 ≺ FGx2 = Fx3 = x4 ≺ GFGx2 = GFx3 = Gx4 = x5,

and continuing this process we get

x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · . (3.4)
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190 H. K. Nashine

Next, we claim that {xn} is a Cauchy sequence in the metric space O(x0;G,F). We

proceed by negation and suppose that {xn} is not a Cauchy sequence. That is, there

exists δ > 0 such that d(xn, xm) ≥ δ for infinitely many values of m and n with

m < n. This assures that there exist two sequences {m(k)}, {n(k)} of natural numbers,

with m(k) < n(k), such that for each k ∈ N

d(x2n(k), x2m(k)) ≥ δ for k ∈ {1, 2, . . .}. (3.5)

We may also assume

d(x2m(k)−2, x2n(k)) < δ (3.6)

by choosing 2m(k) to be smallest number exceeding 2n(k) for which (3.5) holds. Now

(3.5) and (3.6) imply

0 < δ ≤ d(x2n(k), x2m(k))

≤ d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k))

≤ δ + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k))

and so

lim
k→∞

d(x2n(k), x2m(k)) = δ. (3.7)

Also, by the triangular inequality,

∣

∣d(x2n(k), x2m(k)−1) − d(x2n(k), x2m(k))
∣

∣ ≤ d(x2m(k)−1, x2m(k))

and

∣

∣d(x2n(k)+1, x2m(k)−1)−d(x2n(k), x2m(k))
∣

∣ ≤ d(x2m(k)−1, x2m(k))+d(x2n(k), x2n(k)+1).

Therefore we get

lim
k→∞

d(x2n(k), x2m(k)−1) = δ (3.8)

and

lim
k→∞

d(x2n(k)+1, x2m(k)−1) = δ. (3.9)

Also we have

δ ≤ d(x2n(k), x2m(k))

≤ d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k)). (3.10)
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On the other hand, since x2n(k) and x2m(k)−1 are comparable we can use the condition

(3.1) for these points. Therefore we have

T (d(Fx2n(k),Gx2m(k)−1), d(x2n(k), x2m(k)−1), d(x2n(k),Fx2n(k)),

d(x2m(k)−1,Gx2m(k)−1), d(x2n(k),Gx2m(k)−1), d(x2m(k)−1,Fx2n(k))) ≤ 0

and so

T (d(x2n(k)+1, x2m(k)), d(x2n(k), x2m(k)−1), d(x2n(k), x2n(k)+1),

d(x2m(k)−1, x2m(k)), d(x2n(k), x2m(k)), d(x2m(k)−1, x2n(k)+1)) ≤ 0.

Now, considering (3.7), (3.8) and (3.9), letting k → ∞ in the last inequality we have,

by continuity of T , that

T

(

lim
k→∞

d(x2n(k)+1, x2m(k)

)

, δ, 0, 0, δ, δ) ≤ 0.

From (T′
2), we have limk→∞ d(x2n(k)+1, x2m(k)) ≤ f (δ), i.e., δ ≤ f (δ). This is a con-

tradiction since f (t) < t for t > 0. Thus {x2n} is a Cauchy sequence in O(x0;G,F).

Since X is (F ,G)-orbitally complete at x0, there exists a z ∈ X with limn→∞ xn = z.

If G is orbitally continuous, then clearly z = Gz = F z ⊓⊔

Theorem 4 Let (X , d,�) and G,F : X → X satisfy all the conditions of Theorem 3,

except that condition (iii) is substituted by

(iii’)X is regular.

Then the same conclusions as in Theorem 3 hold.

Proof Following the proof of Theorem 3, we have that {xn} is a Cauchy sequence in

(X , d) which is (G,F)-orbitally complete at x0. Then, there exists z ∈ X such that

lim
n→∞

xn = z.

Now suppose that d(z,F z) > 0. From regularity of X , we have x2n−1 � z for all

n ∈ N. Hence, we can apply the considered contractive condition. Then, setting x = z

and y = x2n−1 in (3.1), we obtain:

T (d(F z,Gx2n−1), d(z, x2n−1), d(z,F z), d(x2n−1,Gx2n−1),

d(x,Gx2n−1), d(x2n−1,Fx)) ≤ 0.

so letting n → ∞ in the last inequality, we have

T (d(F z, z), 0, d(z,F z), 0, 0, d(z,F z)) ≤ 0

which is a contradiction to (T′
3). Thus d(z,F z) = 0 and so z = F z = Gz. Hence, z

is a common fixed point of F and G. ⊓⊔
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If we take G = identity mapping in Theorem 3, then we have the following conse-

quence:

Corollary 1 Let (X , d,�) be an ordered metric space. Let F : X → X be a mapping

satisfying

T (d(Fx,F y), d(x, y), d(x,Fx), d(y,F y), d(x,F y), d(y,Fx)) ≤ 0 (3.11)

for all x, y ∈ O(x0;F) such that x and y are comparable, where T ∈ T′.
We assume the following hypotheses:

(i) F is asymptotically regular at some point x0 ∈ X ;

(ii) X is F-orbitally complete at x0;

(iii) F is orbitally continuous at x0 or X is regular.

Also suppose that Fx ≺ F(Fx) for all x ∈ X such that x ≺ Fx, and that x0 ≺ Fx0.

Then F has a fixed point. Moreover, the set of fixed points of F in O(x0;F) is well

ordered if and only if it is a singleton.

If we combine Theorem 3 with some examples of T , we obtain the following result.

Corollary 2 Let (X , d,�) and G,F : X → X satisfy all the conditions of Theorem 3

(or Theorem 4), except that condition (3.1) is substituted by

d(Fx,Gy) ≤ φ(d(x, y))

for all x, y ∈ O(x0;F) such that x and y are comparable, where φ : R+ → R+ is a

right continuous function such that φ(0) = 0, φ(t) < t for t > 0.

Then the same conclusions as in Theorem 3 (or Theorem 4) hold.

Proof If T (t1, . . . t6) = t1 −φ(t2), then it is obvious that T ∈ T′. Therefore the proof

follows from Theorem 3 (or Theorem 4). ⊓⊔

Corollary 3 Let (X , d,�) and G,F : X → X satisfy all the conditions of Theorem 3

(or Theorem 4), except that condition (3.1) is substituted by

d(Fx,Gy) ≤ φ

(

max

{

d(x, y), d(x,Fx), d(y,Gy),
1

2
(d(x,Gy) + d(y,Fx))

})

(3.12)

for all x, y ∈ O(x0;F) such that x and y are comparable, where φ : R+ → R+ is a

right continuous function such that φ(0) = 0, φ(t) < t for t > 0.

Then the same conclusions as in Theorem 3 (or Theorem 4) hold.

Proof If T (t1, . . . t6) = t1 − φ(max{t2, t3, t4,
1
2
(t5 + t6)}), then it is obvious that

T ∈ T′. Therefore the proof follows from Theorem 3 (or Theorem 4). ⊓⊔

We illustrate Corollary 3 by an example which is obtained by modifying the one

from [17].
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Example 7 Let the set X = [0,+∞) be equipped with the usual metric d and the

order defined by

x � y ⇐⇒ x ≥ y.

Consider the following self-mappings on X :

Fx =
{

1
2

x, 0 ≤ x ≤ 1
2
,

2x, x > 1
2
,

Gx =
{

1
3

x, 0 ≤ x ≤ 1
3
,

3x, x > 1
3
.

Take x0 = 1
3

. Then it is easy to show that

O(x0;G,F) ⊂
{

1
2k ·3l : k, l ∈ N

}

and all the conditions (i)–(v) of Corollary 3 are fulfilled (condition (iv) on

O(x0;G,F)). Take φ(t) = 5
6

t for t > 0. Then the contractive condition (3.12) takes

the form

∣

∣

∣

∣

1

2
x −

1

3
y

∣

∣

∣

∣

≤
5

6
max

{

|x − y|,
1

2
x,

2

3
y,

1

2

[∣

∣

∣

∣

x −
1

3
y

∣

∣

∣

∣

+
∣

∣

∣

∣

y −
1

2
x

∣

∣

∣

∣

]}

,

for x, y ∈ O(x0;G,F). Using substitution y = t x , t > 0, the last inequality reduces

to

|3 − 2t | ≤ 5 max
{

|1 − t |, 1
2
, 2

3
t, 1

2

[

|1 − 1
3

t | + |t − 1
2
|
]}

,

and can be checked by discussion on possible values for t > 0. Hence, all the conditions

of Corollary 3 are satisfied and G,F have a common fixed point (which is 0). Note

that G and F do not satisfy the contractive condition for arbitrary x, y ∈ X .

4 Common fixed points for relatively weakly increasing mappings

In this section, we improve and generalize the results of Altun and Simsek [4] by

taking into account the following for three maps R,G,F :

(1) (G,F) is a pair of asymptotically regular mappings with respect to R;

(1) orbital continuity of one of the involved maps;

(2) (G,F) is a pair of weakly increasing mappings with respect to R;

(3) (G,F) is a pair of dominating maps;

(4) (G,F) is a pair of compatible maps, and

(5) the basic space is an ordered orbitally complete metric space.

The first result of this section is the following.
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Theorem 5 Let (X , d,�) be a regular ordered metric space and let F , G and R be

self-maps on X satisfying

T (d(Fx,Gy), d(Rx,Ry), d(Rx,Fx), d(Ry,Gy), d(Rx,Gy), d(Ry,Fx)) ≤ 0

(4.1)

for all x, y ∈ O(x0;G,F ,R) such that Rx and Ry are comparable, where T ∈ T′.
We assume the following hypotheses:

(i) (G,F) is asymptotically regular with respect to R at some x0 ∈ X ;

(ii) X is (G,F ,R)-orbitally complete at x0;

(iii) F and G are weakly increasing with respect to R;

(iv) F and G are dominating maps;

(v) R is monotone and orbitally continuous at x0.

Assume either

(a) G and R are compatible; or

(b) F and R are compatible.

Then G,F and R have a common fixed point. Moreover, the set of common fixed points

of G,F and R in O(x0;G,F ,R) is well ordered if and only if it is a singleton.

Proof Since (G,F) is asymptotically regular with respect to R at x0 in X , there exists

a sequence {xn} in X such that

Rx2n+1 = Gx2n, Rx2n+2 = Fx2n+1, ∀ n ∈ N0 = {0, 1, 2, . . .}, (4.2)

and

lim
n→∞

d(Rxn,Rxn+1) = 0 (4.3)

holds. We claim that

Rxn � Rxn+1, ∀ n ∈ N0. (4.4)

To this aim, we will use the increasing property with respect to R satisfied by the

mappings F and G. From (4.2), we have

Rx1 = Gx0 � F y, ∀ y ∈ R−1(Gx0).

Since Rx1 = Gx0, then x1 ∈ R−1(Gx0), and we get

Rx1 = Gx0 � Fx1 = Rx2.

Again,

Rx2 = Fx1 � Gy, ∀ y ∈ R−1(Fx1).

123



Common fixed point theorems under implicit relations 195

Since x2 ∈ R−1(Fx1), we get

Rx2 = Fx1 � Gx2 = Rx3.

Hence, by induction, (4.4) holds. Therefore, we can apply (4.1) for x = x p and y = xq

for all p and q.

Now, we assert that {Rxn} is a Cauchy sequence in the metric space O(x0;G,F ,R).

We proceed by negation and suppose that {Rx2n} is not Cauchy. Then, there exists

δ > 0 for which we can find two sequences of positive integers {m(k)} and {n(k)}
such that for all positive integers k,

d(Rx2n(k),Rx2m(k)) ≥ δ for k ∈ {1, 2, . . .}. (4.5)

We may also assume

d(Rx2m(k)−2,Rx2n(k)) < δ (4.6)

by choosing 2m(k) to be the smallest number exceeding 2n(k) for which (4.5) holds.

Now (4.5) and (4.6) imply

0 < δ ≤ d(Rx2n(k),Rx2m(k))

≤ d(Rx2n(k),Rx2m(k)−2) + d(Rx2m(k)−2,Rx2m(k)−1) + d(Rx2m(k)−1,Rx2m(k))

≤ δ + d(Rx2m(k)−2,Rx2m(k)−1) + d(Rx2m(k)−1,Rx2m(k))

and so

lim
k→∞

d(Rx2n(k),Rx2m(k)) = δ. (4.7)

Also, by the triangular inequality,

∣

∣d(Rx2n(k),Rx2m(k)−1) − d(Rx2n(k),Rx2m(k))
∣

∣ ≤ d(Rx2m(k)−1,Rx2m(k))

and

∣

∣d(Rx2n(k)+1,Rx2m(k)−1) − d(Rx2n(k),Rx2m(k))
∣

∣ ≤ d(Rx2m(k)−1,Rx2m(k))

+d(Rx2n(k),Rx2n(k)+1).

Therefore we get

lim
k→∞

d(Rx2n(k),Rx2m(k)−1) = δ (4.8)

and

lim
k→∞

d(Rx2n(k)+1,Rx2m(k)−1) = δ. (4.9)
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Also we have

δ ≤ d(Rx2n(k),Rx2m(k))

≤ d(Rx2n(k),Rx2n(k)+1) + d(Rx2n(k)+1,Rx2m(k)). (4.10)

On the other hand, since Rx2n(k) and Rx2m(k)−1 are comparable we can use the

condition (4.1) for these points. Therefore we have

T (d(Fx2n(k),Gx2m(k)−1), d(Rx2n(k),Rx2m(k)−1), d(Rx2n(k),Fx2n(k)),

d(Rx2m(k)−1,Gx2m(k)−1), d(Rx2n(k),Gx2m(k)−1), d(Rx2m(k)−1,Fx2n(k))) ≤ 0

and so

T (d(Rx2n(k)+1,Rx2m(k)), d(Rx2n(k),Rx2m(k)−1), d(Rx2n(k),Rx2n(k)+1),

d(Rx2m(k)−1,Rx2m(k)), d(Rx2n(k),Rx2m(k)), d(Rx2m(k)−1,Rx2n(k)+1)) ≤ 0.

Now, considering (4.7), (4.8) and (4.9), letting k → ∞ in the last inequality we have,

by continuity of T , that

T

(

lim
k→∞

d(Rx2n(k)+1,Rx2m(k)

)

, δ, 0, 0, δ, δ) ≤ 0.

From (T′
2), we have limk→∞ d(Rx2n(k)+1,Rx2m(k)) ≤ f (δ), i.e., δ ≤ f (δ). This is

a contradiction since f (t) < t for t > 0.

Hence, we deduce that {Rxn} is a Cauchy sequence in O(x0;G,F ,R). Since X is

(G,F ,R)-orbitally complete at x0, there exists some z ∈ X such that

Rxn → z as n → ∞. (4.11)

We will prove that z is a common fixed point of the three mappings G,F and R.

Suppose, to the contrary, that d(z,Rz) > 0. We have

Gx2n = Rx2n+1 → z as n → ∞ (4.12)

and

Fx2n+1 = Rx2n+2 → z as n → ∞. (4.13)

Suppose that (a) holds, i.e., G and R are compatible. Then, using condition (v),

lim
n→∞

GRx2n+2 = lim
n→∞

RGx2n+2 = Rz. (4.14)

From (4.11) and the orbital continuity of R, we have also

R(Rxn) → Rz as n → ∞. (4.15)
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Now, using (iv), x2n+1 � Fx2n+1 = Rx2n+2 and since R is monotone, Rx2n+1 and

RRx2n+2 are comparable. Thus, we can apply (4.1) to obtain

T (d(Fx2n+1,GRx2n+2), d(Rx2n+1,RRx2n+2), d(Rx2n+1,Fx2n+1),

d(RRx2n+2,GRx2n+2), d(Rx2n+1,GRx2n+2), d(RRx2n+2,Fx2n+1)) ≤ 0 (4.16)

Passing to the limit as n → ∞ in (4.16), using (4.11)–(4.15), we obtain

T (d(z,Rz), d(z,Rz), 0, 0, d(z,Rz), d(Rz, z) ≤ 0

which is a contradiction to (T′
2). Thus d(z,Rz) = 0 and

Rz = z. (4.17)

Now, x2n+1 � Fx2n+1 and Fx2n+1 → z as n → ∞, so by the assumption we have

x2n+1 � z and Rx2n+1 and Rz are comparable. Hence (4.1) gives

T (d(Fx2n+1,Gz), d(Rx2n+1,Rz), d(Rx2n+1,Fx2n+1), d(Rz,Gz),

d(Rx2n+1,Gz), d(Rz,Fx2n+1)) ≤ 0.

Passing to the limit as n → ∞ in the above inequality and using (4.17), it follows that

T (d(z,Gz), 0, 0, d(z,Gz), d(z,Gz), 0) ≤ 0.

which is a contradiction to (T′
3). Thus

Gz = z. (4.18)

Similarly, x2n � Gx2n and Gx2n → z as n → ∞, implies that x2n � z, hence Rx2n

and Rz are comparable. From (4.1) we get

T (d(F z,Gx2n), d(Rz,Rx2n), d(Rz,F z), d(Rx2n,Gx2n),

d(Rz,Gx2n), d(Rx2n,F z)) ≤ 0

Passing to the limit as n → ∞, we have

T (d(F z, z), 0, d(z,F z), 0, 0, d(z,F z)) ≤ 0

which is a contradiction to (T′
3). Thus

z = F z. (4.19)

Therefore, Gz = F z = Rz = z, hence z is a common fixed point of R,F and G.

Similarly, the result follows when condition (b) holds.
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Now, suppose that the set of common fixed points of G,F and R in O(x0;G,F ,R)

is well ordered. We claim that there is a unique common fixed point of G,F and R in

O(x0;G,F ,R). Assume to the contrary that Gu = Fu = Ru = u and Gv = Fv =
Rv = v but u �= v. By supposition, we can replace x by u and y by v in (4.1) to obtain

T (d(Fu,Gv), d(Ru,Rv), d(Ru,Fu), d(Rv,Gv), d(Ru,Gv), d(Rv,Fu)) ≤ 0

or

T (d(u, v), d(u, v), 0, 0, d(u, v), d(v, u)) ≤ 0

which is a contradiction to (T′
2). Hence, u = v. The converse is trivial. ⊓⊔

We obtain the following corollaries of Theorem 5 which improve Theorem 4.5 [4]

by considering orbital continuity of maps and orbitally complete space instead of

continuity of maps on complete space.

Corollary 4 Let (X , d,�) be a regular ordered metric space and let F and G be

self-maps on X satisfying

T (d(Fx,Gy), d(x, y), d(x,Fx), d(y,Gy), d(x,Gy), d(y,Fx)) ≤ 0 (4.20)

for all x, y ∈ O(x0;G,F) such that x and y are comparable, where T ∈ T′.
We assume the following hypotheses:

(i) (G,F) is asymptotically regular at some point x0 ∈ X ;

(ii) X is (G,F)-orbitally complete at x0;

(iii) F and G are weakly increasing;

(iv) F and G are dominating maps.

Then F and G have a common fixed point. Moreover, the set of common fixed points

of F and G in O(x0;G,F) is well ordered if and only if it is a singleton.

Corollary 5 Let (X , d,�) be a regular ordered metric space and let F and R be

self-maps on X satisfying

T (d(Fx,F y), d(Rx,Ry), d(Rx,Fx), d(Ry,F y), d(Rx,F y), d(Ry,Fx)) ≤ 0

for all x, y ∈ O(x0; T , T ,R) such that Rx and Ry are comparable, where T ∈ T′.
We assume the following hypotheses:

(i) F is asymptotically regular with respect to R at some point x0 ∈ X ;

(ii) X is (F ,R)-orbitally complete at x0;

(iii) F is weakly increasing with respect to R;

(iv) F is a dominating map;

(v) R is monotone and orbitally continuous at x0.

Then F and R have a common fixed point. Moreover, the set of common fixed points

of F and R in O(x0;F ,F ,R) is well ordered if and only if it is a singleton.
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Corollary 6 Let (X , d,�) be a regular ordered metric space and let F be a self-map

on X satisfying for all x, y ∈ O(x0;F) such that x and y are comparable,

T (d(Fx,F y), d(x, y), d(x,Fx), d(y,F y), d(x,F y), d(y,Fx)) ≤ 0

where T ∈ T′.
We assume the following hypotheses:

(i) F is asymptotically regular at some point x0 of X ;

(ii) X is F-orbitally complete at x0;

(iii) Fx � F(Fx) for all x ∈ X ;

(iv) F is a dominating map.

Then F has a fixed point. Moreover, the set of fixed points of F in O(x0;F) is well

ordered if and only if it is a singleton.

We illustrate Theorem 5 by an example which is obtained by modifying the one

from [17].

Example 8 Let the set X = [0,+∞) be equipped with the usual metric d and the

order defined by

x � y ⇐⇒ x ≥ y.

Consider the following self-mappings on X :

Rx = 6x, Fx =
{

1
2

x, 0 ≤ x ≤ 1
2
,

x, x > 1
2
,

Gx =
{

1
3

x, 0 ≤ x ≤ 1
3
,

x, x > 1
3
.

Take x0 = 1
2

. Then it is easy to show that

O(x0;G,F ,R)⊂
{

1

2k · 3l
: k, l ∈N

}

and O(x0;G,F ,R)= O(x0;G,F ,R)∪{0}

and all the conditions (i)–(v) and (a)-(b) of Theorem 5 are fulfilled (condition (iii) on

O(x0;G,F ,R)). Take φ(t) = 1
6

t for t > 0. Then contractive condition (4.1) takes

the form

∣

∣

∣

∣

1

2
x −

1

3
y

∣

∣

∣

∣

≤
1

6
max

{

|6x − 6y|,
11

2
x,

17

3
y,

1

2

[∣

∣

∣

∣

6x −
1

3
y

∣

∣

∣

∣

+
∣

∣

∣

∣

6y −
1

2
x

∣

∣

∣

∣

]}

,

for x, y ∈ O(x0;G,F ,R). Using substitution y = t x , t ≥ 0, the last inequality

reduces to

|3 − 2t | ≤ max{6|1 − t |, 11
2

, 17
3

t, 1
2
[|6 − 1

3
t | + |6t − 1

2
|]},

and can be checked by discussion on possible values for t ≥ 0. If we suppose

T (t1, . . . , t6) = t1 − φ(max{t2, t3, t4,
1
2
(t5 + t6)}), where φ : R+ → R+ right con-

tinuous and φ(0) = 0, φ(t) < t for t > 0, then all the conditions of Theorem 5 are
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satisfied and G,F ,R have a unique common fixed point in O(x0;G,F ,R) (which

is 0).

5 An application to integral equations

In this section, we apply the result given by Corollary 4 to study the existence and

uniqueness of solutions to a class of nonlinear integral equations.

We consider the nonlinear integral equations

x(t) =
b

∫

a

K1(t, s, x(s)) ds + g(t), t ∈ [a, b], (5.1)

and

x(t) =
b

∫

a

K2(t, s, x(s)) ds + g(t), t ∈ [a, b]. (5.2)

The purpose of this section is to give an existence theorem for common solution of

(5.1) and (5.2) using Corollary 4.

Let ≪ be a partial order relation on R. Let X := C([a, b], R) with the usual max-

imum norm, i.e., ‖ x‖ = maxt∈[a,b] |x(t)|, for x ∈ X . Consider on X the partial order

defined by

x � y if and only if x(t) ≪ y(t) for every t ∈ [a, b].

Then (X ,�) is a partially ordered set. Also (X , ‖·‖) is a complete metric space.

Moreover for every increasing sequence {xn} in X converging to x∗ ∈ X , we have

xn(t) ≪ x∗(t) for every t ∈ [a, b]. Also for every x, y ∈ X there exists c(x, y) ∈ X

which is comparable with x and y [25].

Define F ,G : X → X , by

Fx(t) =
b

∫

a

K1(t, s, x(s)) ds + g(t), x ∈ X , t ∈ [a, b],

and

Gx(t) =
b

∫

a

K2(t, s, x(s)) ds + g(t), x ∈ X , t ∈ [a, b].

Theorem 6 Consider the integral equations (5.1) and (5.2). Assume

(i) K1, K2 : [a, b] × [a, b] × R → R and g : R → R are continuous,

(ii) for each t, s ∈ [a, b],
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K1(t, s, x(s)) ≪ K2

⎛

⎝t, s,

b
∫

a

K1(s, τ, x(τ )) dτ + g(s)

⎞

⎠

and

K2(t, s, x(s)) ≪ K1

⎛

⎝t, s,

b
∫

a

K2(s, τ, x(τ )) dτ + g(s)

⎞

⎠ ,

(iii) there exist a continuous function p : [a, b]×[a, b] → R+ and a right continuous

and non-decreasing function φ : R+ → R+ such that φ(0) = 0 and φ(t) < t

for t > 0, such that

|K1(t, s, x(s)) − K2(t, s, y(s))|
≤ p(t, s)φ

(

max
{

|x(s) − y(s)|, |x(s) − Fx(s)|, |y(s) − Gy(s)|,
1
2
(|x(s) − Gy(s)| + |y(s) − Fx(s)|)

})

for each t, s ∈ [a, b] and comparable x, y ∈ X ,

(iv) supt∈[a,b]
∫ b

a
p(t, s) ds ≤ 1.

Then the integral equations (5.1) and (5.2) have a unique common solution x∗ in

C([a, b], R).

Proof From (ii), we have, for all t ∈ [a, b],

Fx(t) =
b

∫

a

K1(t, s, x(s)) ds + g(t)

≪
b

∫

a

K2(t, s,

b
∫

a

K1(s, τ, x(τ )) dτ + g(s)) ds + g(t)

=
b

∫

a

K2(t, s,Fx(s)) ds + g(t)

= GFx(t)

and
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Gx(t) =
b

∫

a

K2(t, s, x(s)) ds + g(t)

≪
b

∫

a

K1(t, s,

b
∫

a

K2(s, τ, x(τ )) dτ + g(s)) ds + g(t)

=
b

∫

a

K1(t, s,Gx(s)) ds + g(t)

= FGx(t).

Thus, we have Fx � GFx and Gx � FGx for all x ∈ X . This shows that F and G

are weakly increasing. Also for each comparable x, y ∈ X , we have

|Fx(t) − Gy(t)|

=

∣

∣

∣

∣

∣

∣

b
∫

a

K1(t, s, x(s)) ds −
b

∫

a

K2(t, s, y(s)) ds

∣

∣

∣

∣

∣

∣

≤
b

∫

a

|K1(t, s, x(s)) − K2(t, s, y(s))| ds

≤
b

∫

a

p(t, s)φ(max{|x(s) − y(s)|, |x(s) − Fx(s)|, |y(s) − F y(s)|,

1
2
(|x(s) − F y(s)| + |y(s) − Fx(s)|)}) ds

≤ φ
(

max
{

‖x−y‖, ‖x−Fx‖, ‖y−F y‖, 1
2
(‖x−F y‖+‖y−Fx‖)

})

×
b

∫

a

p(t, s) ds

≤ φ
(

max
{

‖x−y‖, ‖x−Fx‖, ‖y−F y‖, 1
2
(‖x−F y‖+‖y−Fx‖)

})

,

for every t ∈ [a, b]. Hence

‖Fx − Gy‖ ≤ φ
(

max
{

‖x−y‖, ‖x−Fx‖, ‖y−F y‖, 1
2
(‖x−F y‖+‖y−Fx‖)

})

for each comparable x, y ∈ X .

If we suppose T (t1, . . . , t6) = t1 −φ(max{t2, t3, t4,
1
2
(t5 + t6)}), where φ : R+ →

R+ is right continuous and φ(0) = 0, φ(t) < t for t > 0, then we get (4.20). Therefore

all conditions of Corollary 4 are satisfied. This completes the proof of the theorem. ⊓⊔
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