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Abstract
In this paper, a study has been conducted to compare the performance of different
heuristic optimization algorithms such as Distributed Swarm Optimized Clustering
(DSOC), Distributed Firefly Optimized Clustering (DFOC) and Distributed Jumper
Firefly Optimized Clustering (DJFOC) techniques used for the dynamic clustering. In
DSOC, every group of clustering nodes moves towards its best swarm particle having the
best neighbor location with random velocity to form an organized cluster. DFOC and
DJFOC are nonlinear optimization tools based on the random attractiveness of firefly
intensity behaviour with the least computation time. DJFOC is used to collect the whole
situation in the current records and support to change the new appropriate situation by
the status table. The DJFOC aims to save transmit power with shortest distances and less
control overhead when Secondary Users (SUs) or Primary Users (PUs) changes its po-
sition. The convergence rate of DJFOC is better than the DSOC and DFOC. The results
show that the proposed DJFOC has a better efficiency of 10.137% when compared to the
DSOC and 2.801% with DFOC in SUs average node power. For small Signal-to-Noise
Ratio (SNR) < 2 dB, probability of detection is high. In primary detection, the pro-
posed DJFOC is yielding a low false alarm rate compared to DSOC and DFOC.

1 | INTRODUCTION

A wireless mesh network is offered with a high-speed internet
connection. However, with the increased network density, the
network needs more capability to meet the applications [1].

As the sensible Cognitive Radio (CR) technology gets
into larger radio frequencies, the NeXt Generation (xG)
network with mesh networks situated in dense urban areas
becomes significantly potential [2]. The xG network can ac-
cess the existing spectrum by keeping priority communication
and response time without requiring the infrastructure [3].
The CR network protects to secure communication in the
hostile environment and adapts the spectrum handoff to

perform a secured spectral band, where reliable communi-
cation is guaranteed with minimal delays [4]. The process of
dynamically accessing the unused spectral bands (spectrum
holes/white spaces) is known as Dynamic Spectrum Access
(DSA) [5]. Better spectrum communication of the xG
network is maintained without spectrum space, by allowing
CR to operate any one of the best available spectrum bands
[6]. The CR network gets spectral efficiency when coopera-
tive features incorporated with spectrum sensing and spec-
trum sharing with each other. The primary network can
support a cooperative leased communication network with a
third party to access the licensed radio spectrum without any
interferences [7–10].R
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There are various clustering techniques already studied in
other works such as Groupwise Constrained Agglomerative
Clustering, k-neighborhood clustering, k-means clustering and
Distributed Spectrum Aware Clustering (DSAC) [11, 12]. Fine-
tuning of clustering is made by particle swarm optimization
(PSO), Firefly Algorithm (FA) and jumper firefly algorithm
(JFA). In [13], the authors discussed the best energy-efficient
protocol on low Energy Adaptive Clustering Hierarchy
(LEACH) to diminish energy consumption and it can develop
the lifetime of Wireless Sensor Networks (WSN). Clustering
procedures can be used to communicate with the cluster head
and base station. In the event that the sink station is away from
the Cluster Head (CH), energy consumption will be raised and
it can diminish the lifetime of WSN. To overcome these, the
PSO strategy is realized with this protocol to achieve the most
astounding lifetime of WSN. PSO is used to augment the
adaptable and energy efficiency. It is definitely not difficult to
complete and the change estimation rate is to a great degree
rapidly. PSO technique is used to improve the lifetime per-
formance of the network. By using optimization technique, we
first create clusters and cluster head selection based on energy.
After this whole process data transfer begins for this node on
the shortest path. Authors in [14] showed that the clustering
using the firefly technique can be categorized into two types:
hierarchical and partitioned clustering. It has two methods: (i)
the agglomerative method consists of two or smaller clusters
merged into a large cluster (ii) the divisive method divides a
larger cluster into two or smaller clusters. The partitional
clustering tries to divide a set of disjoint clusters from the data
set without forming a hierarchical structure. The prototype-
based partitional clustering creates cluster centers and
further, it is used to classify the data set.

In [15], the authors discussed JFA at the base station
instead of FA. Among the population in every living creature,
there is diversity in quality and fitness. In general low quality,
members are not able to reach high-quality achievements. Each
population quality is estimated with respective members and
qualifies the probability situation to obtain the eligibility. In
order to avoid that problem, the author developed JFA to
improve appropriate solutions by making the changes to
eligible situations and find the optimal solution by the status
table. From the status table, it is observed that all the current
situation records help to change the new suitable situation by
the jumping process. This process executes search agents
(fireflies) to jump the option to make the decision process. In
the status table, each and every firefly location is situated in a
particular search space at the ith stage, and fitness maintains
solution quality at the ith stage by the fireflies. Every firefly's
worst solution is attained by each firefly at searching phases.
After the search process, the cost of each firefly qualification is
investigated from the status table. The above various optimized
clustering problem is solved in the present work.

In this paper, a new optimization algorithm has been pro-
posed that will increase the lifetime of cognitive radio sensor
networks by forming energy-efficient clusters. This work mainly
focuses on cooperative sensing among all secondary users. The
objective of the paper is to acquire accurate sensing information

with shortening sensing time, maximize the system reliability,
reduce the number of false alarms, and increase the detection
rate. The study presented in this paper analyzes Distributed
Swarm Optimized Clustering, distributed firefly optimized
clustering, and distributed jumper firefly optimized clustering.
The first method of Distributed Swarm Optimized Clustering
(DSOC) proposed every group of clustering nodes moves
randomly towards its best swarm particle having the least
neighborhood distance [9]. Each particle's best position and
velocity are evaluated according to the objective function until an
optimum global best position is reached. The convergence rate
ofDSOC is similar to the genetic algorithm (GA).DSOChas the
drawback of slow convergence in refined search space and weak
local searchability. The second proposed method of Distributed
Firefly Optimized Clustering (DFOC) has been studied. The
DFOC is best known for the grouping of nodes [10]. All the
cognitive nodes move towards the brighter firefly with random
velocity to form an organized cluster with the least computation
time. In DFOC, fireflies at critical positions disappear while
doing the clustering without using a status table and it cannot
memorize any history of the past positions. To overcome this
problem, a third proposed method Distributed Jumper Firefly
Optimized Clustering (DJFOC) technique is presented. DFOC
and DJFOC are nonlinear optimization tools based on the
random attractiveness of firefly intensity behavior. DJFOC is
used to collect the whole situation in the current records and
support to change the new appropriate situation by the status
table. This work shows how to employ a Firefly algorithm to
implement Dynamic Spectrum Access (DSA) using energy-
efficient cooperative distributive algorithms. The DJFOC is
efficiently improving the dynamic spectrum access for both
Primary Users (PUs) and Secondary Users (SUs) than DFOC.
The convergence rate of DJFOC is better than the DSOC and
DFOC. The DJFOC is having an optimal number of cluster
communication and a high probability of detection. The pro-
posed DJFOC compared its performance with DSOC and
DFOC. The performance analysis of different optimization al-
gorithm for clustering in terms of convergence time, average
node power for different cluster numbers, PUs node power, SUs
node power, probability of false alarm, probability of detection
and probability of missed detection.

2 | PROPOSED CLUSTERING MODEL
FOR DYNAMIC CHANNEL ALLOCATION
IN COGNITIVE RADIO NETWORKS

The DSOC technique enables energy-efficient optimal clus-
tering based on the number of cognitive nodes maintaining a
fixed value of inertia weight W, cognitive factor C1 and social
factor C2 can’t be changed within a particular time. A small
inertia weight (W) enables a local search. Whereas a large
inertia weight enables a global search. DSOC provides a simple
linear mechanism and the best of master particles use the
objective function until an optimum global best position is
reached [16–20]. The most important drawback of normal
PSO is the fact that it has no proper communication betweenR
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particles for merging. The study considers the size of 5 best
swarm particles at different position namely X1, X2, X3, X4
and X5 to form an organized cluster by following two-
dimensional search space. There are 100 normal particles
which can be moved towards their best swarm particle having
the best neighbor location with random velocity to form an
organized cluster in the least computation time. An individual
particle moves to its nearest best master particle. The move-
ment of a particle is in small/large distance depends on the
best particles. Initially evaluate the best fitness function of each
particle group which is directly proportional to best of master
particles such as Pbest1, Pbest2, Pbest3, Pbest4 and Pbest5.
Now, it compares the best neighbor location of all the master
particles. For example, if (Pbest3 < Pbest2) then master par-
ticle 3 group will merge with master particle 2 after commu-
nicating with master particle 2. Similarly, the iteration is carried
over to select the global best (Gbest) among the master par-
ticles. The global best master particle has been selected and is
sent to the data to the sink. Then it updates the position and
velocity of master particles from the distance of each particle
with other particles for every iteration [21–25].

Similarly, the DFOC technique enables energy-efficient
optimal clustering based on the number of cognitive nodes,
with attractiveness factor β, and absorption coefficient γ. All the
design parameters maintain a fixed value and can't be changed
within a particular time. DFOC provides a highly nonlinear
attraction mechanism and light intensity of master fireflies using
the objective function. In the search space, the whole fireflies are
automatically subdivided into sub-swarms of fireflies and it
considers a size of 5 master fireflies at different position namely
X1,X2,X3,X4 andX5 to form an organized cluster by following
two-dimensional search space. There are 100 normal fireflies
that can be moved towards their brighter firefly having the
highest attractivenesswith randomvelocity to form an organized
cluster in the least computation time. Individual firefly moves to
their nearest brighter master firefly. The movement of a firefly
is small/large distance depends on the brightness of the firefly
[26–31]. Initially, we evaluate the best fitness function of each
firefly group which is directly proportional to the light intensity
of master fireflies such as I1, I2, I3, I4 and I5. Then, we compare
the intensity of all the master fireflies. For example, if (I2 < I1)
then master firefly 2 group will merge with master firefly 1 after
communicating with master firefly 1. Like that the iteration is
carried out to select global best (Gbest) among the master fire-
flies. Further, it updates the position and light intensity of master
fireflies from the distance, the attractiveness of each firefly with
other fireflies for every iteration. Similarly, the most important
drawbackof normal FA is that there is no proper communication
between fireflies for merging. The main advantage of the DFOC
algorithm it provides at the end of each iteration, is that the
clustering/cluster of every firefly knows the position and clus-
tering of all other fireflies. DSOC has slow convergence in
refined search space, less flexibility, and weak local search ability
than DFOC. The main drawback of DSOC and DFOC is that it
can't memorize any history action.

To overcome this problem,we devise ourDJFOC technique;
see Figure 1. In the analysis, it consists of a size 5 master fireflies

at different positions namely X1, X2, X3, X4, and X5 to form an
organized cluster by following status table records in the two-
dimensional search space. 100 normal fireflies can be moved
towards their brighter firefly with the least computation time.
Themovement of a firefly is small/large distance depends on the
brightness of the firefly. Initially, we evaluate the best fitness
function of each firefly group, which is directly proportional to
the light intensity of master fireflies such as I1, I2, I3, I4, and I5.
Nest, we compare the intensity of all the master fireflies. For
example, if (I2 < I1), then master firefly 2 group will merge with
master firefly 1 after communicating with master firefly 1.
Similarly, the iteration is carried over to select a global best
(Gbest) among the master fireflies. Some of the master fireflies
will not come for merging. For example, if the master firefly (I4)
is not initiated from the size of 5 master fireflies, then it will
obtain the information from the status table. From the status
table, it is observed that all the current situation records are read
and it helps to change the new suitable situation by jumping
towards the highest brightness master firefly for example I1. The
new suitable situation performs firefly's re-initialization and
rearranging in a new position and then updates the status table,
which is known as Jumper Firefly (JFF). We update the position
and light intensity of master fireflies from the distance, the
attractiveness of each firefly with other fireflies for every itera-
tion. The master and jumper fireflies since the commonly
available channels and assign those channels to all its cluster
members. They also communicate with the selected global best
master firefly through the free channel. If PUs are not occupied
by commonly available channels in the clusters, then master
fireflies should provide access to the SUs that belong to the same
cluster. The primary and secondary users who reside in different
channels are represented by corresponding colors. To overcome
the multimodal optimization problems, different clustering of
master and jumper firefly groups are communicating to select a
global best master firefly. The global best master firefly to send
the data to the sink and then update the information to the status
table. The most important drawback of normal JFA is that there

F I GURE 1 Architecture of Cooperative DIFOC Clustering Structure
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is no proper communication between fireflies for merging. The
main advantage of DJFOC algorithm is that at end of each
iteration, the clustering of every firefly knows the position and
clustering of all other fireflies. This behavior is the cognition
property of the DJFOC algorithm. DJFOC has increased the
speed of convergence by grouping the fireflies among multi-
users. Further, it can deal with multi-modal optimization prob-
lems very efficiently than other optimization techniques.

3 | FUNCTION OF PROPOSED DJFOC
ALGORITHM

Figure 2 shows the flowchart of the DJFOC. The distributed
sensor network in the study consists of ‘N’ number of user
nodes and ‘K’ is the predetermined number of clusters. The
function of DJFOC is as described briefly below.

i. Generate the initial population of fireflies in the solution
space. Set ‘S’ elements to comprise ‘K’ arbitrarily chosen
Cluster Heads (CHs) among all the suitable cluster head
candidates.

ii. Estimate the cost function of each user node: For each user
node point, ni, i = 1, 2,…,N. Estimate the distance
dðni;CHp;kÞ between each user node and all CHs point
position. The optimal number of clusters can be found by
the following equation [12],

K ¼ N
dmax

ffiffiffiffiffi

3ρ
p þ 0:5

� �

ð1Þ

where N is the total number of nodes, ρ is the number of CRSN
nodes per unit area and dmax is the maximum transmission range
of CRSN nodes. Allocate each user node point ni to CH
where: dðni;CHp;kÞ ¼minfdðni;CHp;kÞg for k = 1,2,.., K.

iii. Find the best CH for transmission using the fitness func-
tion of f1 and f2. All the clustering set of rules will be
ensured at Base Station (BS) by the centralized algorithm
[16]. The BS runs fitness function to finalize the best CHs
and minimizes the cost function.

cost¼ f 1 � β þ f 2 � 1 − βð Þ ð2Þ

f 1 ¼maxk¼1,2,,K

X

8ni2Cp,k
d ni , CHp,k
� ��

Cp,k
�

�

�

�

� �

ð3Þ

f 2 ¼
PN

i¼1 EðniÞ
PK

k¼1 E
�

CHp;k
� ð4Þ

where β is the user-defined constant. Let β = 0.5, f1 is the
maximum average of distance between the user nodes with
associated Cluster Heads (CHs) and

�

�Cp;k
�

� is the cluster par-
ticle p (i.e. the node). Function f2 is average node energy.

iv. In each cluster, we check the fitness function of each user
node and identify the light intensity associated with fireflies.
All the remaining nodes move towards the brighter firefly
with random velocity to form an organized cluster.

v. Improve the appropriate solutions by making the changes
to eligible situation and find the optimal solution by status
table. From the status table, observe all the current situ-
ation records which help to change the new suitable sit-
uation by the jumping process. If the firefly is in hazard
state then it wants to manage jump option to start a new
updating and rearranges the new situation to obtain the
status table, which is called Jumper Firefly (JFF).

vi. Update the position and light intensity of fireflies from
the distance, and attractiveness of each firefly with other
fireflies for next iteration.

vii. Go to step iii, and repeat until reached maximum number
of swarm iterations for optimization.

viii. The chosen master and jumper fireflies sense the available
channel in its range. Thus, we select the channel with high
channel quality with the condition that the selected
channel should not be used by the nearby PUs.

ix. The global best firefly aggregates the data from the cluster
members through the local common available channel.
The global best firefly transmits the collected information
to the base station.

3.1 | Analytical study of firefly attractiveness,
distance and movement position

The firefly flash primary purpose is referred to in [17] acts as a
signal system for attracting other fireflies. The light intensity is
inversely proportional to the squared distance and directly
proportional to the source intensity brightness; see below.

IðrÞ ¼ I0
r2

ð5Þ

where IðrÞ is the light intensity at distance r and I0 is the source
intensity. Light intensity medium is calculated as follows:

I rð Þ ¼ I0exp −γr2
� �

ð6Þ

where γ is the medium absorption coefficient. To avoid sin-
gularity condition at r = 0 Gaussian approximation is evaluated
as follows:

I rð Þ ¼ I0exp −γr2
� �

¼ I0
1þ γr2

ð7Þ

The firefly attractiveness factor β is directly proportional to
light intensity visited by the adjoining fireflies.

β ¼ β0expð-γrmÞ ð8ÞR
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where β0 is the attractiveness at r = 0. The ri;j is the distance
between any two fireflies (i and j) placed at xi and xj is given by,

ri;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

k¼1

�

xi;k - xj;k
�2

v

u

u

t ð9Þ

where xi;k is the coordinates of kth component firefly i, xj;k is
the coordinates of kth component firefly j and d is the di-
mensions index number. A firefly ith firefly movement towards
more brighter jth firefly is given by,

xi ¼ xi þ β0e
-γr2i;j�xj-xi

�

þ αðrandðÞ - 1=2Þ ð10Þ

The term xi is the firefly current position, β0e
-γr2i;jðxj-xiÞ is

equivalent to the brighter attraction, αis the randomization
parameter and rand() is the random numbers distributed uni-
formly in the interval [0,1]. After that Fireflies are ranked and
obtain the current best cost function.

Algorithm The pseudo code for DJFOC Algorithm
is described below:
Input:
f(x)-no.of fireflies
p=f(x)
g=0.9
α=0.2
Output:
Global best firefly
Step 1: Random node creation

Foreach {ni} {node($i)}
{
d=d(ni,CHp,k)

Assign node ni to cluster head CHp,k
where:
d(ni,CHp,k)=min8k=1,2..k{d(ni,CHp,k)}
}

Step 2: Channel selections
foreach {ch} {CHL}
{

cluster($cl_no) [list]

F I GURE 2 Flowchart of the proposed DJFOC
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foreach {cm} {Clustermember($ch)}
{

cluster($cl_no) $cm
msgdisply(“Cluster Head selection”)
}

Step 3: To find the best cluster head
selection cost function
f1=maxk=1,2,..,K{∑8ni2Cp,kd(ni,CHp,k)/Cp,k}

f2 = sum{i=1,2,..,N} E(ni) / sum{i=1,2,..,K} E
(CHp,k)
fitness = f1*β+f2*(1- β)

Step 4: Firefly attractiveness with objective
function

β (r)=β0exp(-ϒrm)
Step 5: Status table updation
while {$I!=$p($i)} {
if(f(x)=hazard(true))
{
pos = $x_pos*$x_pos+$y_pos*$y_pos
d = sqrt($pos)

msgdisplay(“updatestatustable”+$nowlist
($i))
}
for {set i 1} {$i<=$p} {incr i}

{
for {set j 1} {$j<=$p} {incr j}
{
if {$fx($i)} < {$fx($j)}
{
β (r) //attractiveness
di,j=distance(xi,xj)
I$d= ($p)/1+$g*pow($d)2
fxi= $fxi+$b*($fx($j)-$fx($i)+$α*
(rand(0,1)-0.5)
msgdisply(“update status table”)
}
}
}

Step 6: Maximum Iterations
Iter=$iter+1
while ($iter > $MAX )
{
$n($i) incr
}

Step 7: Reclustering process
If(firefly($i)=true)
{
f($i)->$gbffly
}else if($gbffly=true)
{
$gbffly->BS
}
Else
{
Update the re-clutering process
Repeated Steps 4, 5, 6

}

4 | RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
DJFOC, an NS2 simulation study is carried out for CR
networks. The parameters used in the simulation study are
listed in Table 1. Figure 3 shows the number of PU's and
SU's that dynamically access the channels with ‘K’ optimal
number of clustered structures connectivity. In Figure 3, 10
primary user nodes, 90 secondary user nodes, and 1 com-
mon receiver (sink) node are considered. Each user node is
randomly placed in a 1000 � 1000 meter field and 10
common available channels marked by maroon, hot pink,
cyan, yellow, yellow-green, deep pink, sky blue, violet red,
green and blue colored selection. The notation for channel
occupied by SUs are C0, C1,…….C9 and PUs are 0,1,….9
in the NS2(Ver. 2.34) simulation environment. Each PU
chooses any one of the common 10 channels and fortifi-
cation range is 200 m; here the remaining CRSN neighbors
cannot access occupied channel. The analysis is carried over
the time of simulation of 131.0 s and with constant packet
size of 512 bytes. The PU activity checking interval is 0.2 s,
sensing duration activity is considered to be within 5.6 s,
and the initial energy of each node is 50 J. The SNR of
sensed channel can be varied from 0 to 30 dB. The transmit
and receive powers are 0.75 and 0.375W, respectively. The
nodes are having sensing power of 0.25 W.

Figure 4 shows the performance comparison among
DSOC, DFOC and DJFOC for CRSN Size Vs Average
Converge Time. Cognitive Radio Sensor Network (CRSN)
has a combination of PUs and SUs. The CRSN size is a
major constraint while simulating in NS2. It affects the
converging time, node power and interferences. Hence main
objective of this work is to reduce the crucial factors by
transmission through only by the global ‘Gbest’ node. As the
CRSN size increases, average converge time increases line-
arly. In the DSOC, the average converge time is 4.533 s for
the CRSN size of 20 and similarly, in the method of DFOC,
the average converge time is at 2.720 s. In the proposed
method of DJFOC, the average converge time is 1.943 s,
which is 2.590 s less than the DSOC method and 0.777 s
less than the DFOC at 20 CRSN sizes. If the proposed
DJFOC is having less converge time compared to DSOC
and DFOC at 280 CRSN sizes, the converging time of
DJFOC is better by 50.133 s with DSOC and 15.040 s with
DFOC. In this work maximum CRSN size of 280 is
considered.

Figure 5 shows the analysis between cluster number and
the average node power that was plotted. The graph shows
power observed for different cluster number from 2 to 28.
Average node power for CRSN is defined as the ratio of the
sum of the total energy of PUs and SUs to the total number of
nodes in clusters; often expressed in watt (W).

Average Node Power for CRSN is given as,

¼
PN

i¼1PUi Energyð Þ þPN
i¼1SUi Energyð Þ

Total  number  of   nodes  in  clusters
ð11ÞR
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The graph shows Cluster Number Vs Average Node power
values of DSOC, DFOC and DJFOC during the simulation
analysis for combination of PUs and SUs in the network. At
cluster number 2, average node power of DSOC is
6506.954 μW and similarly in the method of DFOC is
5142.954 μW. This is too high in practice, but in the proposed
method DJFOC, the power is 2421.954 μW, which is 62.77%
lesser than the DSOC method and 52.90% lesser than the
DFOC. As the number of the cluster has increased, the average
node power is reduced for the proposed DJFOC than DSOC
and DFOC. At cluster number 28, average node power of
DJFOC is better by 64.59% with DSOC and 54.86% with
DFOC. This shows that there is a power saving of 92.23% in
the proposed method compared to the DSOC and 72.61%
with DFOC. In the simulation, the number of clusters from 2
to 28 is considered. We calculate the consumption of average
node power by combination of PUs and SUs in the cognitive
radio networks. From Figure 5, it is observed that the power
remains constant for cluster number above 28, so the simu-
lation was stopped at cluster number 28.

Figure 6 shows the performance comparison among
DSOC, DFOC and DJFOC for PU Number Vs Average Node
Power. Average node power for Pus is defined as the ratio of
the sum of the total energy in PUs to the total number of Pus
that is often expressed in watt (W).

Average Node Power for Pus:

¼
PN

i¼1PUi Energyð Þ
Total  number  of   PUs

ð12Þ

As the number of PUs increases, average node power in-
creases linearly. If more PUs are considered in the transmission
range, then the clustering process will involve more spectrum
resource opportunistically. Thus, clustering will affect energy
consumption [12]. In our simulation analysis, 10 primary user
nodes only are considered within the fortification range of
200 m. In the DSOC, the power is constant at 759 μW for the
primary users 1 to 5, and similarly, in the DFOC, the power is
at 753 μW. The proposed DJFOC power is constant at 740 μW,
which is 2.50% less the DSOC method and 1.72% less than the
DFOC. For the proposed DJFOC, the power varies from 750
to 782 μW, which is less; from 2.08% to 1.51% with DSOC
and similarly the power is less; from 1.18% to 0.50% with
DFOC. This shows that there is a power saving in the pro-
posed method of 2.167% compared to the DSOC and 1.162%
with DFOC.

Figure 7 shows the performance comparison among
DSOC, DFOC and DJFOC for SU Number Vs Average Node
power. Similarly, average node power for SUs is defined as the
ratio of the sum of the total energy in SUs to the total number
of SUs, often expressed in watt (W).

Average Node Power for SUs

¼
PN

i¼1SUi Energyð Þ
Total  number  of   SUs

ð13Þ

In the simulation, 90 secondary user nodes are considered
within the fortification range of 150 m. As the number of SUs
increases, average node power increases linearly. In the DSOC,
the power is constant at 759 μW for the primary users 11 to 15,
and similarly, in the DFOC, the power is at 753 μW. The
proposed DJFOC power is constant at 740 μW which is 2.50%
less the DSOC method and 1.72% less the DFOC. For the
proposed DJFOC, the power varies from 748.50 to
1584.50 μW, which is less than 3.04% to that of 13.36% with
DSOC and similarly, the power is less than 2.28% to that of
3.50% with DFOC. This shows that there is a power saving in
the proposed method of 10.137% compared to the DSOC and
2.801% with DFOC.

The single threshold detector performs well in cooperative
spectrum sensing networks by high detection probability with
less false rate. At the detection stage, the sensing error (noise)
in cooperative nodes over channel is removed with reliable
decisions. The detection performance of a spectrum sensing
technique can be evaluated using the probability of false
alarm, detection and missed detection [18]. Estimate the SNR
for the detection of received signal and decide output from
detection performance of spectrum sensing techniques. The
threshold λ = 4 dB is based on the experimental results and
observations [19].

TABLE 1 Simulation parameters of optimized clustering techniques

Parameter Name Specification

Channel type Wireless channel

MAC layer 802.11

Network interface type Phy/Wireless Phy

Interface queue type Queue/Drop Tail/Pri Queue

Radio propagation model Two-Ray Ground

Antenna model Omni Antenna

Mobility model Random Way Point

Mobility speed 5 m/s

Number of channels 10

Channel Bandwidth 6 MHz

Carrier Frequency fc,1 = 800 MHz fc,i+1-fc,i = 6MHz;
i = 1,....,9

Data traffic model CBR over UDP

Data packet size 512 bytes

Data packet interval 0.0625 s

Routing protocol AODV

Simulation software NS-2, version 2.34

Simulation coverage area 1000 � 1000 m

Simulation time 131 s

Number of SUs 90

Transmission range radius of
SUs

150 m
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a. If threshold value λ is greater than SNR (the primary user
over channel is falsely detected ‘H1’), then the hypothesis
model is performed by the probability of false alarm
technique. that is, if λ > SNR, Accept H = H1|H0.

b. If threshold value λ is greater than SNR (the primary user
over channel is correctly detected ‘H1’), then the hypothesis

model is performed by the probability of detection tech-
nique. that is, if λ > SNR, Accept H = H1|H1

c. If threshold value λ is less than SNR (the primary user over
channel is not detected ‘H0’), then the hypothesis model is
performed by the probability of missed detection technique.
that is, if λ ≤ SNR, Accept H = H0|H1

F I GURE 3 Channel Distribution for PUs and SUs in DJFOC

F I GURE 4 Comparison of CRSN Size Vs Average Convergence Time
F I GURE 5 Comparison of Cluster number Vs Average Node Power
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The implementation is carried out using MATLAB
R2013a. To determine whether the channel is being used by the
primary user, the detection test statistic of output Y is
compared with a predetermined threshold. Probability of false
alarm (PFA) is the probability that the hypothesis test chooses
H1 while it is in fact H0.

PFA ¼ PðY > λjH0Þ ¼
Γðm , λ / 2Þ

ΓðmÞ ð14Þ

Probability of detection (PD) is the probability that
correctly decides H1 when it is actually H1;

PD ¼ PðY > λjH1Þ ¼Qm

�

ffiffiffiffiffi

2γ
p

avg;
ffiffiffi

λ
p �

ð15Þ

where λ is the detection threshold, Γð:Þ is the complete gamma
functions, Γð:::Þ is the incomplete gamma functions, γavg is the
average SNR, Qm() is the generalised Marcum Q-function and
m = TW is the time-bandwidth product; considered as m = 5.
The equation for the probability of detection is calculated
using ‘marcumq()’ function in Matlab,

QðxÞ ¼ 1
ffiffiffiffiffi

2π
p ∫

∞

x
e-

u2
2udu ð16Þ

The equation for probability of false alarm is calculated
using ‘gamma()’ and ‘gammaincinv()’ function in matlab.
gamma(x) represents the gamma complete function is given as:

ΓðxÞ ¼ ∫
∞

0
e-ttx-1dt ð17Þ

where gamma(a,x) represents the gamma incomplete function,

Γða; xÞ ¼ ∫
¥

x
e-tta-1dt ð18Þ

(i.e.) igamma(a, x) = gamma(a) (1-gammainc(x, a))
The objective of the probability of missed detection (PMD)

is to reduce the PFA and to increase PD. In general, the per-
formance of PMD is the probability that a PU is present over
the channel, but not able to detect the primary transmission
signal. In terms of hypothesis, it is written as:

PMD ¼ 1 - PD ¼ PrðSignal is not detectedjH1Þ ð19Þ

Figure 8 shows the performance comparison among
DSOC, DFOC and DJFOC for Probability of False Alarm Vs
Probability of Detection in Receiver Operating Characteristics
(ROC) curve. The performance of the detector under various
values of probability of false alarm for SNR = 4dB. However,
the level of SNR = 4dB is a little high for a proper range in the
spectrum sensing [19]. In the proposed method of DJFOC, the
probability of detection is optimum when the PFA value
is > 0.1 compared to DSOC and DFOC. The probability of a
SU falsely decides a PU access over the channel in the spec-
trum band. Thus, the SUs missed the opportunity for efficient
channel utilization. It is observed that DSOC and DFOC
provide poor channel utilization by SUs.

Figure 9 shows the performance comparison between the
DSOC and DFOC with DJFOC for Signal-to-Noise Ratio Vs
Probability of Detection. The performance of detection is
assumed that SNR varied from 0 to 30 dB values and the
probability of false alarm is 0.1. As the SNR value increases,
the probability of detection will increase linearly and reach
constant of ‘1’. In a CR network, higher probability of detec-
tion corresponds to less interference with PUs. In the pro-
posed method of DJFOC, the detection probability is about
‘0.888’ compared to DSOC and DFOC when SNR is at ‘0 dB’.
The Probability of a SU correctly decides PU access over the
channel and it improves the efficient channel utilization. The
DJFOC curve is converged to maximum probability of
detection faster compared to DSOC and DFOC.

Figure 10 shows the performance comparison among
DSOC, DFOC and DJFOC for Probability of False Alarm Vs
Probability of Missed Detection. As the probability of false
alarm rate increases, the probability of missed detection rate

F I GURE 6 Comparison of PU Number Vs Average Node Power
F I GURE 7 Comparison of SU Number Vs Average Node Power
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decreases gradually for the complementary curve of ROC.
The channel is active in the Pus, but not able to detect the
primary transmission. This causes harmful interference to both
PUs and SUs. In the DSOC method, PMD value remains at ‘1’
up to ‘0.5’ value of PFA and reaches ‘1’ linearly, and similarly, in
the DFOC, PMD value remains at ‘1’ up to ‘0.3’ value of PFA
and reaches ‘1’ linearly. In the proposed method of DJFOC,
PMD value is ‘1’ when PFA value is ‘0.2’ and PMD falls to ‘0’ as
PFA is increased to ‘1’. Thus, our proposed DJFOC is better in
detecting the primary transmission with its availability
when the false alarm rate is high compared to DSOC and
DFOC (e.g. at PFA = 0.7, PD = 0.267 and PMD = 0.733).

5 | CONCLUSION

Dynamic clustering proves the individuality of the algorithms
used for optimization. The obtained results show that DJFOC
is an efficient algorithm for clustering in power saving and best

for channel sensing with better average converge time. The
simulation performance shows superior, scalability, and con-
stancy for DJFOC. The following observations can be made in
the obtained results, which show the superior performance of
our proposed DFFOC scheme.

i. The proposed algorithm has ranked master and jumper
fireflies with high brightness value and obtained best
among the cluster members, with a faster converging time
of 37.60 s for 280 CRSN in size.

ii. The proposed algorithm uses different clustering of master
and jumper firefly group in communicating to select a Gbest
master firefly with least clustering node power.

iii. The DJFOC is efficiently improving the converging rate by
grouping clusters, which can observe all the current situ-
ation records and help to change the new suitable situation
by the status table.

iv. The probability of detection is optimum in the proposed
DJFOC with PFA value above ‘0.1’ and SNR is above 5dB
compared to DSOC and DFOC.

v. The proposed DJFOC is better in detecting the primary
transmission compared to DSOC and DFOC (e.g. at
PFA = 0.7, PD = 0.267 and PMD = 0.733).

Hence the performance analysis shows that there is 92.23%
reduction in the proposed method compared to the DSOC and
72.61% with DFOC. DJFOC is better by 2.167% compared to
the DSOC and 1.162%with DFOC in PUs average node power.
Similarly, DJFOC is better by 10.137% compared to the DSOC
and 2.801%with DFOC in SUs average node power. Therefore,
the proposed optimization technique can be used to save
transmit power with the shortest distances and achieve energy-
efficient clusters while restricting interference to primary users.
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