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In the secured data communication scenario, image based Reversible Data Hiding (RDH) at transform
domain is receiving its due popularity now. In research works so far, evaluation of transforms in RDH
is very minor compared to that of image coding. Since both the areas deal primarily with integers, the
present study takes an appreciable step forward by investigating the utilization of integer-to-integer
wavelet transforms that have reversibility, which helped in developing high capacity and robust RDH
algorithms. The proposed investigation tends to bridge gaps in the area of data hiding with the available
coding transforms. In this work, integer wavelet transforms like Haar, 5/3, 2/6, 9/7-M, 2/10, 5/11-C, 5/11-
A, 6/14, 13/7-T, 13/7-C and 9/7-F are evaluated using a generalized threshold-based histogram shifting
technique. This work compares the performance of all integer wavelet transforms and other state of
the art techniques with respect to their embedding capacity and image visual quality. This analysis leads
to a better understanding of the relationship between the embedding capacity and the stego image qual-
ity whenever different wavelets were utilized.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Information security is one of the most challenging areas in dig-
ital era (Shi et al., 2016; Bibi et al., 2018) . The concept of reversible
data hiding (RDH) in images has received increased attention in
recent years (Shi et al., 2016; Thanikaiselvan et al., 2017; Shaik
et al., 2017; Muhammad et al., 2017). RDH techniques are basically
classified into compression, spatial and transform domain RDH
techniques. In the process of data hiding, the compression-based
techniques create space in the cover image using lossless
compression techniques to hide secret data; the spatial techniques
directly modify the cover image pixels to hide secret data; and
transform domain techniques first, converts the cover image into
the frequency domain and then modifies the transformed coeffi-
cients to hide secret data.

The spatial and compression domain techniques modify the
pixel intensities directly, hence the robustness of these techniques
is less (Tsai, 2009; Qin et al., 2013; Lin and Liu, 2012). Whereas in
transform domain the transformed image coefficients are altered
to store data which improves the robustness. Hence, there has
been a growing interest in transforms for image RDH applications
(Fridrich et al., Aug. 2001; Muhammad et al., 2015) . But standard
transforms like discrete cosine transform (DCT) (Nikolaidis, 2015;
Lin, 2012) and discrete wavelet transform (DWT) (Chan et al.,
2009; Huang and Chang, 2011; Chang et al., 2010; Li et al., 2017)
produce real valued coefficients in the transform domain as shown
in Fig. 1. So, the quantization process is mandatory to get the inte-
ger coefficients. It increases the complexity of the process. Since all
the coefficients in DCT and DWT are real valued, techniques
employing these transforms require more auxiliary data to take
care of the fractional part which is essential for cover image recov-
ery. This auxiliary data leads to a reduction in the capacity of
hiding as well as visual quality. In contrast, the reversible
integer-to-integer wavelet transforms convert the spatial domain
pixels into transform domain integer coefficients. Hence, these
transforms are suitable for data embedding which can offer higher
embedding capacity and better visual quality. Thus, reversible
reshold
.06.001

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2018.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shaik.ahmad@vit.ac.in
mailto:thanikaiselvan@vit.ac.in
http://livedna.net/?dna=91.15521
http://livedna.org/91.13655
https://doi.org/10.1016/j.jksuci.2018.06.001
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com
https://doi.org/10.1016/j.jksuci.2018.06.001


229 204 249 249

241 130 250 183

134 155 138 227

243 192 250 136

802.5 -10.88 18.5 74.32

56.22 -35.24 25.49 7.27

73.5 39.85 -37.5 16.5

-34.11 -61.72 19.74 -96.75

402 465.5 31 32.5

362 375.5 -73 -10.5

68 33.5 -43 -33.5

15 12.5 -36 -101.5

200 232 -68 -34

180 187 -15 -13

-31 -33 -86 -67

73 11 -72 -203

(a) Input (b) DCT (c) DWT (Haar) (d) Integer wavelet 
(Haar) 

Fig. 1. DCT, DWT and integer wavelet forward transformation.
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integer wavelets can be more suitable for RDH algorithms (Agrawal
and Kumar, 2016).

In general, the embedding process in transform domain is car-
ried out using spatial RDH techniques like histogram shifting (Ni
et al., 2006) and difference expansion (Tian, 2003). Histogram
shifting modifies the cover image histogram to hide secret data.
Since the capacity depends on the peak points of the histogram,
direct histogram modification offers a very low embedding capac-
ity. As an extension to it, difference based histogram modification
(Tai et al., 2009; Liu et al., 2015) and transform domain histogram
modification (Wu and Zheng, 2011; Jinna and Ganesan, 2010; Yang
et al., 2007; Arsalan et al., 2012; Muhammad, 2017) techniques are
implemented. In transform domain, the integer wavelet classifies
the cover image data and produces the histogram with high peaks
which support high embedding capacity.

There is a growing body of literature that recognizes the impor-
tance of histogram shifting in integer wavelet based RDH tech-
nique (Shi et al., 2016). Hence in our work, we have selected a
generalized threshold based histogram shifting (Lee et al., 2006)
as a common embedding technique to evaluate the performance
of the integer wavelet transforms.

From the literature, it has been observed that the research on
wavelets is focussed more towards compressive applications
(Calderbank et al., 1998; Le Gall and Tabatabai, 1988; Villasenor
et al., 1995; Strang and Nguyen, 1996; Gormish et al., 1997;
Adams and Kossentini, 1999; Adams and Kossentini, 2000). Since
both areas deal primarily with integers, the present study is
intended further investigate the use of reversible integer wavelets
for the development of high capacity and robust RDH algorithms.
The proposed investigation helps to fill the gap in the area of data
hiding with the available coding transforms. In this paper, we
report the results of that study, with the following contributions:

We give a brief description of image transformation using
wavelet transforms and mentioned the mathematical representa-
tion of popular integer wavelet transforms like Haar, 5/3, 2/6,
9/7-M, 2/10, 5/11-C, 5/11-A, 6/14, 13/7-T, 13/7-C and 9/7-F
(Section 2).

The operation of threshold-based histogram shifting in the
transform domain is explained with steps and block diagram in
Section 3. We explain the flag array-based overflow/underflow
compensation technique in Section 3.2.

The performances of all the transforms are evaluated concern-
ing Peak Signal to Noise Ratio (PSNR), Structural Similarity Index
(SSIM) and bit rate as bits per pixel (bpp). Along with that, all
the transforms are compared with state of the art spatial domain,
DCT, DWT and integer wavelet transforms based standard RDH
algorithms (Section 4).

In this paper, several integer wavelet transforms are compared
by their performance in threshold-based histogram shifting
technique.
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
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2. Integer-to-Integer Wavelet Transforms

These transforms are derived from the linear wavelet functions
which support invertibility. Unlike the standard DWT, the integer
versions are invertible in finite precision arithmetic with less com-
putational complexity. Hence, these transforms are very useful in
data hiding applications, where the cover medium requires inte-
gers (Muhammad et al., 2017; Muhammad and Bibi, 2015) .

The integer wavelet transforms used in this paper are taken
from the Sweldens’ lifting scheme (Sweldens, 1995) and wavelet
construction technique (Calderbank et al., 1998). Arithmetic oper-
ations of Fixed Point type are used in the transform implementa-
tion. Specifically, these operations are integer addition,
multiplication, subtraction as well as division. Here the approxi-
mation of all the transforms’ filter coefficients is carried out using
rational numbers of dyadic type; hence multiplication and division
operations can be calculated by using simple bit shifts. Two’s com-
plement is used to represent the negative numbers. The 1D repre-
sentation of the forward integer wavelet transforms given in
Table 1. A sign change in approximation and detail formulae pro-
vide the inverse integer type wavelet transforms, hence those are
not added.

The signal notations described in this paper should be followed
for a better understanding of forward transform equations. All
these transforms used in this work uses linear-phase finite impulse
response (FIR) filters with a filter bank structure containing a bank
of filters. A filter bank is a combination of analysis and synthesis
parts, and each part is a combination of approximation and detail
sub-band filters. Here x[n], a[n] and d[n] are used to represent
input signal, approximate (lowpass filter) coefficients and detail
(high pass filter) coefficients respectively. These transforms are
named with x/y notation to mention that the basic filter bank
has x low pass, and y high pass analysis filters coefficients. Further,
the even x[n] signal is represented as a0[n]=x[2n] and the odd x[n]
signal is represented as d0[n]=x[2n + 1]. Symmetric extension strat-
egy is used in the boundaries of the finite length signals. The
Table 1, represents the floor function.

In image decomposition, first, an image of size M � N is applied
to a wavelet transform by considering each row of length N as a 1D
signal. After forward transform the input 1D signal split into two
parts each of size N

2 : This operation is called a row processing. It
repeats for M rows and produces two sub-band signals viz., the
low frequency band (L) and high frequency band (H) of size
M � N

2. Then L and H parts are independently applied to wavelet
transform by considering each column of sizeM as a 1D signal. This
operation is known as column processing. It divides each band (L
and H) into two sub-bands of size M

2 � N
2 : Where L band produces

an approximation (LL) and vertical (LH) sub-bands; H band pro-
duces horizontal (HL) and diagonal (HH) sub-bands. In the trans-
formed cover image, the approximation component (LL) holds
ysis of integer wavelet transforms in reversible data hiding using threshold
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Table 1
Forward Transforms.

Haar
d½n� ¼ d0½n� � a0½n�
a½n� ¼ a0½n� þ b12d½n�c

5/3; (Calderbank et al., 1998); (Le Gall and Tabatabai, 1988) d½n� ¼ d0½n� � b12 ða0½nþ 1� þ a0½n�Þc
a½n� ¼ a0½n� þ b14 ðd½n� þ d½n� 1�Þ þ 1

2c
2/6; (Villasenor et al., 1995) d1½n� ¼ d0½n� � a0½n�

a½n� ¼ a0½n� þ b12d1½n�c
d½n� ¼ d1½n� þ b14 ð�a½nþ 1� þ a½n� 1�Þ þ 1

2c
9/7-M; (Calderbank et al., 1998); d½n� ¼ d0½n� þ b 1

16 ðða0½nþ 2� þ a0½n� 1�Þ � 9ða0½nþ 1� þ a0½n�ÞÞ þ 1
2c

a½n� ¼ a0½n� þ b14 ðd½n� þ d½n� 1�Þ þ 1
2c

2/10; (Gormish et al., 1997) d1½n� ¼ d0½n� � a0½n�
a½n� ¼ a0½n� þ b12d1½n�c
d½n� ¼ d1½n� þ b 1

64 ð22ða½n� 1� � a½nþ 1�Þ þ 3ða½nþ 2� � 2a½n� 2�ÞÞ þ 1
2c

5/11-C; (Calderbank et al., 1998) d1½n� ¼ d0½n� � b12 ða0½nþ 1� þ a0½n�Þc
a½n� ¼ a0½n� þ b14 ðd1½n� þ d1½n� 1�Þ þ 1

2c
d½n� ¼ d1½n� þ b 1

16 ða½nþ 2� � a½nþ 1� � a½n� þ a½n� 1�Þ þ 1
2c

5/11-A; (Adams and Kossentini, 1999) d1½n� ¼ d0½n� � b12 ða0½nþ 1� þ a0½n�Þc
a½n� ¼ a0½n� þ b14 ðd1½n� þ d1½n� 1�Þ þ 1

2c
d½n� ¼ d1½n� þ b 1

32 ða½nþ 2� � a½nþ 1� � a½n� þ a½n� 1�Þ þ 1
2c

6/14; (Adams and Kossentini, 2000) d1½n� ¼ d0½n� � a0½n�
a½n� ¼ a0½n� þ b 1

16 ð�d1½nþ 1� þ d1½n� 1� þ 8d1½n�Þ þ 1
2c

d½n� ¼ d1½n� þ b 1
16 ða½nþ 2� � a½n� 2� þ 6ð�a½nþ 1� � 2a½n� 1�ÞÞ þ 1

2c
13/7-T; (Calderbank et al., 1998) d½n� ¼ d0½n� þ b 1

16 ðða0½nþ 2� þ a0½n� 1�Þ � 9ða0½nþ 1� þ a0½n�ÞÞ þ 1
2c

a½n� ¼ a0½n� þ b 1
32 ðð�d½nþ 1� � d½n� 2�Þ þ 9ðd½n� þ d½n� 1�ÞÞ þ 1

2c
13/7-C; (Adams and Kossentini, 2000) d½n� ¼ d0½n� þ b 1

16 ðða0½nþ 2� þ a0½n� 1�Þ � 9ða0½nþ 1� þ a0½n�ÞÞ þ 1
2c

a½n� ¼ a0½n� þ b 1
16 ð5ðd½n� þ d½n� 1�Þ � ðd½nþ 1� þ d½n� 2�ÞÞ þ 1

2c
9/7-F; (Calderbank et al., 1998) d1½n� ¼ d0½n� � b 1

128 ð203ð�a0½nþ 1� � a0½n�ÞÞ þ 1
2c

a1½n� ¼ a0 ½n� þ b 1
4096 ð217ð�d1½n� � d1½n� 1�ÞÞ þ 1

2c
d½n� ¼ d1½n� � b 1

128 ð113ða1½nþ 1� þ a1½n�ÞÞ þ 1
2c

a½n� ¼ a1½n� þ b 1
4096 ð1817ðd1½n� þ d1½n� 1�ÞÞ þ 1

2c
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the most significant features and looks identical to the cover
image. This successive row and column transformations are trea-
ted as one-level wavelet decomposition. The second-level decom-
position can be performed by considering the approximation
sub-band as the input image.

Although the orders of operations for the forward transforma-
tion can be changed, the inverse transformation must perform
the same operations as that of forward transform but in the reverse
order; otherwise, perfect reversibility cannot be guaranteed.
3. Data hiding using integer wavelet transforms

This section explains the operation of threshold-based his-
togram shifting in the transform domain. In the process of data
hiding, a one level decomposition is applied to the cover image I
using a selected integer wavelet transform. The decomposed cover
image is noted as IDec. Then the data hiding is performed on the
detail sub-bands (LH, HL, and HH) coefficients. After that, the inter-
mediate stego image is obtained by doing the inverse transforma-
tion using the same integer wavelet transform. Then overflow
compensation technique is performed to obtain final stego image
I0 by eliminating the overflow and underflow pixels. The process
Fig. 2. Threshold based histogram

Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
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of data hiding in the transform domain is shown in Fig. 2, where
the shaded portion of components represents the alteration using
the histogram shifting.

The order of the extraction process closely resembles the
embedding process. At the receiver end, the stego image overflow
and under flow pixels are converted back to their original values
using the flag array. Then we decompose the image using the same
integer wavelet transform which is used at the embedding stage.
After that, the threshold-based histogram shifting extracts the
secret data from detail sub-bands (LH0, HL0, and HH0) and restores
the original sub-bands (LH, HL, and HH). Finally, obtains the origi-
nal cover image I by performing the inverse transformation on
original approximation (LL) and restored detail sub-bands.
3.1. Proposed threshold based histogram shifting

In modern RDH techniques, the difference histogram modifica-
tion is considered as one of the prominent building blocks for data
hiding. In this paper, a modified threshold-based histogram shift-
ing method is proposed for data hiding. It is quite suitable for both
spatial and transform techniques and offers high embedding
capacity with a limited distortion (Lee et al., 2006).
shifting in transform domain.

ysis of integer wavelet transforms in reversible data hiding using threshold
Information Sciences (2018), https://doi.org/10.1016/j.jksuci.2018.06.001

https://doi.org/10.1016/j.jksuci.2018.06.001


0-2-6 -5 -4 -3 -1 1 2 3 4 5
TL TR

0-7 -2-6 -5 -4 -3 -1 1 2 3 4 5 6 7
TL TR

-8

1

1

1

1

(a) Input histogram (b) Histogram after data hiding 

Fig. 3. Threshold based histogram shifting.
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Let us consider an integer wavelet transformed cover image I of
size M � N ranges from -1 to 1 and the thresholds [TL, TR). The
embedding capacity of I is equal to the total bin count which falls
in the range TL � I < TR. Here, the image pixels are selected one at a
time in a raster scan order. For a selected pixel I (i, j) =p, the data
hiding is performed using Eq. (1), where i and j represent the
row and column index of that pixel respectively. Depends on the
secret data size, here we can adjust the threshold parameters. To
hide a larger secret data, we can select a higher threshold value.

p0 ¼
pþ TL if p < TL or ðTL 6 p < 0&d ¼ 1Þ
pþ TR if p P TR or ð0 6 p < TR&d ¼ 1Þ
p if ðTL 6 p < 0&d ¼ 0Þ or ð0 6 p < TR&d ¼ 0Þ

8><
>:

ð1Þ
Here p0 is the altered coefficient value from stego image location

I0 (i, j) and d 2 {0,1} is the secret bit value. In histogram modifica-
tion, the bins lesser than TL are shifted to the left by |TL| positions
and similarly the bins equal or higher than TR are shifted to the
right by TR positions. This shifting results in the empty bins in
the ranges [2TL TL) and [TR, 2TR). The bins under the range [TL, TR)
are changed according to the secret data, for a selected coefficient
if the secret bit is 0 then no change occurs in that coefficient; if the
secret bit is one then shifting happens. The pictorial representation
of threshold-based histogram shifting for thresholds [�2, 2) is
shown in Fig. 3.

While extracting the data, the image is scanned in the same ras-
ter scan manner. If the scanned value falls in the range [2TL, TL) or
[TR, 2TR), it indicates that the secret bit embedded is 1. If the
scanned value falls in the range [TL, TR), it indicates that the secret
bit embedded is 0. After extracting the embedded data, the original
image coefficients can be restored using Eq. (2).

p ¼
p0 � TL if p0 < TL

p0 � TR if p0 P TR

p0 if TL 6 p0 < TR

8><
>:

ð2Þ

Since, the histogram consists of integer transformed image
coefficients which are natural integers ranging from (�1, +1),
the overflow and underflow problems may occur. Therefore, here
a ‘‘flag array” method (Ma and Shi, 2016) is used to record the
underflow/overflow pixels. In flag array method, the underflow/
overflow pixels would be prevented by shrinking the histogram
in both sides.

3.2. Flag array method for overflow compensation

RDH systems after hiding the secret data in the integer wavelet
coefficients, inverse transformation will be performed to achieve
the spatial stego image. During this process, overflow/underflow
pixels may occur. That is for an eight-bit grayscale image, the val-
ues of some pixels in the stego image may be beneath the lower
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
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bound 0 and/or will exceed the upper bound 255. Here a ‘‘flag
array” method (Ma and Shi, 2016) is used to record the under-
flow/overflow pixels by shrinking the histogram of the intermedi-
ate stego image.

3.3. Data embedding process

The data hiding consists of the following steps:
Step 1: Take an input image I of size M � N along with secret

data D and thresholds [TL, TR).
Step 2: Apply the one-level integer wavelet transformation on

the cover image I and obtain one approximation (LL), and three
detail sub-bands (HL, LH, and HH) each of size M

2 � N
2 .

Step 3: Combine the three-high frequency sub-bands, HL, LH,
and HH, to make a new coefficient image of size 3M

4 � N .
Step 4: Hide the secret data D on the detail sub-bands of the

cover image using threshold-based histogram shifting on the
new coefficient image accord.

Step 5: After data hiding split the modified image of size 3M
4 � N

into three equal sub-bands viz., HL0, LH0, and HH0 each of size M
2 � N

2 .
Step 6: Obtain the intermediate stego image of size M � N by

performing the 1D inverse integer wavelet transform (same trans-
form used in step 2) on the original approximation sub-band (LL)
and the modified detail sub-bands (HL0, LH0, and HH0).

Step 7: Finally, perform the overflow compensation mechanism
and obtain the final stego image I0 and its respective flag array.

The parameters such as thresholds, flag array details should be
communicated to the receiver for a loss less data extraction. Here
we will embed the threshold values and the flag array data into
the first row and first column of the cover image using LSB substi-
tution (Zhang and Ping, Oct. 2003). The original LSB positions of
that pixels are embedded into the cover image along with the
secret message.

Fig. 4, presents the overall process of threshold-based his-
togram shifting based on integer wavelet transform. Here we have
considered the image Lena as a cover, integer Haar wavelet as
transform and [�2,2) as predefined thresholds. It shows the output
of each step along with the respective histogram. It can be seen
from Fig. 4(a) and (d) that the cover image histogram and the stego
image histogram shapes are highly correlated. Which implies the
quality of the stego image is maintained even after the data
embedding. The same process can be applied to any cover image
using any integer wavelet transform.

3.4. Data extraction process

In the extraction phase we perform the steps identical to the
data embedding process but in a reverse order to obtain the secret
data as well as the original image without any loss. At the extrac-
tion phase initially, we read the LSB positions of the first row and
column for threshold details [TL, TR) and the flag array information.
ysis of integer wavelet transforms in reversible data hiding using threshold
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Fig. 4. Overall process using Lena Image.
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After extracting these details, we perform the data extraction oper-
ation. The steps involved in the data extraction process are
described as follows:

Step 1: Consider the stego image I0 of size M � N and perform
the inverse flag array operation by expanding the stego image his-
togram to its original range.

Step 2: Apply the one-level integer wavelet transformation
on the cover image and obtain one approximation (LL), and
three modified detail sub-bands (HL0, LH0, and HH0) each of
size M

2 � N
2 .

Step 3: Combine the three-modified high frequency sub-bands
to make a new coefficient image of size 3M

4 � N
Step 4: Extract the secret data D from the new coefficient image

using threshold-based histogram shifting and restore the original
detail sub-band coefficient image.

Step 5: After data extraction separate the restored coefficient
image into three equal sub-bands viz., HL, LH, and HH each of size
M
2 � N

2 .
Step 6: Restore the cover image I by performing the inverse

integer wavelet transformation on the original approximation
sub-band (LL) and the restored detail sub-bands (HL, LH, and HH).
4. Results and discussion

In this paper, eleven images from the USC-SIPI database of size
512 � 512 are considered for the experiment which includes Air-
plane, Baboon, Elaine, Tree, Boat, House, Home, Lady, Lena, Pep-
pers, and Tanker as shown in Fig. 5. On these eleven images,
histogram shifting is performed using integer wavelets with 30 dif-
ferent threshold values like from [�1 1) to [�30 30). PSNR (Eq. (3)),
SSIM (Eq. (4)), and bit rate (Eq. (5)) are considered as evaluation
parameters.

PSNRðdBÞ ¼ 10log10
255� 255

1
MN

XM

p¼1

XN

q¼1
ðIði; jÞ � I0ði; jÞÞ2

0
@

1
A ð3Þ
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Here I and I0 are the cover image and stego image of size M � N
respectively.

SSIM ¼ ð2lIlI0 þ k1Þð2rI;I0 þ k2Þ
ðl2

I þ l2
I0 þ k1Þðr2

I þ r2
I0 þ k2Þ ð4Þ

where mI, rI
2, mI0 and rI0

2 are mean and variances of the cover image
and stego image respectively. rI,I0 is the covariance between both
images; k1, k2 are two constants used to avoid divide by zero situa-
tions. The SSIM value ranges between [0, 1], where 0 refers to the
least similarity while close to 1 refers to the highest.

BitrateðbppÞ ¼ SecretdatasizeðbitsÞ
Totalnumberofpixels

ð5Þ

In general, the spatial domain RDH techniques uses very simple
arithmetic operations to directly manipulate the cover image pix-
els. Where as in the transform domain RDH techniques the data
hiding is performed on the frequency coefficients of the cover
image. The transform domain techniques need one additional
operation as compared to the spatial domain technique hence, they
are more complex as compared to the spatial domain techniques.

Among the proposed integer wavelet transforms, the trans-
forms which have the high scaling factors are complex as com-
pared to the transforms which have low scaling factors. The
computations required for performing a one-level wavelet decom-
position for a one-dimensional signal are given in Table 2 (Adams
and Kossentini, 2000). The numbers in the brackets indicate com-
putations for hardware or software implementations where multi-
plications are costlier than addition and shift operations. Though
most of the transforms involve the same number of calculations,
some need more multiplications than others. In particular, the
underlying lifting filters for Haar, 5/3, 2/6, 5/11-C and 5/11-A trans-
forms have coefficients that are powers of two. Evidently, haar
transform requires least computation followed by the 5/3 and
2/6 group, followed by the 9/7-M, 2/10, 5/11-C and 5/11-A group
and then the 6/14, 13/7-T, and 13/7-C group. Lastly the 9/7-F trans-
form requires the more computations.
ysis of integer wavelet transforms in reversible data hiding using threshold
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(a) Elaine (b) Baboon (c) Peppers (d) Lena 

(e) Home (f) House (g) Tiffany (h) Tanker 

(i) Tree (j) Airplane (k) Ship 

Fig. 5. Input Images.

Table 2
Computation complexity.

Transform Additions Shifts Multiplies Total

Haar 2 1 0 3
5/3 5 2 0 7
2/6 5 2 0 7
9/7-M 8 (9) 2 (3) 1 (0) 11 (12)
2/10 7 (10) 2 (6) 2 (0) 11 (16)
5/11-C 10 3 0 13
5/11-A 10 3 0 13
6/14 10 (11) 3 (5) 1 (0) 14 (16)
13/7-T 10 (12) 2 (4) 2 (0) 14 (16)
13/7-C 10 (12) 2 (4) 2 (0) 14 (16)
9/7-F 12 (26) 4 (18) 4 (0) 20 (44)
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Table 3 represents the PSNR and embedding capacities (bit rate)
of the stego images when the threshold values are [�1 1). Simi-
larly, with thresholds ranging from [�1,1) to [�30, 30), same pro-
cess is carried out and their average responses are represented in
Table 4. In Table 3, the last rows represent the average PSNR and
bit rate of each transform. From the results, it is noted that, the
low-valued transforms like Haar, 5/3, 2/6 and 2/10 are providing
a little higher PSNR compared to 5/11-C, 5/11-A, and 6/14. But
these transforms are obtaining slightly less bit-rate as compared
with the same transforms. Overall integer Haar wavelet is provid-
ing the highest PSNR with lowest embedding capacity because its
lower valued scaling factors. While 3/7-T and 9/7-F transforms
are giving a poor PSNR value for all images because of their larger
scaling factors.

Fig. 6, presents the performance of the integer wavelet trans-
forms with respect to bit rate and PSNR for 30 different threshold
values starting from [�1, 1) to [�30, 30). Here we have shown the
results of six cover images including Elaine, Baboon, Lena and Air-
plane, Peppers and Tree. From the Fig. 6, it can be noted that the
smaller thresholds have smaller embedding capacity and high
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
based histogram modification. Journal of King Saud University – Computer and
visual quality. Since the changes made in the cover image is small
the visual quality at the smaller thresholds are high. As the thresh-
old values are high, more cover image coefficients are used for data
hiding which leads to more distortion. We have observed that as
the threshold values are increasing further and further, the change
in the embedding capacity and the visual quality are decreased. At
one particular point the effect of thresholds on the embedding
capacity and PSNR reached almost negligible.

For example, in Fig. 6(a) the PSNR and bit rate of Haar transform
at thresholds [�1, 1) are 48.31 dB and 0.1 bpp respectively. As the
thresholds increased one position the PSNR valued decreased
nearly 3.4 dB and the bit rate increased nearly 0.085 bpp. If per-
form the same operation between the threshold values [�15, 15)
and [�16, 16), the PSNR change decreased by 0.18 dB and bitrate
increased by 0.01 bpp. From the experiment, the threshold values
greater than [�15, 15) has minimum effect on embedding capacity
and PSNR. Over all for lower threshold values the transforms like
Haar, 2/6 and 2/10 performed well as compared to the larger scal-
ing factor transforms. Similarly for high threshold values, the larger
scaling factor wavelets like 13/7-C, 6/14, 9/7-M, 5/11-C, and 9/7-F
achieved a good trade-off between bit-rate and PSNR. On the
whole, 2/10 and 2/6 gave relatively better bit rate as well as PSNR
for all thresholds.

The performance of wavelet transforms concerning SSIM and
bit rate are shown in Fig. 7. Similar to Fig. 6, here also we calculated
SSIM values for 30 different thresholds. Transforms like Haar, 2/6
and 2/10 maintaining relatively a constant and a high SSIM fol-
lowed by 13/7-C, 6/14, 9/7-F and 5/11-C transforms. From the
Fig. 7, it is clear that 13/7-T provides a relatively low SSIM value
because of its high scaling factor values.

The performance of the wavelets compared with other state of
the art techniques is shown in Table 5. For this evaluation, the
images Lena, Baboon, Plane, and Boat are considered. The last col-
umn represents the average PSNR and bit rate of existing method
and transform. From Table 5 Airplane image it is noted that the
ysis of integer wavelet transforms in reversible data hiding using threshold
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Table 3
PSNR and bit rate for thresholds [�1 1).

Image Metric Haar 5/3 2/6 9/7-M 2/10 5/11-C 5/11-A 6/14 13/7-T 13/7-C 9/7-F

Elaine PSNR 48.31 48.28 48.17 48.07 48.12 48.12 48.20 48.04 47.69 47.96 45.29
Bit rate (bpp) 0.100 0.112 0.105 0.112 0.104 0.110 0.112 0.109 0.094 0.115 0.118

Baboon PSNR 48.21 48.14 48.03 47.93 47.98 47.95 48.04 47.96 47.38 47.84 45.46
Bit rate (bpp) 0.050 0.064 0.056 0.067 0.057 0.065 0.066 0.059 0.059 0.065 0.067

Fruits PSNR 48.36 48.27 48.22 48.05 48.17 48.10 48.22 48.08 47.70 47.98 45.21
Bit rate (bpp) 0.124 0.137 0.134 0.139 0.134 0.136 0.137 0.138 0.104 0.142 0.146

Home PSNR 48.50 48.05 48.29 47.87 48.23 47.92 47.98 48.14 47.29 47.83 45.37
Bit rate (bpp) 0.206 0.224 0.219 0.234 0.220 0.223 0.225 0.218 0.223 0.236 0.238

House PSNR 48.48 48.03 48.34 47.84 48.26 47.89 47.97 48.14 47.31 47.80 45.30
Bit rate (bpp) 0.202 0.224 0.223 0.240 0.227 0.227 0.228 0.221 0.229 0.241 0.236

Tiffany PSNR 48.45 48.25 48.29 48.03 48.27 48.08 48.19 48.16 47.50 47.91 45.25
Bit rate (bpp) 0.174 0.195 0.187 0.201 0.189 0.195 0.196 0.189 0.186 0.203 0.205

Lena PSNR 48.39 48.23 48.25 48.02 48.20 48.04 48.17 48.13 47.50 47.94 45.25
Bit rate (bpp) 0.153 0.184 0.171 0.188 0.173 0.184 0.185 0.176 0.174 0.188 0.191

Plane PSNR 48.53 48.10 48.36 47.89 48.30 47.96 48.06 48.20 47.43 47.84 45.35
Bit rate (bpp) 0.218 0.239 0.235 0.258 0.238 0.243 0.243 0.234 0.246 0.259 0.258

Boat PSNR 48.33 48.23 48.22 48.01 48.18 48.08 48.16 48.09 47.55 47.94 45.26
Bit rate (bpp) 0.106 0.126 0.119 0.131 0.121 0.130 0.129 0.126 0.107 0.134 0.137

Tanker PSNR 48.31 48.16 48.15 47.95 48.09 47.97 48.06 48.01 47.41 47.86 45.36
Bit rate (bpp) 0.099 0.119 0.109 0.120 0.109 0.119 0.120 0.110 0.111 0.120 0.125

Tree PSNR 48.45 48.10 48.21 47.87 48.17 47.98 48.08 48.09 47.41 47.84 45.41
Bit rate (bpp) 0.156 0.158 0.157 0.163 0.156 0.155 0.159 0.150 0.150 0.164 0.165

Average PSNR 48.39 48.17 48.23 47.96 48.18 48.01 48.10 48.09 47.47 47.89 45.32
Bit rate (bpp) 0.144 0.162 0.156 0.168 0.157 0.162 0.164 0.157 0.153 0.170 0.171

Table 4
Average PSNR and bit rate for all thresholds.

Image Metric Haar 5/3 2/6 9/7-M 2/10 5/11-C 5/11-A 6/14 13/7-T 13/7-C 9/7-F

Elaine PSNR (dB) 35.14 35.22 35.74 35.46 35.76 35.28 35.28 35.81 34.36 35.54 35.14
Bit rate (bpp) 0.578 0.621 0.590 0.610 0.586 0.616 0.620 0.602 0.579 0.618 0.578

Baboon PSNR (dB) 32.8 32.32 33.00 32.47 33.01 32.37 32.35 33.10 31.75 32.61 32.80
Bit rate (bpp) 0.390 0.462 0.422 0.463 0.423 0.468 0.467 0.434 0.444 0.464 0.390

Fruits PSNR (dB) 36.36 36.58 37.10 36.71 37.13 36.55 36.61 37.08 35.38 36.82 36.36
Bit rate (bpp) 0.631 0.674 0.647 0.669 0.646 0.674 0.676 0.655 0.650 0.669 0.631

Home PSNR (dB) 36.84 36.45 37.05 36.46 37.00 36.35 36.46 36.99 35.58 36.63 36.84
Bit rate (bpp) 0.669 0.702 0.686 0.704 0.686 0.705 0.705 0.688 0.702 0.704 0.669

House PSNR (dB) 35.51 35.24 36.12 35.49 36.22 35.4 35.34 36.3 34.99 35.68 35.51
Bit rate (bpp) 0.603 0.666 0.642 0.672 0.646 0.674 0.671 0.650 0.669 0.672 0.603

Tiffany PSNR (dB) 37.15 37.26 37.74 37.43 37.72 37.29 37.26 37.85 36.38 37.55 37.15
Bit rate (bpp) 0.670 0.700 0.686 0.701 0.685 0.702 0.701 0.689 0.695 0.701 0.670

Lena PSNR (dB) 36.58 37.15 37.72 37.45 37.89 37.34 37.27 37.97 36.72 37.61 36.58
Bit rate (bpp) 0.657 0.710 0.692 0.714 0.696 0.716 0.714 0.700 0.711 0.714 0.657

Plane PSNR (dB) 37.13 37.13 37.88 37.45 38.02 37.33 37.28 38.04 36.91 37.62 37.13
Bit rate (bpp) 0.662 0.707 0.692 0.714 0.697 0.714 0.712 0.698 0.712 0.714 0.662

Boat PSNR (dB) 35.08 35.09 35.73 35.35 35.86 35.26 35.19 35.90 34.39 35.50 35.08
Bit rate (bpp) 0.585 0.649 0.617 0.649 0.618 0.654 0.653 0.627 0.635 0.649 0.585

Tanker PSNR (dB) 35.26 35.14 35.63 35.27 35.65 35.17 35.15 35.69 34.37 35.41 35.26
Bit rate (bpp) 0.614 0.672 0.638 0.670 0.639 0.673 0.673 0.646 0.659 0.670 0.614

Tree PSNR (dB) 34.48 33.87 34.62 34.02 34.61 33.91 33.95 34.62 33.29 34.12 34.48
Bit rate (bpp) 0.524 0.583 0.550 0.586 0.548 0.590 0.589 0.552 0.574 0.586 0.524

Average PSNR (dB) 35.67 35.59 36.21 35.78 36.26 35.66 35.65 36.3 34.92 35.92 35.67
Bit rate(bpp) 0.598 0.650 0.624 0.65 0.625 0.653 0.653 0.631 0.639 0.651 0.598
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average embedding rate of all integer transforms and the PSNR are
nearly 44% and 3 dB higher than the Haar DWT based RDH tech-
nique (Chan et al., 2009). Also, it achieves nearly 3 dB higher PSNR
with a similar embedding rate compared to the integer wavelet
transform based histogram shifting method (Wu and Zheng,
2011). Similar results can be observed with other wavelet based
RDH systems (Jinna and Ganesan, 2010; Yang et al., 2007).

A comparison between the proposed 9/7 integer wavelet and
the DWT based RDH method (Huang and Chang, 2011) is shown
in Table 6. From the Table 6, it is observed that the integer wavelet
transforms provide very good PSNR with relatively same embed-
ding capacities compared to standard wavelets. Between the two
proposed 9/7 integer wavelets, 9/7-M provides better PSNR but
slightly lower embedding capacities compared to 9/7-F because
of its smaller scaling factors.
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
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The evaluation of the proposed system with respect to SSIM is
shown in Table 7. For comparison, four standard images of Lena,
Baboon, Airplane, and Boat are selected. DCT based RDH systems
(Nikolaidis, 2015; Lin, 2012) , integer wavelet transform and
genetic algorithm based techniques (Arsalan et al., 2012) are con-
sidered for comparison. Here the last row represents the average
bit rate, PSNR and SSIM values of each image with all integer wave-
let transforms. Compared to (Nikolaidis, 2015), the average embed-
ding rate is nearly four times higher with a 5.14 dB increase in
PSNR and 0.1049 increase in SSIM. Compared to (Arsalan et al.,
2012), the proposed method provides nearly double the embed-
ding rate with a better PSNR and slightly higher SSIM for Lena
image.

Table 8 presents the difference between the histogram
distributions of cover image and the stego image. The shown
ysis of integer wavelet transforms in reversible data hiding using threshold
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(a) Elaine (b)Baboon 

(c) Lena (d) Airplane 

(e) Peppers (f) Tree 

Fig. 6. Performance evaluation concerning bit rate and PSNR.
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values are taken from the average of 30 different threshold
values. Here we calculated the pairwise Euclidean distance
between the pixel intensity and its bin count between the
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
based histogram modification. Journal of King Saud University – Computer and
cover image and stego image histograms. It measured the devi-
ation of the stego image histogram from the cover image his-
togram. The smaller difference suggests the smaller deviation
ysis of integer wavelet transforms in reversible data hiding using threshold
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(a) Baboon (b)Elaine 

(c)Lena (d)Airplane 

(e)Peppers (f) Tree 

Fig. 7. Performance evaluation concerning bit rate and SSIM.
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in the stego image histogram and the larger deviation repre-
sents the larger change. From Table 8 it can be noted that,
the average values of all transforms are almost identical to
each other. Specifically, the Tanker image has recorded highest
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
based histogram modification. Journal of King Saud University – Computer and
deviation in the histogram distribution. Without considering
the Tanker image the average deviation of all transforms is
near to 0.0137, which is almost ten times lesser than the Tan-
ker image histogram deviation.
ysis of integer wavelet transforms in reversible data hiding using threshold
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Table 5
Performance comparison with respect to PSNR and bit rate.

Method Lena Baboon Airplane Boat Average

Bit rate
(bpp)

PSNR
(dB)

Bit rate
(bpp)

PSNR
(dB)

Bit rate
(bpp)

PSNR
(dB)

Bit rate
(bpp)

PSNR
(dB)

Bit rate
(bpp)

PSNR
(dB)

Ni et al. (2006) 0.020 48.20 0.020 48.20 0.228 48.70 0.027 48.20 0.074 48.325
Tai et al. (2009) 0.085 48.32 0.037 48.21 0.173 48.53 0.097 48.35 0.098 48.353
Chan et al. (2009) 0.152 44.78 0.039 39.09 0.167 44.61 0.003 45.51 0.09 43.498
Wu (2011) 0.161 44.25 0.056 44.27 - - 0.129 44.23 0.115 44.25
Jinna and Ganesan

(2010)
0.150 45.99 - - 0.400 42.35 - - 0.275 44.17

Yang (2007) 0.127 49.77 0.047 51.28 0.298 44.98 0.137 49.75 0.152 48.945
Haar 0.153 48.39 0.050 48.21 0.218 48.53 0.106 48.33 0.132 48.365
5/3 0.183 48.22 0.064 48.13 0.239 48.09 0.126 48.23 0.153 48.168
2/6 0.171 48.25 0.056 48.03 0.235 48.35 0.118 48.21 0.145 48.21
9/7 0.191 45.24 0.067 45.45 0.258 45.34 0.136 45.25 0.163 45.32
2/10 0.173 48.20 0.057 47.98 0.238 48.30 0.121 48.18 0.147 48.165
5/11-C 0.184 48.04 0.065 47.95 0.243 47.96 0.130 48.08 0.156 48.008
5/11-A 0.185 48.17 0.066 48.04 0.243 48.06 0.129 48.16 0.156 48.108
6/14 0.176 48.13 0.059 47.96 0.234 48.20 0.126 48.09 0.149 48.095
13/7-T 0.174 47.50 0.059 47.38 0.246 47.43 0.107 47.55 0.147 47.465
13/7-C 0.188 47.94 0.065 47.84 0.259 47.84 0.134 47.94 0.162 47.89
9/7-F 0.191 45.25 0.067 45.46 0.258 45.35 0.137 45.26 0.163 45.33

Table 6
Performance comparison between DWT (9/7) and integer wavelets (9/7-F, 9/7-M).

Image Haung and Chang (2011) 9/7-F 9/7-M

PSNR (dB) Bit rate (bpp) PSNR (dB) Bit rate (bpp) PSNR (dB) Bit rate (bpp)

Boat 31.41 0.149 45.24 0.136 48.01 0.131
Airplane 27.84 0.150 45.34 0.258 47.89 0.257
Lena 33.08 0.152 45.24 0.191 48.01 0.187

Table 7
Performance with respect to SSIM and bit rate.

Method/Transform Lena Baboon Airplane Boat Average

Bit rate (bpp) SSIM Bit rate (bpp) SSIM Bit rate (bpp) SSIM Bit rate (bpp) SSIM Bit rate (bpp) SSIM

Arsalan et al. (2012) 0.200 0.9920 0.100 0.9983 � � � � 0.15 0.9952
Lin (2012) 0.236 0.9801 0.094 0.9929 0.484 0.9734 0.297 0.9751 0.2778 0.9804
Haar 0.386 0.9985 0.148 0.9993 0.468 0.9984 0.202 0.9992 0.301 0.9989
5/3 0.460 0.9953 0.127 0.9984 0.535 0.9952 0.241 0.9970 0.3408 0.9965
2/6 0.482 0.9985 0.111 0.9997 0.501 0.9984 0.226 0.9993 0.33 0.999
9/7-M 0.464 0.9949 0.127 0.9983 0.441 0.9962 0.247 0.9974 0.3198 0.9967
2/10 0.433 0.9989 0.112 0.9997 0.505 0.9984 0.229 0.9993 0.3198 0.9991
5/11-C 0.463 0.9951 0.129 0.9983 0.542 0.9952 0.246 0.9975 0.345 0.9965
5/11-A 0.464 0.9952 0.129 0.9984 0.542 0.9952 0.245 0.9975 0.345 0.9966
6/14 0.439 0.9979 0.115 0.9994 0.506 0.9978 0.238 0.9988 0.3245 0.9985
13/7-T 0.441 0.9918 0.117 0.9997 0.425 0.9948 0.208 0.9953 0.2978 0.9954
13/7-C 0.465 0.9955 0.128 0.9984 0.441 0.9965 0.253 0.9975 0.3218 0.997
9/7-F 0.477 0.9922 0.132 0.9975 0.440 0.9936 0.258 0.9954 0.3268 0.9947

Table 8
Difference in the histogram distribution.

Image Haar 5/3 2/6 9/7-M 2/10 5/11-C 5/11-A 6/14 13/7-T 13/7-C 9/7-F

Elaine 0.0063 0.0061 0.0063 0.0062 0.0063 0.0063 0.0062 0.0063 0.0063 0.0062 0.0062
Baboon 0.0082 0.0077 0.0076 0.0075 0.0074 0.0075 0.0076 0.0072 0.0072 0.0074 0.0075
Fruits 0.0055 0.0053 0.0053 0.0053 0.0052 0.0053 0.0052 0.0054 0.0058 0.0052 0.0053
Home 0.0418 0.0444 0.0433 0.0445 0.0431 0.0455 0.0449 0.0443 0.0499 0.0448 0.0445
House 0.0117 0.0124 0.0118 0.0124 0.0118 0.0126 0.0126 0.0119 0.0143 0.0130 0.0124
Tiffany 0.0108 0.0101 0.0104 0.0099 0.0103 0.0099 0.0100 0.0101 0.0103 0.0100 0.0099
Lena 0.0069 0.0062 0.0062 0.0061 0.0061 0.0062 0.0062 0.0059 0.0068 0.0062 0.0061
Plane 0.0095 0.0084 0.0084 0.0079 0.0081 0.0080 0.0083 0.0080 0.0086 0.0080 0.0079
Boat 0.0169 0.0167 0.0166 0.0167 0.0165 0.0165 0.0166 0.0164 0.0169 0.0166 0.0167
Tanker 0.1353 0.1346 0.1346 0.1345 0.1345 0.1345 0.1346 0.1344 0.1346 0.1345 0.1345
Tree 0.0204 0.0197 0.0188 0.0190 0.0187 0.0191 0.0192 0.0190 0.0208 0.0190 0.0190
Average 0.0248 0.0247 0.0245 0.0245 0.0244 0.0247 0.0247 0.0244 0.0256 0.0246 0.0245
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Table 9
Performance with respect to auxiliary data.

Image Wavelet PSNR (dB) Net data bits Extra bits Image PSNR (dB) Net data bits Extra bits

Airplane Lena
Chang et al. (2010) 43.71 74,656 54,416 43.43 62,784 68,288
Tai et al. (2009) 48.53 45,472 20 48.32 22,377 20
Liu et al. (2015) 45.26 74,332 4,568 44.77 50,077 4,240
Haar 43.22 122,748 0 45.19 74,015 0
5/3 44.56 111,732 0 44.49 88,999 0
2/6 45.57 104,583 0 45.21 83,354 0
9/7-M 44.52 115,793 0 44.46 90,259 0
2/10 43.31 132,434 0 45.21 83,996 0
5/11-C 44.43 113,123 0 44.36 89,636 0
5/11-A 44.51 113,259 0 44.44 89,758 0
6/14 43.22 132,733 0 45.03 85,193 0
13/7-T 43.92 111,612 0 43.68 84,590 0
13/7-C 44.58 115,859 0 44.48 90,758 0
9/7-F 42.60 115,413 0 42.31 92,798 0

Baboon Boat
Chang et al. (2010) 43.43 12,568 118,504 43.22 48,888 82,184
Tai et al. (2009) 48.21 9,818 120 48.35 25,412 20
Liu et al. (2015) 48.63 9,317 1,816 44.58 60,385 3,968
Haar 44.51 26,297 74 42.05 74,905 50
5/3 43.69 33,491 136 44.20 63,225 39
2/6 44.48 29,204 72 44.90 59,428 0
9/7-M 43.68 33,441 128 44.15 64,926 34
2/10 44.47 29,516 76 44.92 60,196 25
5/11-C 43.59 33,820 132 44.09 64,561 34
5/11-A 43.63 33,943 134 44.13 64,301 30
6/14 44.28 30,204 113 44.74 62,476 22
13/7-T 42.89 30,780 143 43.39 54,541 29
13/7-C 43.65 33,687 129 44.14 66,495 41
9/7-F 42.04 34,807 160 42.19 67,892 49
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Table 9 gives a comparison with respect to auxiliary data,
embedding capacity and image quality. Here the term ‘‘net data
bits” refers to the secret data hidden in the stego image and the
term ‘‘extra bits” refers to the auxiliary data. From Table 9 it can
be noted that as compared to (Chang et al., 2010; Tai et al., 2009;
Liu et al., 2015) all the transforms required very small number of
secret bits as auxilary data. As compared to the discrete haar wave-
let transform based data hiding (Chang et al., 2010), the proposed
integer transforms require very less amount of auxiliary data.
Hence from the Table 9 a conclusion can be made that, the pro-
posed data hiding technique achieves perfect restoration of the
cover image with very small auxiliary data compared to state of
art RDH techniques.

From the results, we have observed that, the stego image over-
flow and underflow pixels depends on the scaling factors of the
integer wavelet transforms. The transforms with higher scaling
factors like 3/7-T and 9/7-F generated the more out bounded pixels
are compared with the lower scaling factor transforms like Haar,
5/3, 2/6 and 2/10. From all the results, it is obvious that a single
transform cannot perform efficiently for all the images with all
threshold combinations. The proposed methodology infers, that
based on the user’s need, proper integer transformmust be chosen.
5. Conclusions

A threshold-based histogram shifting method has been success-
fully implemented in transform domain RDH. Several effective
reversible integer transforms like 5/3, 2/6, 9/7-M, 2/10, 5/11-C,
5/11-A, 6/14, 13/7-T, 13/7-C and 9/7-F wavelet transforms
employed for image coding and were duly adopted for the pro-
posed RDH technique. Flag array technique has been employed
as an overflow compensation mechanism. The performance of
the integer wavelet transforms is compared with both spatial as
well as transforms domain state of the art RDH methods. Exclu-
sively, the performance with conventional DWT based methods
and its counterpart integer wavelet versions are compared. It leads
Please cite this article in press as: Shaik, A., Thanikaiselvan, V. Comparative anal
based histogram modification. Journal of King Saud University – Computer and
to the conclusion that the smaller scaling factor transforms like
Haar, 2/6, 2/10 give higher PSNR at lower bit rates and the higher
scaling factor transforms like 13/7-T and 9/7-F give lower PSNR
images, and the transforms like 5/3, 9/7-M, 5/11-C, 5/11-A and
13/7-C give a medium performance. But for higher embedding
rates, the transforms like 13/7-C, 6/14, 9/7-M, 5/11-C and 9/7-F
perform better than Haar, 13/7-T and 5/3. As an inference, among
all the eleven transforms, 2/6 and 2/10 provide consistent results.
But clearly, no single transform can perform the best for all of the
images. To suit individual user requirement specific wavelet trans-
form must be chosen. One can see that this analysis leads to a bet-
ter understanding of the relationship between the embedding
capacity and the stego image quality whenever different wavelets
were utilized.
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