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Research in the field of remote sensing of the environment is valuable and informative. Hyperspectral (HSP) and multispectral (MSP) satellite 

images have been used for different remote sensing applications. Land Use/Land Cover (LU/LC) change classification has been considered as 

important research in the field of remote sensing environment. This review aims to identify the various LU/LC applications, remote sensing satel-

lites, geospatial software, pre-processing techniques, LU/LC classification, clustering, spectral unmixing, landscape change models and evaluation 

metrics. The main objective of this review is to present the more frequently used techniques for analysing LU/LC change with MSP and HSP satel-

lite images. An aim of this review is to motivate future researchers to work efficiently with MSP and HSP satellite images in the field of remote 

sensing.
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Introduction
Analysing multispectral (MSP) and hyperspectral (HSP) 
satellite images in the field of remote sensing and the 
geographic information system (GIS) environment have 
become some of the hottest topics among researchers 
around the world. Everyday changes on the Earth’s 

surface have a significant impact on society, and this 
has been the driver for researchers to work on the land 

use/land cover (LU/LC) change problem. The informa-

tion gathered from various satellites has been used by 
researchers to map the Earth’s features and infrastruc-

tures. Land use and land cover are two different terms 
to describe the Earth’s surface. The land cover area 

represents the forest-covered areas, wetlands, grass-

lands, water-covered areas, mountainous regions and 

deserts etc. Specific events and changes that take place 
in land cover represent changes in land use categories, 

such as urbanisation, shopping centres, reservoirs and 
parks etc.1 Observing the specific LU/LC changes that 
take place on the Earth’s surface has been a significant 
problem for researchers. Time series satellite images 

have been acquired and analysed through various 

stages of LU/LC, namely pre-processing, classification 
and prediction, to solve the LU/LC change detection 
problem.2
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A thematic representation of the LU/LC map with 

classified classes is considered an essential tool in visu-

alising LU/LC changes in the study area.3 Researchers 

use supervised and unsupervised machine learning 

algorithms to classify satellite images. Unsupervised, or 

clustering methods, include Fuzzy C Means clustering, 

Iterative Self-Organising Data Analysis (ISODATA) 

clustering, K-Means and Self-Organising Map (SOM) 

neural networks. Supervised, or classification, methods 
include Random Forest Classifiers (RFC), Support Vector 
Machines (SVM), k-Nearest Neighbour (kNN), Maximum 
Likelihood Classifier (MLC), Mahalanobis Distance 

Classifier, Parallelepiped Classifier and Minimum-
Distance Classifier.4 The LU/LC change prediction for 
a particular region or locality helps government offi-

cials, urban planners and forest departments to take 

the appropriate action to protect the land cover envi-
ronment. Landscape simulation models include GIS, 
machine learning and hybrid models. GIS models 
include Slope, Land use, Exclusion, Urban extension, 
Transportation and Hill shade (SLEUTH), Conversion of 
Land Use and its Effects (CLUE), State and Transition 
Simulation Model (STSM), GeoMod, Landscape 
Disturbance and Succession (LANDIS), Spatially Explicit 
Landscape Event Simulation (SELES), Land Change 

Modeller (LCM) and LTM (Land Transformation Model). 
Machine learning models include Cellular Automata (CA), 

Linear Regression (LR), SVR (Support Vector Regression), 
Logistic Regression, Markov Chain, Box–Jenkins, 
Artificial Neural Network (ANN) and Random Forest 

(RF). Deep learning and boosting were also considered 
as a sub-field of the machine learning model. Many 

researchers have used hybrid models to predict LU/LC 

changes, including Multilayer Perceptron-Markov Chain 
(MLP-MC), Regression Tree-CA, CLUE-MC, CA-MC, 
ANN-CA and LR-MC.5,6

LU/LC change analysis in the field of remote sensing has 
been studied and observed by many researchers around 

the world. Time series LU/LC analysis of the Zagros 

forest was observed between 1992 and 2016 using MSP 
satellite images. The authors used pre-processing tech-

niques, such as atmospheric and geometric corrections, 
to correct the noise present in the satellite images. The 

MSP satellite images were classified into forest, range-

land, agriculture and built-up areas with the MLC algo-

rithm. The MLP neural network was used to calibrate the 
non-linear relationship between the explanatory vari-
ables. In order to analyse the LU/LC change, researchers 

used the MC model to compute the transition probability 
between the LU/LC maps of 2002 and 2012.6

Continuous classification of LU/LC changes using MSP 
satellite data of the Qingliu River catchment in south-

east China was achieved with the Continuous Change 
Detection and Classification (CCDC) algorithm. The 

correlation between forest coverage and climatic factors 
was determined by calculating the Enhanced Vegetation 
Index (EVI). Use of the RFC method resulted in higher 
classification accuracy.8

MSP satellite images of the Hugumburda national 
forest priority area were acquired during 1985, 2000 

and 2015. Digital Elevation Model (DEM) data from the 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) were acquired and used to derive 

topographic variables like slope, elevation and aspect. 
The authors validated the accuracy of the MLC by 

using Google Earth images and data from the Ethiopian 
Mapping Agency.9 The Classification and Regression Tree 
(CART) method was used for processing and analysing 

the satellite images. Change-vector analysis in poste-

rior probability space was used to evaluate the charac-

teristics of the satellite images over different periods. 
For LU/LC change detection, the Histogram Maximum 
Entropy method was used. The Normalised Difference 
Vegetation Index (NDVI) measures the annual coverage 
of vegetation on Earth.10 The LU/LC change at Shirgah, 

in northern Iran, was analysed by Multivariate Adaptive 
Regression Spline (MARS), CART and RF classification 
techniques. The post-classification performed to validate 
the classified images gave accurate results.11 Pixel, sub-
pixel and object-based classification methods are used 
to produce a thematic map of different time-series data. 
An accuracy assessment was performed to validate the 

detailed LU/LC map against reference or ground truth 

data.1,3,4,6–57 CA and Markov Chain Analysis are the most 

used hybrid models for monitoring features that change 

in time and space.6,22–27,31,33,53,58

The quality of spectral unmixing results mainly 
depends on the spectral library. Unmixing techniques 
include Multiple Endmember Spectral Mixture Analysis 
(MESMA), Linear Spectral Mixture Model, Constrained 
Least Squares Linear Mixture Model, Unconstrained 
Linear Spectral Mixture Model, Mixture Tuned Matched 
Filtering Method, Constrained Linear Spectral Mixture 
Model and Monte Carlo Spectral Mixture Analysis 
(MCSMA).59,60 The authors performed LU/LC classifica-

tion for HSP images of Singapore and the coastal Jambi 
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province on the island of Sumatra in Indonesia. Principal 
Component Analysis (PCA) along with the ISODATA 
classification method were used. Pixel unmixing was 
used to determine the abundance of each end member 

class.61 An HSP image of Bangalore city was analysed 
using per-pixel classifiers like Spectral Angular Mapper 
(SAM) and SVM. Atmospheric effects in the HSP images 
were corrected using the Fast Line-of-sight Atmospheric 

Analysis of Hypercubes (FLAASH) module, and the 
authors reduced the dimensionality of the data with 

the Minimum Noise Fraction (MNF) transformation.62 

LU/LC classes were determined by SAM and SVM for 
HSP satellite data of the Kozhikode district, Kerala. The 
MODTRAN-based FLAASH module was used to correct 
the atmospheric effects and PCA provided the discrete 
reflectance values.63

In this review we summarise and explain the methods 
frequently used to analyse LU/LC change. Detailed 

review of LU/LC change analysis by other researchers 

has helped us by providing the questions below.
1) What are all the important LU/LC change application 

areas?

2) How and where to collect the data to analyse the 
LU/LC change for a particular area?

3) What geospatial software is available to process the 
satellite images?

4) What are the methods used for satellite image pre-

processing?

5) What are the LU/LC classifications, clustering and 

spectral unmixing methods used by researchers?
6) What are all the performance metrics used by 

researchers to evaluate satellite images?

7) What are the landscape change models used for fore-

casting past, present and future LU/LC changes?
This review answers these questions to help future 

researchers in the field of remote sensing of the environ-

ment. The workflow of LU/LC change analysis is shown 
in Figure 1. This includes data acquisition of MSP and 
HSP satellite images, pre-processing of those satellite 
images, spectral analysis techniques, accuracy assess-

ment using classified and ground truth data, and finally 
LU/LC change analysis. The rest of the review provides 

detailed information in sections on LU/LC applications 
and the study area selection, data acquisition, geospatial 
software tools, pre-processing techniques, some LU/LC 
classification and clustering methods, spectral unmixing 
techniques, landscape change models and evaluation 

metrics.

LU/LC applications and study 
area selection
The modification of the Earth’s surface or natural envi-
ronment results in LU/LC change. We can see LU/LC 

change happening during the loss or development of 

forests, agricultural land, bodies of water and urban areas. 

Causes of LU/LC change are shown in Figure 2.

The initial process in LU/LC change research is selecting 
the study area. Many researchers around the world have 

carried out LU/LC change analysis research over many 

years. Some of the study areas for LU/LC analysis have 

been North-eastern Latvia,1 Iranian Northern Zagros 

Data Acquisition
(Multispectral and

Hyperspectral Images)

Pre-processing

Classification or
Supervised Learning

Spectral
Unmixing

Clustering or
Unsupervised Learning

Spectral Analyses

LU/LC Change Analysis

Ground
Truth Data

Accuracy
Assessment

Figure 1. General flow of LU/LC change classification 
process.
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Urban
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Figure 2. Causes of LU/LC.
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forests,7 Northern Ethiopia,9 Mexico,14 Germany,18 

China,23 Iran,25 Egypt,27 United Arab Emirates,31 India,32 

Iraq,37 Malaysia,41 south-western Australia,44 Eastern 

Region of Ghana,50 Dubai,52 south-western Nigeria,54 

Indonesia,55 Pakistan56 and Sri Lanka.57 The main objec-

tive of researchers in choosing their study area depends 
on the causes of LU/LC change (Figure 2), and their work 

assists government, forest departments, land resource 

and urban planners in taking the necessary actions to 
protect the Earth’s environment.

Data acquisition
Information about the Earth’s environment is collected 
through sources including aerial photographs, Google 
Maps, ground surveys and satellite images. The impor-

tance of working in the field of remote sensing lies in 
providing good resolution MSP and HSP satellite images. 
Satellite images are downloaded with datum coordinates 

in the GeoTIFF format. The satellite data are selected 
based on the study area. Time series data collected 

from different satellites have been used to study various 
examples of LU/LC. The researchers used many datasets 
to analyse LU/LC change, and Table 1 shows some of the 

datasets and their characteristics.

Geospatial software
MSP and HSP satellite images are analysed and processed 
through different geospatial software tools. Some of these 
tools are described in Table 2: ERDAS Imagine, Quantum 
GIS QGIS, IDRISI, ArcGIS, ENVI, Matlab, Python and 
Rstudio. Open-source software like Matlab, Python and 
Rstudio have an advantage for researchers in finding new 
algorithms to work with MSP and HSP satellite images. 
The QGIS geospatial software is also open-source, and 
it helps researchers to work efficiently with the HSP and 
MSP satellite images.

Satellite image 

database

Spatial and spectral information Purpose Data source

No. of bands/
band name

WL/CWL range RL (m)

Earth Observing-1 (EO-1)
Advanced Land 

Imager (ALI)64,65

B1: Panchromatic 0.48–0.69 μm 10 The multispectral instrument helps to 
reduce the cost and size of the Landsat-

type instruments. ALI’s multispectral 
bands are similar to those of Landsat in 

many respects.

USGS:  
earthexplorer.
usgs.gov

B2: Blue 0.433–0.453 μm 30

B3: Blue 0.45–0.515 μm 30

B4: Green 0.525–0.605 μm 30

B5: Red 0.633–0.690 μm 30

B6: NIR 0.775–0.805 μm 30

B7: NIR 0.845–0.890 μm 30

B8: SWIR 1.20–1.30 μm 30

B9: SWIR 1.55–1.75 μm 30

B10: SWIR 2.08–2.35 μm 30

Hyperspectral 
Imager Hyperion 
61–63,65–67

220 Bands 0.4–2.5 μm 30m Helps to calibrate the high quality HSP 
satellite data that supports the evalua-

tion of the Earth observing missions.

USGS:  
earthexplorer.
usgs.gov

Linear etalon 

imaging spec-

trometer array 

Atmospheric 

Corrector (LAC)65

256 Bands 0.9–1.6 μm 250m Atmospheric water absorption lines are 
monitored using LAC and it helps in 

correcting the atmospheric effects MSP 
satellite imagers on Landsat Enhanced 

Thematic Mapper ETM+.

Resourcesat-1, Resourcesat-2

Linear Imaging 

Self-Scanning 

Sensor (LISS-III)32, 

34,36,40,42,46–48,53, 

62,66

B2: Green 0.52–0.59 μm 23.5 Helps in analysing agricultural harvest 
monitoring, water resource consump-

tion, forest mapping and rural/urban 
infrastructure expansion.

Bhuvan Indian 

Geo-Platform 
of ISRO: www.

bhuvan.com

B3: Red 0.62–0.68 μm 23.5

B4: NIR 0.77–0.86 μm 23.5

B4. SWIR 1.55–1.75 μm 23.5

Table 1. Satellite image database and its characteristics.
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Landsat series

Landsat 8–
Operational Land 
Imager (OLI) 

and the Thermal 

Infrared (TI) 

Sensor7,10,12–14, 16–1

9,22,23,25,26,35,37,40,44,

49,52,54,68

B1: Coastal/
Aerosol

0.43–0.45 μm 30 Helps in analysing different kinds of LU/
LC changes like deforestation, agri-
culture development, the evolution of 
built-up areas and loss of wetlands.

USGS:  
earthexplorer.
usgs.govB2: Blue 0.45–0.51 μm 30

B3: Green 0.53–0.59 μm 30

B4: Red 0.64–0.67 μm 30

B5: NIR 0.85–0.88 μm 30

B6: SWIR 1 1.57–1.65 μm 30

B7: SWIR 2 2.11–2.29 μm 30

B8: Panchromatic 0.50–0.68 μm 15

B9: Cirrus 1.36–1.38 μm 30

B10: TIRS 1 10.6- 11.19 μm 100

B11: TIRS 2 11.50–12.51 μm 100

Landsat 7 ETM+ 
Sensor4,6–9,11,13,14, 

16–18,22,24,28,30–32,35, 

43,44,52,54,57,64,68–76

B1: Blue 0.45–0.52 μm 30

B2: Green 0.52–0.60 μm 30

B3: Red 0.63–0.69 μm 30

B4: NIR 0.77–0.90 μm 30

B5: SWIR 1 1.55–1.75 μm 30

B6: TIRS 10.40–12.50 μm 60 

B7: SWIR 2 2.09–2.35 μm 30

B8: Panchromatic 0.52–0.90 μm 15

Landsat 4 & 

Landsat 5 

Multispectral 
Scanner (MSS) 

& Thematic 
Mapper (TM)1,6–12, 

14–16,18,19,22–28, 

31,33,35–37,39,44,49,53, 

54,56–58,67–70,72–75, 

77–81

B1: Blue 0.45–0.52 μm 30

B2: Green 0.52–0.60 μm 30

B3: Red 0.63–0.69 μm 30

B4: NIR 0.76–0.90 μm 30

B5: SWIR 1 1.55–1.75 μm 30

B6: TIRS 10.40–12.50 μm 120 

B7: SWIR 2 2.08–2.35 μm 30

Sentinel 2 missions
Sentinel- 2A and 
2B13,18,20,51

B1: Ultra blue 
Coastal and 

Aerosol

0.443 μm 60 Sentinel missions support the standard 
LU/LC change detection maps and help 
in finding leaf water and chlorophyll 
content.

Sentinel’s 
Scientific Data 
Hub:  
scihub.coper-

nicus.eu
B2: Blue 0.490 μm 10

B3: Green 0.560 μm 10 

B4: Red 0.665 μm 10

B5: Vegetation 
Red Edge

0.705 μm 20

B6: Vegetation 
Red Edge

0.740 μm 20

B7: Vegetation 
Red Edge

0.783 μm 20

B8: NIR 0.842 μm 10 

B8a: Narrow NIR 0.865 μm 20 

B9: Water 
Vapour

0.945 μm 60 

B10: SWIR-Cirrus 1.375 μm 60

B11: SWIR 1.610 μm 20

B12: SWIR 2.190 μm 20
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Moderate Resolution Imaging Spectroradiometer (MODIS)
NASA Terra 

and Aqua 

Satellite2,17,69,75

B1: Red 620–670 nm 250 MODIS data mainly reflect the activity 
that happens in the lower atmosphere 

and in the oceans.

Earth data: 
earthdata.

nasa.gov/

USGS, earth-

explorer.usgs.
gov

B2: NIR 841–876 nm 250

B3: Blue 459–479 nm 500

B4: Green 545–565 nm 500

B5: NIR 1230–1250 nm 500

B6: SWIR 1628–1652 nm 500

B7: SWIR 2105–2155 nm 500

B8: Ocean 
Colour

405–420 nm 1000

B9: Ocean 
Colour

438–448 nm 1000

B10: Ocean 
Colour

483–493 nm 1000

B11: Ocean 
Colour

526–536 nm 1000

B12: Ocean 
Colour

546–556 nm 1000

B13: Ocean 
Colour

662–672 nm 1000

B14: Ocean 
Colour

673–683 nm 1000

B15: Ocean 
Colour

743–753 nm 1000

B16: Ocean 
Colour

862–877 nm 1000

B17: Atmospheric 
Water Vapour

890–920 nm 1000

B18: 
Atmospheric 

Water Vapour

931–941 nm 1000

B19: Atmospheric 
Water Vapour

915–965 nm 1000

B20: Cloud 
Temperature

3.660–3.840 μm 1000

B21: Cloud 
Temperature

3.929–3.989 μm 1000

B22: Cloud 
Temperature

3.929–3.989 μm 1000

B23: Cloud 
Temperature

4.020–4.080 μm 1000

B24: 
Atmospheric 

Temperature

4.433–4.498 μm 1000

B25: Cloud 
Temperature

4.482–4.549 μm 1000

B26: Cirrus 
clouds water 

vapour

1.360–1.390 μm 1000

B27: Water 
Vapour

6.535–6.895 μm 1000

B28: Water 
Vapour

7.175–7.475 μm 1000
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B29: Cloud 
Properties

8.400–8.700 μm 1000

B30: Ozone 9.580–9.880 μm 1000

B31: Cloud 
temperature

10.780–
11.280 μm

1000

B32: Cloud 
temperature

11.770–
12.270 μm

1000

B33: Cloud top 
altitude

13.185–
13.485 μm

1000

B34: Cloud top 
Altitude

13.485–
13.785 μm

1000

B35: Cloud top 
altitude

13.785–
14.085 μm

1000

B36: Cloud top 
altitude

14.085–
14.385 μm

1000

Rapid Eye Earth Imaging System (REIS)
RapidEye 1–
TACHYS RAPID, 
RapidEye 2–MATI 
EYE, RapidEye 
3–CHOMA 
EARTH, RapidEye 
4–CHOROS 
SPACE, RapidEye 
5–TROCHIA 
ORBIT18

B1: Blue 440–510 nm 5 The RapidEye satellite helps in providing 

continuous multitemporal time series 
data for a specific location.

ESA Earth 

Online:  
earth.esa.int

B2: Green 520–590 nm 5

B3: Red 630–685 nm 5

B4: Red Edge 690–730 nm 5

B5: NIR 760–850 nm 5

Quick Bird
Ball Global 
Imaging System 

2000 (BGIS-
2000)3,45,52,55,67,76

B1: Blue 0.450-0.520 μm 2.4 Quick Bird acquires satellite imagery 

with high quality for creating land cover 
maps and land cover change detection.

Digital Globe: 
www.digital-

globe.com
B2: Green 0.520–0.600 μm 2.4

B3: Red 0.630–0.690 μm 2.4

B4: NIR 0.760–0.900 μm 2.4

B5: Panchromatic 0.450–0.900 μm 0.65

Digital Elevation Model (DEM)
ASTER Global 
DEM1, 7–9,12,13,19–25, 

27,31,32,36,39,43,44,53, 

54,57,58,69,77,78

B1: Green 0.520–0.60 μm 15 Terrain features like elevation, slope, 
aspect and surface temperature of land 

and emissivity are determined.

USGS:  
earthexplorer.
usgs.govB2: Red 0.630–0.690 μm 15

B3: NIR 0.760–0.860 μm 15

B4: NIR 0.760–0.860 μm 15

B5: SWIR 1.600–1.700 μm 30

B6: SWIR 2.145–2.185 μm 30

B7: SWIR 2.185–2.225 μm 30

B8: SWIR 2.235–2.285 μm 30

B9: SWIR 2.295–2.365 μm 30

B10: TIR 2.360–2.430 μm 30

B11: TIR 8.125–8.475 μm 90

B12: TIR 8.475–8.825 μm 90

B13: TIR 8.925–9.275 μm 90

B14: TIR 10.250–
10.950 μm

90

WL: wavelength, CWL: centre wavelength, RL: resolution, NIR: near infrared, SWIR: short wave infrared, TIRS: thermal infrared sensor
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Software Source Purpose Licence

Environment for 

Visualising Images 
(ENVI)6,7,12,13, 

15–17,23,25,26,29, 

31,37,40,41,45–47, 

49,51,56,61–63,66

Harris Geospatial Solutions: 
www.harrisgeospatial.com

This software is used for MSP and HSP satellite 
image pre-processing, classification, clustering, 
spectral unmixing and calculating LU/LC change. 
Spectral band calculation for different sets of 
satellite data is performed.

Proprietary

ArcGIS1,6,9,12, 

13,17,20–23,25,29, 

31–36,38–40,43, 48,53–

55,57,58,68, 70,72,78

Environmental Systems 

Research Institute (ESRI): 
www.esri.com/software/arcgis

The primary purpose of this software is to work 
with MSP and HSP satellites for pre-processing, 
classification, clustering and LU/LC change 
detection.

Proprietary

IDRISI6,7,13,14, 

22–27,31,35,39,53, 

55,58,68,76

Clark Labs: clarklabs.org The primary purpose of this software is pre-
processing, classification, clustering, modelling 
dependent and independent variables, and 

LU/LC change prediction can be made.

Proprietary

Earth Resources 

Data Analysis 

System (ERDAS 

IMAGINE)1,22, 24, 

29,30,32–36,39, 54, 

58,62,68,70,72, 76,78,79

Hexagon Geospatial: www.

hexagongeospatial.com
This software performs pre-processing 
operations, classification, clustering and LU/LC 
change detection.

Proprietary

Quantum GIS 
(QGIS)13, 18,43,54

QGIS Developers Team: qgis.

org

This software is used for performing pre-
processing, post-processing, classification, 
prediction and for calibrating the terrain 
features.

General Public License

Matlab2,11,46, 50,72 Math Works: www.mathworks.

com

This software is used for vector data 
representation, importing and exporting the 
geographic data. Matlab also performs map 

projections, coordinate transformations, web 
mapping, terrain and elevation analysis.

General Public License

Geospatial-
libraries

Purpose

Python10 Python Software Foundation: 
www.python.org

Rasterio Raster data handling General Public License

Scikit-learn Geospatial image 
classification, regression, 
dimensionality reductions etc.

Geospatial 
Data 

Abstraction 
Library (GDAL)

Geospatial data format 
conversion of raster and 

vector formats.

Fiona Reads and writes geospatial 
data.

Shapely Geometric calibration of 
geospatial data.

Geopandas Geospatial Image Overlay, 
Geo-referencing.

Matplotlib Plots 2D spatial data.

Remote 

Sensing and 

GIS Library 
(RSGSLib)

Object-based segmentation 
and classification on 
geospatial data.

Python Spatial 
Analysis 

Library (PySal)

Statistical modelling, spatial 
analysis and plotting.

Xarray Geospatial image time series 
stacks handling.

PyProj Functions coordinate 
reference system of each 

geospatial data.

Table 2. Geospatial software.
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Rstudio44,49 RStudio, Inc.: www.rstudio.com Sp Spatial data analysis General Public License

Rgdal Read spatial data

raster Raster data handling

ggplot2 Plots spatial data, spatial data 
visualisation.

viridis Provides accessible colour 
palettes for spatial data.

rasterVis Plotting

RStoolbox Raster time series data

Caret Classification and regression 
training of spatial data.

Pre-processing techniques
Pre-processing is an essential technique used to 
improve the quality of raw satellite data. The satel-

lite data can be calibrated by using the process 

of atmospheric, radiometric, geometric and topo-

graphic corrections. The uses and limitations of these 
methods are shown in Table 3. Researchers use image 

enhancement techniques to reduce the dimension-

ality of the satellite data: PCA, MNF, Independent 
Component Analysis (ICA) and wavelet dimension-

ality reduction.9,19,25,29,30,34,46,47,51,53,54,56,61–63,67,80,82 

Frequently used atmospheric correction methods are 
Dark Object Subtraction (DOS), Quick Atmospheric 

Correction (QUAC), FLAASH, Apparent Reflectance 
Model (ARM) and the F mask method.7–9,12,15,18–

20,23,28,29,33,35,37,40,41,45,49,61–63,66,67,70,74,75,79 Geometric 
corrections include Orthorectification, Geo-referencing, 
Image Registration, ASCII Coordinate Conversion and 
Resampling.1,7,13,16,22–26,29,30,32–37,40,47–49,53,55,69,70,79 

The Image De-striping, Rescaling, Point Spread 
Convolut ion and Lookup Table (LUT) Stretch 

methods have been used during radiometric correc-

tion.9,13,22,23,26,29,40,41,44,47,49,70,71,79 Topographic correc-

tions include normalise, level slicing, route intervisibility, 
surface difference and terrain elevation modelling of 
explanatory variables like slope, elevation and aspect 
etc.12,23,25,29,35,37,40,74,77,79

LU/LC classification and 
clustering

Every pixel in a pre-processed satellite image is a unique 
entity and it has to be labelled to obtain the LU/LC clas-

sification maps using different classification techniques. 

Researchers have proposed and worked with many 

algorithms for extracting LU/LC data from satellite data. 
Classification or supervised learning works with known 
information about the data and is used in classifying 

LU/LC classes. Clustering is used for unsupervised 

learning, since there is no prior information about the 
labelled data. A few LU/LC classifications, supervised 
and clustering unsupervised methods are explained and 
shown in Table 4.

Spectral unmixing
Spectral unmixing helps to identify pixels that contain 
more than one LU/LC type. The measured range of a 

mixed pixel is decomposed into a group of endmembers 
and their corresponding abundances, which specify the 

amount of each endmember within the pixel. Spectral 
unmixing methods are mostly used when processing HSP 
satellite images. The few spectral unmixing methods are 
explained and shown in Table 5.

Landscape change models
Landscape change models are used for forecasting past, 
current and future LU/LC changes. LU/LC change analysis 

results will assist urban planners in taking the necessary 

action to protect the LU/LC environment. Table 6 shows 
frequently used landscape change models. An often-used 
hybrid model for LU/LC change analysis is the MC-CA 

model.5–7,13,14,22–27,31,33,35,53,55,58,74,78 The LCM is an inno-

vative prediction tool frequently used by researchers for 
LU/LC change analysis. This simulation model in IDRISI 
software simulates the LU/LC change trends by using 
different methods like MC, MLP, LR and SimWeight, and 



10 Comprehensive Review on Land Use/Land Cover Change Classification in Remote Sensing

the modified K-nearest neighbour machine learning algo-

rithm.6,7,26,35,55 QGIS is an open-source tool that helps in 
analysing LU/LC changes across the world.43,54

Evaluation metrics
Researchers have used the information from satellite 

images to determine land cover. They used the spectral 

bands directly to identify the level of vegetation over the 
area and validated the LU/LC classified map with refer-
ence data. Distance metrics were used to identify the 
LU/LC class in satellite images through the evaluation 
of the spectral distance between the pixels. Researchers 
have also calculated the amount of LU/LC changes expe-

rienced between certain time periods.

Spectral distance metrics

By evaluating the spectral distance between the pixels 
in satellite images, LU/LC classes were assessed and this 

also helps to model spatial variables like slope, eleva-

tion, aspect, distance from the road, forest edge, farm-

land and water bodies etc. The frequently used distance 

metrics described in the following section are: Euclidean 
Distance, Mahalanobis Distance, Manhattan Distance, 
Canberra Distance, Jeffries–Matusita and SAM.

Euclidean Distance

Remote sensing researchers frequently use Euclidean 

Distance d(x,y) to measure the distance between spectral 

signatures of satellite image pixels in n-dimensional spec-

tral space.42 This metric is used to model the independent 

variables based on the LU/LC map by calculating the 
distance map as distance from agricultural lands, forest 

edge, water bodies, built-up areas and roads.7,29,36,39,55

 ( ) ( )2
1

,  

n

i i

i

d x y x y

=

= -å  (1)

where x and y represent the spectral signature vectors 

of image pixels and n represents the number of bands in 

the image.

Mahalanobis Distance

The Mahalanobis Distance classifier, which computes the 
Mahalanobis distance Di(x) between two data points in 

multivariate space is:4,42,47

Techniques Uses Limitations
Image Enhancement9,19,25,29,30, 

34,46,47,51,53,54,56,61–63,67,80,82
This method helps in reducing the 

dimensionality and enhancing the 

contrast of the satellite image.

Information loss when compared to 
original satellite images.

Radiometric Correction9,13,22, 

23,26, 29,40–42,47,49,70,71,79
This method helps in the correction 
of digital number errors in the 

 satellite image.

High computation time for larger 
datasets.

Atmospheric 

Correction7–9,12,15,18–20,23,28,29, 

33,35,37,40,41,45,49,61–63,66,67,70,74, 

75,79

This method helps to correct 

the atmospheric effects on the 
reflectance values of the satellite 
images.

Removing the whole cloud or 

atmospheric effects in a satellite 
image that was acquired during the 

winter season is not easy.

Geometric Correction1,7,13,16, 

22–26, 29,30,32–37,40,47–49,53,55,69, 

70,79

This method helps to correct the 

geometric distortions of a satellite 
image through the relationship 
between the Image Coordinate 

System (ICS) and Geographic 
Coordinate System (GCS).

Edges are flattened and some limits 
of the data pixel values will be lost.

Topographic Correction12,23,25, 

29,35,37,40,74,77,79

This method helps to correct the 

 terrain radiance of the acquired 

topographic data.

Spatial misregistration can occur.

Table 3. Pre-processing techniques.
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Methods Purpose Limitations
Classification methods
Maximum Likelihood 
Classification1,4,7,9,12,13,15–17,22,23,25,26,30, 

32–37,39,40,42,47–49,51,54,55,57,68,70,80

Estimation of each pixel to 
the LU/LC class which has the 

highest probability.

Increase in computation time 
when the number of bands of 

the satellite image increases.

k-Nearest Neighbour Classification 
(kNN)4,20

Statistical evaluation of satellite 
images to classify the nearest 

LU/LC class using the distance 

function.

With high dimensional data, 

the kNN algorithm performs a 

slower calculation of distance in 
each dimension.

SVM Classification4,20,40,41,44,47,51,56,62,63,67 This method helps to find the 
hyper-plane that separates two 

or more LU/LC classes in the 

satellite image.

The performance of SVM will 
be weak when the pixels of the 
satellite image are overlapped, 

i.e. when the satellite data are 

noisy.

ANN Classification4–7,15,17,21,35,43,53,56,72,73 The pixels in the satellite images 
are trained and separated into 

LU/LC classes through the 

learning process.

More massive datasets take 

a long time to train—time 
consuming.

Parallelepiped Classification47,48,51 The standard deviation thresh-

old of each LU/LC class defined 
in the training data determines 

whether the pixel lies within the 
specific class type or not.

Problems occur when the class 
ranges are overlapped.

Minimum Distance to Mean 

Classification42,47,48,51

The LU/LC class defined 
by calculating the distance 
between the data points to 

their centroids.

Choosing the wrong number 

of clusters will lead to 

misclassification.

Mahalanobis Distance Classification4,42,47 The Mahalanobis distance is 

a direction-sensitive distance 
classification method that 
measures the statistics for 
every LU/LC class.

If the variables are highly 

correlated, misclassification will 
occur.

SAM Classification41,52,62,63,66 The LU/LC classes in the 

satellite image are identified 
based on calculation of the 
spectral angle.

Similar spectra are wrongly 

classified, for example, needle 
leaf and broadleaf forests are 

misclassified.
CART model
Logistic Regression 
Model5,6,36,38,39,55,68,78

The logistic regression model 
helps to explain the association 
between dependent and 

independent variables.

Non-linear problems were 

difficult to solve with the 
logistic regression model.

Random Forest Classification4,8,11,19,20,27, 

28,44

LU/LC classification is 
performed based on the voting 
results of each decision tree.

Constructing decision trees 
consumes more time while 
performing Random Forest 

Classification.

Table 4. LU/LC classification and clustering.



12 Comprehensive Review on Land Use/Land Cover Change Classification in Remote Sensing

 ( ) ( ) ( )
1

 
T

i i i

i

D x x xm m
-

= - -å  (2)

where i represents the ith class, x represents the number 

of bands of n-dimensional data, mi represents the mean 

vector of the class and 
1

i
-å  represents the inverse covari-

ance matrix of a class.

Manhattan and Canberra Distance
Manhattan Distance DM(x,y) computes the distance 

between the spectral values of the image pixel in a grid-
like path.2 Canberra Distance DC(x,y) is a weighted version 

of the Manhattan distance, and it measures the fraction 
difference between spectral values of the image pixel,10
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where n is the number of bands, and xi and yj are the 

spectral values of the image pixel.

Jeffries–Matusita Distance
Both the Jeffries–Matusita Distance and transformed diver-
gence31,40 are used to calculate the separability between 

the class values and pixel values and it is expressed as

 JMxy = 2(1 – e–B) (5)
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where x represents the first spectral signature vector, 
y represents the second spectral signature vector, and 

Sx and Sy represent the covariance matrix of samples x 
and y.

Spectral angular mapper

The SAM, q(x,y), differentiates the spectral similarity by 
measuring the angle between the spectral signatures 

of satellite image pixels and the training spectral signa-

tures.41,52

MARS11,73 This model uses essential 
 functions of the specific LU/LC 
class as predictors in place of 

the original satellite data.

The MARS method is not 

 suitable when handling missing 

data.

CART10,11,19,44 The model is created by pre-

dicting the value of dependent 
variables based on the values of 

many independent variables.

Computational time is high to 
train every decision tree and 

tree structure is unstable when 

the data is changed.

Clustering methods

K-Means Clustering3,4,14,46,51 The clusters of similar and 

dissimilar pixels are separated 
using the distance function.

The k-Means method does not 

perform well when the clusters 

are of different sizes.
Fuzzy C Means (FCM)45,46,50,82 The clustering method allows 

one pixel of a satellite image to 
belong to two or more clusters 

and helps in the minimisation of 
the objective function.

Computational time is high for 
more substantial dimensionality 
data.

ISODATA4,22,31,36,44,46,49,51,61,76 Based on the shortest distance 

between each cluster centre, 

the pixels of the satellite image 
are assigned to the nearest 

LU/LC class.

Computational time is high 
when the data is unstructured.
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where x represents the spectral signature vector of an 

image pixel, y represents the spectral signature vector of 

a training area and n represents the number of satellite 

image bands.

Vegetation index metrics
Spectral information helps researchers to monitor the 
surface of the Earth and, therefore, provides the time 
series status of the land cover regions. The spectral 

features of vegetation help to gain information about 
the growth of plants and green areas throughout the 

world. The spatial resolution of each satellite spectrum 
differs, and Table 1 displays information about the spec-

tral characteristics of each satellite. The vegetation range 
of the satellite typically reflects the green wavelength 

and absorbs the blue and red wavelengths. Near infrared 

(NIR) wavelengths strongly reflect the vegetation, and 
the SWIR wavelengths are highly absorbed by water. 

We have explained the most commonly used vegetation 
indices for measuring the level of vegetation and the 
water content in the specific land cover region: EVI, NDVI 
and Normalised Difference Water Index (NDWI). The 
optimised vegetation index or EVI is useful in computing 
the global vegetation greenness. It corrects the canopy 
background noise of the data and displays areas with 

more dense vegetation.2
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where G represents the Gain factor, NIR represents the 

near infrared band, RED represents the red band and 

BLUE the blue band. C1, C2 and L are the coefficients of 
aerosol resistance. The coefficient value of L = 1, C1 = 6, 

C2 = 7.5 and gain factor G = 2.5 were represented using 

the standard MODIS EVI algorithm.

Methods Purpose Limitations
MESMA59,60,75,76 The possible combinations of two 

or more spectral endmembers are 

applied to each pixel for unmixing a 
satellite image.

The output will not be accurate when 

the given inputs have the wrong 

parameters and distributions.

Linear Spectral Mixture 
Model (LSMM)59,60

This method solves for the abundance 

fractions of each endmember of every 
mixed pixel in the satellite image.

The main limitation of LSMM is 
endmember variability.

Fully Constrained Least 

Squares (FCLS)59,81

This method efficiently meets the 
abundance constraints by discarding 

the negative abundance values in 
terms of least square error.

The image correction is not trivial and 
errors occur frequently.

Unconstrained Least 

Squares (UCLS)59,60,81

The abundances are estimated by 
least squares when all information 
about the endmembers and spectral 

signatures are known.

The low spatial resolution of the 
satellite image can lead to the most 

challenging problem of mixed pixels.

Mixture Tuned Matched 
Filtering (MTMF) 

Method59,80

Mixed filtering is used to reduce the 
false positive pixels in the satellite 
images.

The flexibility of the method can also 
be a drawback since, due to spectral 

variability, false detection may occur 
in mixed pixels of the satellite image.

Monte Carlo Spectral 

Mixture Analysis 
(MCSMA)59,60

Spectral data are randomly selected to 

calculate the two or more endmember 

mixtures of each pixel in the satellite 
image.

Computational time is high and there 
is a risk of false precision.

Table 5. Spectral unmixing.
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Landscape change 

models

Variables needed Application/ 
software type

Purpose Limitations

MC5,6,13,14,22–27,31, 

33,53,58

LU/LC maps of 

different time 
periods. Minimum 

two different time 
series maps.

Stand-alone/ 

module of IDRISI 

and QGIS

Helps to calculate 
the transition 
probabilities among 
LU/LC classes.

Spatial patterns 
are difficult to 
predict and thus 

it produces non- 

geospatial output.
CA5,6,13,14,22–27,31, 

33,53,58

LU/LC maps of 

different time 
periods. Minimum 

two  different 
time series map 
and  independent 

variables. Slope, 

elevation and 
distance from 

forest edge, road, 

water bodies, waste 

land, grass land and 

agricultural land 

maps.

Stand-alone/mod-

ule of IDRISI and 

QGIS

Helps in the 
simulation of the 
complex processes 
in both spatial and 
temporal changing 

aspects.

It is difficult 
to combine 

changing social 

and economic 

aspects during the 

simulation process.

GeoMod12,53,58 LU/LC maps of 

different time 
periods. Minimum 

two different time 
series map and 

spatial driver maps 
like slope, eleva-

tion, distance from 
forest edge, road, 

water bodies, waste 

land, grass land, 

and agricultural 

land maps.

IDRISI component This method 

simulates the 

spatial change 
between the LU/LC 

categories for past, 

present and future 

time series data.

Data sets should 

be large, but then 

the computational 
cost is high and 

processing time 
long.

LCM6,7,26,35,55 Minimum two 

LU/LC maps and 

the spatial vari-
ables. Slope, eleva-

tion and distance 
from forest edge, 

road, water bodies, 

waste land, grass 

land and agricul-

tural land maps.

IDRISI, ArcGIS 
V.10.2 and above

LCM is a land 

resource planning 

system that rapidly 

analyses future 

LU/LC change.

High computation 
time in modelling 
more spatial 
drivers.

Table 6. Landscape change models.
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The high and low possibilities of vegetation are identi-

fied by using NDVI values.8,10,18,26,44,46,70,72 NDVI values 
lie between –1 and +1.
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The high and low possibilities of having water content 
are identified by NDWI values.10,19,46 NDWI values lie 

between –1 and +1.
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Classification metrics
The most important metric for validating LU/LC classi-
fication results is accuracy assessment. The accuracy of 
the LU/LC classified map is assessed by creating random 
point locations with their class value from the ground 
truth/reference data and by validating that with the 

classified data in a confusion matrix. The overall accu-

racy and the kappa coefficient are computed to validate 
the LU/LC classified result.1,3,4,7–10,12–17,19,20,22,23,25–28,30–

51,53–57,62,63,66–68,70,72,73,80 Table 7 illustrates the error 

matrix.
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Precision2 is measured by using the correctly classified 
data True Positive with the overall referenced data False 
Positive and True Positive of the positive class. Recall2 
is measured by using the correctly classified data True 
Positive with the overall classified data True Positive 
and False Negative of the positive class. The F-Score2 

considers the both PN and RL and it is measured by calcu-

lating the HM harmonic mean between them.
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Classified 
Data (CD)

Reference Data (RD)
Positive Negative

Positive
True Positive 
(TP)

False Negative (FN)

Negative
False Positive 
(FP)

True Negative (TN)

Table 7. Error matrix.

Conversion of 

Land Use and its 

Effects (CLUE) 
model5,6,78

Spatial and non-
spatial. Socio– 
economic variables, 

regional spatial 
variables and land-

adaptive variables.

Stand-alone model This model used 

in the spatial 
allocation of LU/LC 
changes.

Cannot directly 

be applied at the 

regional scale.

Modules for 

land use Change 

Evaluation 
(MOLUSCE)43,54

Actual LU/LC maps. 

Only two different 
years and spatial 
variables. Slope, 

aspect, hill shade 

and distance from 

forest edge, road, 

water bodies, waste 

land, grass land and 

agricultural land 

maps.

QGIS Plugin, 
minimum V.2.0.0

MOLUSCE 

performs fast and 

suitable analysis of 

LU/LC changes.

No precise 

declaration on 
when the bugs in 

the code will be 

corrected.
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where OA represents overall accuracy, KC represents the 

kappa coefficient, N signifies the matrix total observa-

tions, r signifies the number of rows in the error matrix, xii 

denotes row i and column i observations, xi+ denotes row 

i observations and x+i represents column i observations.

LU/LC change metrics
The rate and percentage of change are calculated to 

analyse the LU/LC change.22
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where POC represents the percentage of change, ROC 

represents the rate of change, TI1 represents the area (ha) 

of LU/LC for time interval 1, TI2 represents the area (ha) 

of LU/LC for time interval 2 and TIi is the time interval 
between TI1 and TI2 in years.

Conclusion
In this paper, we have provided a review of the LU/LC 

change analysis process and the methods frequently 

used by researchers to analyse MSP and HSP satellite 
images. LU/LC change has been explained for various 
application areas such as deforestation, urban expansion, 
agriculture/crop damage, vegetation loss and wetland 
change. This review provides detailed information about 
the characteristics of satellite data, geospatial software, 
pre-processing techniques, classification, clustering and 
spectral unmixing methods, landscape change models 
and the performance metrics for evaluating the satellite 
images. Amongst geospatial software, Matlab, Python and 
Rstudio have the advantage in developing new algorithms 

for analysing LU/LC changes using HSP and MSP satellite 
images. Pre-processing should be performed to correct 
the geometric, radiometric, topographic and atmospheric 

effects present in satellite images. Classification, clus-

tering and spectral unmixing methods are used to extract 
the spectral features from satellite images. Effective land-

scape models were used to analyse the LU/LC change for 

specific time intervals in a particular region. The impor-
tance of performance metrics has been discussed in this 

review. It should help future researchers to work on the 

LU/LC change analysis process in the field of remote 
sensing. Developing a new optimised algorithm for LU/
LC classification and for analysing LU/LC change remains 
a challenge for future researchers. Information about 

LU/LC change will help to assist Government officials 
responsible for land resource planning to take adequate 

measures to protect the LU/LC environment.
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