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Abstract The nonlinear, steady state boundary layer flow, heat and mass transfer of an incom-

pressible non-Newtonian Jeffrey’s fluid past a semi-infinite vertical plate is examined in this article.

The transformed conservation equations are solved numerically subject to physically appropriate

boundary conditions using a versatile, implicit finite-difference Keller box technique. The influence

of a number of emerging non-dimensional parameters, namely Deborah number (De), ratio of

relaxation to retardation times (k), Buoyancy ratio parameter (N), suction/injection parameter

(fw), Radiation parameter (F), Prandtl number (Pr), Schmidt number (Sc), heat generation/absorp-

tion parameter (D) and dimensionless tangential coordinate (n) on velocity, temperature and con-

centration evolution in the boundary layer regime is examined in detail. Also, the effects of these

parameters on surface heat transfer rate, mass transfer rate and local skin friction are investigated.

This model finds applications in metallurgical materials processing, chemical engineering flow con-

trol, etc.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-Newtonian transport phenomena arise in many branches
of process mechanical, chemical and materials engineering.

Such fluids exhibit shear-stress-strain relationships which
diverge significantly from the classical Newtonian (Navier-
Stokes) model. Most non-Newtonian models involve some

form of modification to the momentum conservation equa-
tions. These include power-law fluids [1], viscoelastic fluid
model [2], Walters-B short memory models [3], Oldroyd-B

models [4], differential Reiner-Rivlin models [5,6], Bingham
plastics [7], tangent hyperbolic models [8], Eyring-Powell
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Nomenclature

C concentration

Cf skin friction coefficient
cp specific heat parameter
De Deborah number
Dm mass (species) diffusivity

f non-dimensional steam function
F thermal radiation
g acceleration due to gravity

Gr Grashof number
K thermal diffusivity
k thermal conductivity

k* mean absorption coefficient
L characteristic length
m pressure gradient parameter
Nu heat transfer rate (local Nusselt number)

Pr Prandtl number
qr radiative heat flux
S Cauchy stress tensor

Sc local Schmidt number
Sh mass transfer rate (Sherwood number)
T temperature of the fluid

u, v non-dimensional velocity components along the
x- and y-directions, respectively

x streamwise coordinate

y transverse coordinate

Greek symbols

a thermal diffusivity
b coefficient of thermal expansion
b* coefficient of concentration expansion

k ratio of relaxation to retardation times
k1 retardation time
g dimensionless radial coordinate

l dynamic viscosity
m kinematic viscosity
h non-dimensional temperature
/ non-dimensional concentration

q density of fluid

n dimensionless tangential coordinate
w dimensionless stream function

D heat generation (source)/heat absorption (sink)
parameter

r� Stefan-Boltzmann constant

Subscripts

w surface conditions
1 free stream conditions
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models [9], nano non-Newtonian fluid models [59] and Max-
well models [10].

Among the several non-Newtonian models proposed, Jef-
frey’s fluid model is significant because Newtonian fluid model
can be deduced from this as a special case by taking k1 = 0.

Further, it is speculated that the physiological fluids such as
blood exhibit Newtonian and non-Newtonian behaviors dur-
ing circulation in a living body. As with a number of rheolog-

ical models developed, the Jeffrey’s model has proved quite
successful. This simple, yet elegant rheological model was
introduced originally to simulate earth crustal flow problems
[11]. This model [12] constitutes a viscoelastic fluid model

which exhibits shear thinning characteristics, yield stress and
high shear viscosity. The Jeffrey’s fluid model degenerates to
a Newtonian fluid at a very high wall shear stress i.e. when

the wall stress is much greater than yield stress. This fluid model
also approximates reasonably well the rheological behavior of
other liquids including physiological suspensions, foams, geo-

logical materials, cosmetics, and syrups. Interesting studies
employing this model include peristaltic transport of Jeffery
fluid under the effect of magnetohydrodynamic [13], peristaltic
flow of Jeffery fluid with variable-viscosity [14], Radiative flow

of Jeffery fluid in a porous medium with power law heat flux
and heat source [15]. Vajravelu et al. [16] presented the influ-
ence of free convection on nonlinear peristaltic transport of

Jeffrey fluid in a finite vertical porous stratum using the Brink-
man model. Lakshminarayana et al. [17] discussed the influ-
ence of slip and heat transfer on the peristatic transport of

Jeffrey fluid in a vertical asymmetric channel in porous med-
ium. The governing equations are solved using perturbation
technique. The peristaltic flow of a conducting Jeffrey fluid
in an inclined asymmetric channel was investigated by K.
Vajravelu et al. [18] using perturbation technique. Vajravelu

et al. [19] reported the peristaltic flow of Jeffrey fluid in a ver-
tical porous stratum with heat transfer under long wavelength
and low Reynolds number assumptions.

The heat transfer analysis of boundary layer flow with radi-
ation is important in various material processing operations
including high temperature plasmas, glass fabrication, and liq-

uid metal fluids. When coupled with thermal convection flows,
these transport phenomena problems are highly nonlinear. At
a high temperature the presence of thermal radiation changes
the distribution of temperature in the boundary layer, which

in turn affects the heat transfer at the wall. A number of stud-
ies have appeared that consider multi-physical radiative-
convective flows. Recently, Nadeem et al. [20] reported the

magnetic field effects on boundary layer flow of Eyring-
Powell fluid from a stretching sheet. Noor et al. [21] used the
Rosseland model to study radiation effects on hydromagnetic

convection with thermophoresis along an inclined plate. Fur-
ther, studies employing the Rosseland model include Gupta
et al. [22] who examined on radiative convective micropolar
shrinking sheet flow, Cortell [23] who investigated non-

Newtonian dissipative radiative flow, and Bargava et al. [24]
who studied radiative-convection micropolar flow in porous
media. Akbar et al. [25] reported the dual solutions in MHD

stagnation-point flow of a Prandtl fluid past a shrinking sheet
by shooting method.

Convective boundary-layer flows are often controlled by

injecting or withdrawing fluid through a heat surface. This
can lead to enhanced heating or cooling of the system and
can help to delay the transition from laminar to turbulent flow.
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Figure 1 Flow configuration and coordinate system.
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Free convection flow of pure fluids past a semi-infinite vertical
plate, at normal temperature, was first presented by Pohlhau-
sen [26], who obtained a solution by the momentum integral

method. A similarity solution for this problem was solved,
for the first time, by Ostrach [27]. The application of free con-
vection flows, which occur in nature and in engineering pro-

cesses, is very wide and has been extensively, considered by
Jaluria [28]. The simplest physical model of such flow is the
two-dimensional laminar flow along a vertical flat plate.

Extensive studies have been conducted on this type of flow
by several authors [29–32]. Application of this model can be
found in the area of reactor safety, combustion flames and
solar collectors, as well as building energy conservation [33].

Takhar et al. [34] studied the combined convection-radiation
interaction along a vertical flat plate in a porous medium.

The case of uniform suction and blowing through an

isothermal vertical wall was treated first by Sparrow and Cess
[35]; they obtained a series solution which is valid near the
leading edge. This problem was considered in more detail by

Merkin [36], who obtained asymptotic solutions, valid at large
distances from the leading edge, for both the suction and blow-
ing. Using the method of matched asymptotic expansion, the

next order corrections to the boundary-layer solutions for this
problem were obtained by Clarke [37], who extended the range
of applicability of the analyses by not invoking the usual
Boussinesq approximation. The effect of strong suction and

blowing from general body shapes which admit a similarity
solution has been given by Merkin [38]. A transformation of
the equations for general blowing and wall temperature varia-

tions has been given by Vedhanayagam et al. [39]. The case of
a heated isothermal horizontal surface with transpiration has
been discussed in some detail first by Clarke and riley [40].

Free convection on a horizontal plate with blowing and suc-
tion was studied by Lin and Yu [41]. Chamkha et al. [42–44]
conducted a theoretical study of suction and injection in free

and mixed convection heat and mass transfer over different
geometries, viz. plate, stretching cylinder, and stretching sur-
face. Hossain et al. [45] studied the effect of radiation on free
convection flow with variable viscosity from a porous vertical

plate. The free convective heat and mass transfer flow is a com-
paratively recent development in the field of fluid mechanics
and the different mathematical models and correlations which

have been developed can be applied to many industrial appli-
cations, such as chemical or drying processes.

The current work presents a numerical study of non-similar

free convection boundary layer flow, heat and mass transfer of
Jeffrey’s non-Newtonian fluid past a semi-infinite vertical plate
with thermal radiation and heat generation/absorption. The
non-dimensional equations with associated dimensionless

boundary conditions constitute a highly nonlinear, coupled
two-point boundary value problem. Keller’s implicit finite dif-
ference ‘‘box” scheme is implemented to solve the problem.

The effects of the emerging thermophysical parameters,
namely Deborah number (De), ratio of relaxation to retardation
times (k), thermal radiation parameter (F), suction/injection

parameter (fw) and heat generation/absorption parameter (D)
on the velocity, temperature, concentration, local skin friction,
heat transfer rate and mass transfer rate characteristics are

studied. The present problem has to the authors’ knowledge
not appeared thus far in the scientific literature and is relevant
to polymeric manufacturing processes and nuclear waste
simulations.
2. Mathematical model

A steady, laminar, two-dimensional, incompressible, viscous,
buoyancy-driven free convection flow, heat and mass transfer

past a semi-infinite vertical plate to Jeffrey’s fluid in the pres-
ence of heat source/sink, suction/injection and thermal radia-
tion is studied, as illustrated in Fig. 1. The x-coordinate

(tangential) is measured along the vertical plate in the upward
direction and y-coordinate (radial) is measured normal to the
plate. The corresponding velocities in x and y directions are u
and v respectively. The gravitational acceleration g, acts verti-

cally downwards. The flow is driven by buoyancy effects, which
are generated by the gradients in temperature and concentra-
tion field of a dissolved species. Magnetic Reynolds number

is assumed to be small enough to neglect magnetic induction
effects. Hall current and ionslip effects are also neglected since
the magnetic field is weak. We also assume that the Boussinesq

approximation holds i.e. the density variation is only experi-
enced in the buoyancy term in the momentum equation.

Both the semi-infinite vertical plate and Jeffrey’s fluid are

maintained initially at a constant temperature and concentra-
tion. Instantaneously, they are raised to a temperature
Twð> T1Þ and concentration Cwð> C1Þ, where the latter
(ambient) temperature and concentration of the fluid are sus-

tained constant. The Cauchy stress tensor, S, of a Jeffrey’s
non-Newtonian fluid [46] takes the form as follows:

T ¼ �pIþ S;S ¼ l
1þ k

ð _cþ k1€cÞ ð1Þ

where dot above a quantity denotes the material time deriva-
tive and _c is the shear rate. The Jeffrey’s model provides an ele-

gant formulation for simulating retardation and relaxation
effects arising in non-Newtonian polymer flows. The shear rate
and gradient of shear rate are further defined in terms of veloc-
ity vector, V, as follows:

_c ¼ rVþ ðrVÞT ð2Þ
€c ¼ d

dt
ð _cÞ ð3Þ

Introducing the boundary layer approximations, and incorpo-
rating the stress tensor for a Jeffrey’s fluid in the momentum

equation (in differential form), the conservation equations take
the following form:

@u

@x
þ @v

@y
¼ 0 ð4Þ
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@u

@x
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@u

@y
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@2u

@y2
þ k1 u

@3u

@x@y2
� @u

@x

@2u

@y2

��

þ @u

@y

@2u

@x@y
þ v

@3u

@y3

��

þ gbðT� T1Þ þ gb�ðC� C1Þ ð5Þ

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
� 1

qcp

@qr
@y

þ Q0

qcp
ðT� T1Þ ð6Þ

u
@C

@x
þ v

@C

@y
¼ Dm

@2C

@y2
ð7Þ

The appropriate boundary conditions are as follows:

At y ¼ 0; u ¼ 0; v ¼ VwðxÞ; T ¼ Tw; C ¼ Cw

As y ! 1; u ! 0; v ! 0; T ! T1; C ! C1
ð8Þ

The Jeffrey’s fluid model, introduces a number of mixed

derivatives in the momentum boundary layer equation (5)

and in particular two third order derivatives u @3u
@x@y2

and v @3u
@y3
,

making the system an order higher than the classical Navier-

Stokes (Newtonian) viscous flow model. The non-Newtonian
effects feature in the shear terms only of Eq. (5) and not the
convective (acceleration) terms. The third term on the right

hand side of Eq. (5) represents the thermal buoyancy force
and couples the velocity field with the temperature field equa-
tion (6). The fourth term on right hand side of Eq. (5) repre-

sents the species buoyancy effect (mass transfer) and couples
Eq. (5) to the species diffusion equation (7). Viscous dissipa-
tion effects are neglected in the model.

In Eq. (6) the penultimate term on the right side is the ther-

mal radiation flux contribution based on Rosseland approxi-
mation [47,48]. This formulation allows the transformation
of the governing integro-differential equation for radiative

energy balance into electrostatic potential (Coulomb’s law)
which is valid for optically-thick media in which radiation only
propagates a limited distance prior to experiencing scattering

or absorption. It can be shown that the local intensity is caused
by radiation emanating from nearby locations in the vicinity of
which the emission and scattering are comparable to the loca-

tion under consideration. For zones where conditions are
appreciably different, the radiation has been shown to be
greatly attenuated prior to arriving at the location being ana-
lyzed. The energy transfer depends only on the conditions in

the area near the position under consideration. In applying
the Rosseland assumption, it is assumed that refractive index
of the medium is constant, intensity within the porous medium

is nearly isotropic and uniform and wavelength regions exist
where the optical thickness is greater than 5. Further details
are available in Bég et al. [49]. The final term on the right hand

side of Eq. (6) is the heat source/sink contribution. The Rosse-
land diffusion flux model is an algebraic approximation and
defined as follows:

qr ¼
4r�

3k�
@T4

@y
ð9Þ

where k�- mean absorption coefficient and r�- Stefan–Boltz-

mann constant. It is customary [47] to express T4 as a linear

function of temperature. Expanding T4 using Taylor series
and neglecting higher order terms leads to the following:
T4 ffi 4T3
1T� 3T4

1 ð10Þ
Substituting (10) into (9), eventually leads to the following ver-
sion of the heat conservation equation (6):

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ 16r�T3

1
3k�qcp

@2T

@y2
þ Q0

qcp
ðT� T1Þ ð11Þ

To transform the boundary value problem to a dimensionless
one, we introduce a stream function w defined by the Cauchy-

Riemann equations, u ¼ @w
@y

and v ¼ @w
@x
.

The mass conservation Eq. (4) is automatically satisfied.

The following dimensionless variables are introduced into
Eqs. (5)–(8):

n ¼ x

L

� �1=2

; g ¼ C1yx
�1=4; C1 ¼ gbðTw � T1Þ

4m2

� �
;

w ¼ 4mC1x
3=4f; Pr ¼ mqcp

k
; Sc ¼ m

Dm

hðn; gÞ ¼ T� T1
Tw � T1

; /ðn; gÞ ¼ C� C1
Cw � C1

;

Gr ¼ gbðTw � T1ÞL3

m2
; De ¼ k1mC

2
1

x1=2

ð12Þ
The resulting momentum, energy and concentration boundary
layer equations take the following form:

f 000

1þk
þ3ff 00 �2ðf 0Þ2þðhþNuÞþ De

1þk
ðf 002�2f 0f 000 �3ff ivÞ

¼ 2n f 0 @f
0

@n
� f 00 @f

@n
� De

1þk
f 0 @f

000

@n
� f 000 @f

0

@n
þ f 00@f

00

@n
� f iv @f

@n

� �� �

ð13Þ

h00

Pr
1þ 4

3F

� �
þ 3fh0 þ Dh ¼ 2n f 0 @h

@n
� h0

@f

@n

� �
ð14Þ

/00

Sc
þ 3f/0 ¼ 2n f 0 @/

@n
� /0 @f

@n

� �
ð15Þ

The corresponding non-dimensional boundary conditions for
the collectively eighth order, multi-degree partial differential

equation system defined by Eqs. (13)–(15) assume the follow-
ing form:

At g ¼ 0; f ¼ fw; f 0 ¼ 0; h ¼ 1; / ¼ 1

As g ! 1; f 0 ! 0; f 00 ! 0; h ! 0; / ! 0
ð16Þ

Here primes denote the differentiation with respect to g.

N ¼ b�ðCw�C1Þ
bðTw�T1Þ is the concentration to thermal buoyancy ratio

parameter, F ¼ Kk�
4r�T31

is the radiation parameter, and

D ¼ Q0 x
2

qmcpRex
is the dimensionless heat generation/absorption

coefficient. fw ¼ Vwx
1=4

3mC1
is the suction/blowing parameter.

fw < 0 for Vw > 0 is the case of blowing and fw > 0 for

Vw < 0 is the case of suction. The fw = 0 is the special case
of a solid plate surface. The chemical engineering design quan-
tities of physical interest including the skin-friction coefficient
(shear stress), Nusselt number (heat transfer rate) and Sher-

wood number (mass transfer rate) can be defined using the
transformations described above with the following
expressions:
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Cf ¼ 4mlC3
1x

1=4f 00ðn; 0Þ ð17Þ
Nu ¼ �kDTC1x

�1=4h0ðn; 0Þ ð18Þ
Sh ¼ �DDCC1x

�1=4/0ðn; 0Þ ð19Þ
The location, n � 0, corresponds to the vicinity of the lower
stagnation point on the wedge. For this scenario, the model
defined by Eqs. (13)–(15) contracts to an ordinary differential
boundary value problem:

f 000

1þ k
þ 3ff 00 � 2ðf 0Þ2 þ ðhþNuÞ

þ De

1þ k
ð�2f 0f 000 þ f 002 � 3ff ivÞ ¼ 0 ð20Þ

h00

Pr
1þ 4

3F

� �
þ 3fh0 þ Dh ¼ 0 ð21Þ

/00

Sc
þ 3f/0 ¼ 0 ð22Þ
3. Finite difference solutions

The Keller-Box implicit difference method is utilized to solve

the nonlinear boundary value problem defined by Eqs. (13)–
(15) with boundary conditions (16). This technique, despite
recent developments in other numerical methods, remains a

powerful and very accurate approach for boundary layer flow
equation systems which are generally parabolic in nature. It is
unconditionally stable and achieves exceptional accuracy. An

excellent summary of this technique is given in Keller [50].
Magnetohydrodynamic applications of Keller’s method are
reviewed in Bég [51]. This method has also been applied suc-
cessfully in many rheological flow problems in recent years.

These include oblique micropolar stagnation flows [52], Wal-
ter’s B viscoelastic flows [53], Stokesian couple stress flows
[54], hyperbolic-tangent convection flows from curved bodies

[55], micropolar nanofluids [56], magnetic Williamson fluids
[57] and Maxwell fluids [58]. The Keller-Box discretization is
fully coupled at each step which reflects the physics of parabolic

systems – which are also fully coupled. Discrete calculus asso-
ciated with the Keller-Box scheme has also been shown to be
fundamentally different from all other mimetic (physics cap-
turing) numerical methods, as elaborated by Keller [50]. The

Keller Box Scheme comprises four stages:

(1) Reduction of the Nth order partial differential equation

system to N first order equations.
(2) Finite difference discretization.
(3) Quasilinearization of non-linear Keller Algebraic

Equations.
(4) Block-tridiagonal elimination of linear Keller Algebraic

Equations.
4. Results and discussion

Comprehensive results are obtained and are presented in
Figs. 2–10. The numerical problem comprises of two indepen-
dent variables (n,g), three dependent fluid dynamic variables (f,

h,/) and eight thermo-physical and body force control param-
eters, namely, De, k, D, F, N, Pr, Sc, fw. The following default
parameter values i.e. De = 0.1, k = 0.2, D = 0.1, fw = 1.0,
F= 0.5, N= 0.5, Pr = 0.71, Sc = 0.6 are prescribed (unless
otherwise stated).

In Figs. 2a–2c, we depict the evolution of velocity (f0),
temperature (h) and concentration (/) functions with a varia-
tion in De. Dimensionless velocity (Fig. 2a) is considerably

decreased with increasing De. De clearly arises in connection

with high order derivatives in Eq. (13) i.e. De
1þk ð�2f 0f 000þ

f 002 � 3ff ivÞ and n � De
1þk f 0 @f 000

@n � f 000 @f 0
@n þ f 00 @f 00

@n � f iv @f
@n

h i� �
. In

Fig. 2b, an increase in De is seen to considerably increase tem-
peratures throughout the boundary layer regime. Although De
does not arise in the thermal boundary layer equation (14),

there is a strong coupling of this equation with the momentum

field via the convective terms n f = @h
@n

h i
and n �h= @f

@n

h i
. Further-

more, the thermal buoyancy force term, þh in the momentum

equation (13) strongly couples the momentum flow field to the
temperature field. Thermal boundary layer thickness is also
elevated with increasing De. Fig. 2c shows a slight increase

in concentration is achieved with increasing De values.
Figs. 3a–3c illustrate the effect of k on the velocity (f0), tem-

perature (h) and concentration (/) distributions through the

boundary layer regime. Velocity is significantly increased with
increasing k. The polymer flow is therefore considerably
accelerated with an increase in relaxation time (or decrease in

retardation time). Conversely, temperature and concentration
are depressed slightly with increasing k. The mathematical
model reduces to the Newtonian viscous flow model as k? 0
and De? 0, since this negates relaxation, retardation and elas-

ticity effects. The momentum boundary layer equation in this
case contracts to the familiar equation for Newtonian:

f 000 þ 3ff 00 � 2f=2 þ ðhþN/Þ ¼ 2n f 0 @f
0

@n
� f 00 @f

@n

� �
ð23Þ

The thermal boundary layer equation and concentration Eqs.

(14) and (15) remain unchanged.

Figs. 4a–4c present typical profiles for velocity ðf 0Þ, temper-

ature (h) and concentration (/) for various values of F.
Increasing F, strongly decelerates the flow i.e. decreases veloc-

ity. This parameter features in the term, 1
Pr

1þ 4
3F

� �
h== in the

energy conservation Eq. (14). F represents the relative contri-
bution of thermal conduction to thermal radiation heat transfer.
For F= 1 both modes of heat transfer have the same contri-
bution. Temperatures are therefore also decreased, as observed

in Fig. 4b. Conversely, there is a slight enhancement in concen-
tration values with increasing F values, as shown in Fig. 4c.

Figs. 5a–5c present typical profiles for velocity ðf 0Þ, temper-
ature (h) and concentration (/) for various values of D.
Increasing heat generation (D > 0) significantly accelerates

the flow and also increases temperature magnitudes but
reduces concentration values. Conversely, with a heat sink pre-
sent, (D < 0) the flow is retarded (momentum boundary layer
thickness is lowered), thermal boundary layer thickness is

reduced whereas, concentration boundary layer thickness
increases.

Figs. 6a–6c depict the profiles for velocity (f0), temperature

(h) and concentration (/) for various values of buoyancy ratio
parameter N. With N> 0 the flow is evidently accelerated
(Fig. 6a) for some distance from the plate surface. Initially

for N< 0 i.e. the buoyancy opposed case where thermal and
species buoyancy forces act against each other, the flow is
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Table 1 Comparison of values of Cf and Nu for different

values of F when De = k= 0, Pr= 0.71, N = 0.5, D = 0.1,

and fw = 1.0.

F Rao et al. [60] Present study

C f Nu C f Nu

0.0 2.1664 0.8365 2.1665 0.8364

0.5 2.4657 0.6139 2.4656 0.6140

1.0 2.6546 0.5032 2.6547 0.5031

2.0 2.9039 0.4010 2.9038 0.4011
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decelerated. Further from plate surface there is a transition in
the influence of N; N > 0 leads to a slight reduction in flow

velocity with the contrary for N< 0; however, the influence
of a large change in N is much less pronounced further from
the wall. Buoyance forces therefore exert a much more marked

effect in the vicinity of the plate surface. A very different
response is sustained by temperature and concentration for dif-
ferent values of N. In both the cases as shown in Figs. 6b and

6c respectively, buoyancy-opposition consistently boosts the
values throughout the boundary layer regime. The parameter

N ¼ b�ðC�C1Þ
bðT�T1Þ expresses the concentration to thermal buoyancy

force ratio. For cases where N < 1, thermal buoyancy will
dominate concentration buoyancy effects and vice versa for

N> 1.
Figs. 7a–7c present the profiles for velocity (f’), temperature

(h) and concentration (/) for various values of Schmidt num-
ber, Sc. With increasing Sc values from 0.25, the velocity is

reduced strongly in the regime. Schmidt number signifies the
relative effect of momentum diffusion to species diffusion.
For Sc< 1, species diffusivity dominates and vice versa for

Sc> 1, whereas, a slight increase is seen in temperature with
increasing Sc values and a strong reduction in concentration
is seen with increasing Sc values.

Figs. 8a–8c present the profiles for velocity (f0), temperature
(h) and concentration (/) for various values of Prandtl num-
ber, Pr. It is observed that increasing Pr significantly deceler-

ates the flow i.e., velocity decreases throughout the boundary
layer regime. The most prominent variation in profiles arises
at intermediate distances from the plate surface. Furthermore,
increasing Pr generates a substantial reduction in the fluid tem-

perature and the thermal boundary layer thickness. At large
Pr, the thermal boundary layer is thinner than at a smaller
Pr. This is because for small values of Pr (Pr � 1), the fluid

is highly conductive. Consequently, an increase in Pr decreases
the thermal boundary layer thickness. Conversely, an increase
in the Pr increases the concentration.

Figs. 9a–9c depict the influence of De, on dimensionless
skin friction, heat transfer rate and mass transfer rate at the
plate surface. It is observed that the dimensionless skin friction
is decreased with the increase in De i.e. the boundary layer flow

is decelerated with greater elasticity effects in the non-
Newtonian fluid. Likewise, the heat transfer rate is also sub-
stantially decreased with increasing De values. A decrease in

heat transfer rate at the wall will imply less heat is convected
from the fluid regime to the plate, thereby heating the bound-
ary layer. The mass transfer rate is also found to be suppressed

with increasing De and furthermore plummets with further dis-
tance from the lower stagnation point.
Figs. 10a–10c illustrate the response to the parameter ratio
of relaxation and retardation times, k, on the dimensionless
skin friction coefficient, heat transfer rate and mass transfer

rate at the plate surface. The skin friction at the plate surface
is accentuated with increasing k. Also there is a strong eleva-
tion in shear stress (skin friction coefficient) with increasing

value of the tangential coordinate, n. Heat (local Nusselt num-
ber) and mass transfer (local Sherwood number) rates are also
increased with increasing, k.

Figs. 11a–11c present the influence of the Schmidt number,
Sc, on the dimensionless skin friction coefficient, heat transfer
rate and mass transfer rate at the plate surface. The skin fric-
tion at the plate surface is found to be decreasing with increas-

ing Sc. Surface heat transfer rate is also observed to be
strongly decreased with increasing Sc values. Mass transfer
rate is considerably enhanced with increasing Sc values.

Table 1 presents the comparison values of the present study
with those of Rao et al. [60] for different values of thermal
radiation, F and are found to be in good correlation.

5. Conclusions

A mathematical model has been developed for the non-similar,

buoyancy-driven boundary layer free convection flow, heat
and mass transfer of Jeffrey’s non-Newtonian fluid past a
semi-infinite vertical plate in the presence of thermal radiation

and heat generation/absorption. The transformed conserva-
tion equations have been solved with prescribed boundary con-
ditions using the implicit finite difference method. A
comprehensive assessment of the effects of De, k, F, D, Sc,
Pr, fw and N is made. Very accurate and stable results are
obtained with the present finite difference code. The numerical
code is able to solve nonlinear boundary layer equations very

efficiently and therefore shows excellent promise in simulating
transport phenomena in other non-Newtonian fluids. It is
therefore presently being employed to study micropolar fluids

and viscoplastic fluids which also represent other chemical
engineering working fluids. The present study has neglected
time effects. Future simulations will also address transient

polymeric boundary layer flows and will be presented soon.
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