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Abstract Background: Computer-aided diagnosis (CAD) systems for the detection of lung disor-

ders play an important role in clinical decision making. CAD systems provide a second opinion to

the physician in interpreting computed tomography (CT) images. In this work, a CAD system to

diagnose pulmonary hamartoma nodules from chest CT images is proposed.

Methods: Segmentation of lung parenchyma fromCT images is carried out usingOtsu’s threshold-

ing method. Nodules are considered to be the region of interests (ROIs) in this work. Texture, shape

and run length based features are extracted from the ROIs. Cosine similarity measure (CSM) and

rough dependency measure (RDM) are used independently as filter evaluation functions with ant col-

ony optimization (ACO) to select two subsets of features. The selected subsets are used to train two

classifiers namely support vector machine (SVM) andNaive Bayes (NB) classifiers using 10-fold cross

validation. All the four trained classifiers are tested and the performance measures are estimated.

Results: CT slices of patients affected with pulmonary cancer and hamartoma are used for exper-

imentation. From the lung parenchymal tissues of 300 CT slices, 390 nodules are extracted. The fea-

ture selection algorithms, ACO-CSM and ACO-RDM are run for different feature subset sizes. The

selected features are used to train SVMandNB classifiers. From the results obtained, it is inferred that

SVM classifier with the feature subsets chosen by ACO-RDM feature selection approach yielded a

maximum classification accuracy of 94.36% with 38 features.

Conclusion: From the results, it can be clearly inferred that selecting relevant features to train the

classifier has a definite impact on the performance of the classifier.

� 2017 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pulmonary hamartomas are one of the common causes of soli-

tary pulmonary nodules [1,2]. They are benign tumors which

grow as a disorganized mass and account for 75% of all benign
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tumors of the lung [3]. They are asymptomatic and do not

show any symptom. They are detected accidentally when com-

puted tomography (CT) scan is done for some diagnosis [4].

Hamartomas are made of normal lung tissues including fat,

connective tissue, smooth muscle and calcification, which grow

abnormally without affecting surrounding tissues [5]. Hamar-

toma nodules appear like popcorns with fat and calcification

[6]. In cases where the nodules contain little fat and no calcifi-

cation, the radiologists find it difficult to discriminate benign

and malignant nodules.

Based on the location of hamartomas in the lung, they are

of two types namely peripheral parenchymal type and central

endobronchial type. Peripheral parenchymal type hamartomas

arising from small bronchi are asymptomatic in nature

whereas central endobronchial hamartomas arising from large

bronchi are associated with symptoms of obstruction [7].

Hamartoma nodules are small and ranges from 1 to 3 cm in

size. They may grow above this range in certain exceptional

cases [5,6] and sometimes they may be multiple [8]. As they

grow in size, the nodules may imitate bronchogenic carcinoma

and hence accurate interpretation of imaging and diagnosis is

important [9]. Fine needle aspiration (FNA) helps in the diag-

nosis of hamartoma nodules and differentiates them from

other pulmonary nodules [10].

In chest radiographs pulmonary hamartomas are identified

as coin lesions [11]. Chest radiographs fail to detect hamar-

tomas when multiple nodules are present and in the absence

of calcification and fat [12]. The central lucency caused by adi-

pose tissue may be considered as air within a cavity necessitat-

ing differential diagnosis [12]. CT images are superior to chest

X-rays and are more sensitive in detecting fat and popcorn-like

calcifications. Hamartoma nodules are smooth and appear

with sharp margins in CT images. CT scan examination is usu-

ally suggested to confirm the disease and its similarity toward

other nodules of lung [5]. Li et al. [13] and Awai et al. [14] sug-

gest that a CAD scheme can help the radiologists to make con-

clusions about the nodules.

In this work, a computer aided diagnosis system to detect the

presence of pulmonary hamartomas from lung CT images is

proposed. The lung tissues are segmented using a threshold

based segmentation approach. Nodules considered as ROIs

are extracted from the segmented lung and from which textural,

run length and geometrical features are extracted. A filter

approach that combines ant colony optimization algorithm is

used to select the relevant features. The selected features are

used to train support vector machines (SVM) and Naive Bayes

(NB) classifiers to mark the presence or absence of hamartoma

nodules. Cosine similarity measure (CSM) and rough set depen-

dency measure (RDM) direct the ant colony algorithm in fea-

ture subset selection. The rest of the article is organized as

follows: Literature survey related to the work carried out is pre-

sented in Section 2. System framework is explained in Section 3.

Section 4 contains experimental results and discussions and Sec-

tion 5 presents the conclusion and future scope of this work.

2. Literature survey

2.1. Computer aided diagnosis systems

Elizabeth et al. developed a diagnostic system [15] to mark the

presence or absence of lung cancer in chest CT images. They

applied optimal thresholding, convex hull and Canny’s edge

operator in sequence to segment lungs and reconstruct its

edges. A probabilistic neural network was trained using

GLCM features that were extracted from the nodules. They

evaluated their approach using 100 diseased images and 100

normal lung images and obtained an accuracy of 97%.

Shiraishi et al. developed a CAD system [16] to discriminate

benign and malignant solitary pulmonary nodules on chest

X-rays. The nodules were marked by the radiologists and seg-

mented by means of the difference image technique [17]. Their

training dataset included 53 chest X-rays containing solitary

pulmonary nodules smaller than 3 cms with no calcification.

They located 22 benign nodules and 31 malignant nodules

from which seventy-five image features were extracted. A lin-

ear discriminant analyzer (LDA) [17] was used for feature

selection which selected six image features. Likelihood measure

of malignancy was used to classify the data. They tested their

approach on a test set that included 5 chest X-rays containing

3 cancerous nodules and 2 benign nodules. The test set was

obtained from the Japanese Society of Radiological Technol-

ogy (JSRT) image database. Their system obtained an accu-

racy of 80% when the likelihood measure of malignancy was

set to 50%.

Li et al. developed a CAD system using likelihood estimate

with LDA classifier [13] and evaluated whether the output of a

CAD system helps the radiologists in differentiating the lung

nodules. Their dataset consisted of high resolution computed

tomography (HRCT) slices containing 28 primary lung cancer

nodules and 28 benign nodules. The images were analyzed by

16 radiologists without and with the computer output to mark

their confidence level regarding the malignancy of a nodule.

The area under the ROC curve of the CAD scheme was

0.831 for discriminating benign and malignant nodules. The

ROC value was obtained when the radiologists used the

CAD system improved from 0.785 to 0.853 by a statistically

significant level of p = 0.016.

Han et al. proposed a CAD system [18] based on hierarchi-

cal vector quantization (VQ) to detect pulmonary nodules in

the early stage. High level VQ was used to segment the lungs

from CT images and low level VQ was used to detect and seg-

ment the nodules. Rule based filtering was carried out to select

features for training SVM classifier. They validated their

approach on the CT scan images of 205 patients having juxta-

pleural nodule annotation, taken from Lung Image Database

Consortium (LIDC). Geometric, intensity, Gradient and Hes-

sian features were extracted from 475 nodules and were used to

train SVM classifier in different combinations. Their system

obtained a maximum of 89.2% sensitivity at 4.14 false posi-

tives per scan when intensity and gradient features were used

to train the classifier.

Elizabeth et al. proposed an approach to identify the most

promising slice to diagnose lung cancer from chest CT images

[19]. From the segmented lungs, the ROIs that existed in the

same location in three adjacent slices were extracted using

region growing approach and considered for analysis. The best

slice among the three adjacent slices was identified and features

were extracted from the ROIs that were present in the best

slice. The labels of these ROIs and their features were used

to train a radial basis function neural network. They trained

their system with 1564 chest CT slices and tested with 150

slices. Their system was able to detect the cancerous nodules

with 94.44% accuracy.
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Choi and Choi in their work [20] toward nodule detection

from CT images segmented the lung volume using optimal

multiple thresholding, 3D connected component labeling and

rule based pruning. 2D and 3D features extracted from the

nodules were used to train Genetic Programming based classi-

fier. They evaluated their system using the scan images of 32

patients containing 5453 annotated CT slices obtained from

LIDC. Among the 1716 candidate nodules that were extracted,

only 76 were cancerous nodules. Hence to create a balance in

the dataset used for training the classifier, along with the 76

nodules, only 76 non-nodules were considered. 2D, 3D geo-

metric and intensity based features were extracted from these

ROIs. From this dataset, 80% of the features were used to

train GP based classifier and the remaining 20% were used

to test. Their system was able to achieve an accuracy of

89.6% with 94.1% sensitivity and 5.45 FPs/scan.

Messay et al. proposed a CAD system to detect lung nod-

ules [21]. Initially they preprocessed the CT images by orient-

ing, down-sampling, and performing local contrast

enhancement (LCE) and lung segmentation. Candidate nod-

ules were extracted using intensity thresholding and morpho-

logical processing. They trained their system with the CT

scan images obtained from the medical branch of University

of Texas and evaluated their approach using CT scans of 84

patients taken from LIDC. The training set contained 606 nod-

ules from which 245 features were generated. Features were

selected using sequential forward approach with two distinct

classifiers: Fisher Linear Discriminant (FLD) classifier and

quadratic classifier. FLD selected 40 features with a training

sensitivity of 97.52%. From the LIDC dataset, a total of 143

nodules were extracted and FLD was able to detect 92.8%

of all nodules in the dataset.

2.2. Feature subset selection

Boroczky et al. developed a CAD system to discriminate true

cancer nodules from nodule like structures such as blood ves-

sels [22]. Their approach detected the volume of interest (VOI)

enclosing a nodule, segmented and labeled as nodule, back-

ground or lung wall. From each VOI, twenty-three 2D and

3D gray level distribution and shape features were extracted.

SVM driven genetic algorithm based feature selection was car-

ried out in their work to select features in which sensitivity was

used as the fitness parameter. The selected features were used

to train SVM classifier. Their database contained 52 true nod-

ules and 443 false nodules obtained from different multi-slice

CT scans. Their method was able to generate ten optimal fea-

tures from the 23 features yielding 100% sensitivity and 56.4%

specificity using leave-one-out cross validation.

Kindie et al. suggested a two-step approach using rough sets

for feature selection [23]. After handling the missing values

either by rejecting or by imputing records, an indiscernibility

relation based on rough sets was derived to select the reducts.

These reducts were used to train a back propagation neural net-

work. Their system yielded an accuracy of 97.3% with 13 fea-

tures when applied to hepatitis dataset, 98.6% with 7 features

when applied to Wisconsin breast cancer dataset and 90.4%

with 6 features when applied to Statlog heart disease dataset

taken from University of California Irvine (UCI) repository.

Chen et al. proposed a hybrid ACO feature selection algo-

rithm combining F-score measure and SVM classifier [24].

Their approach updated the pheromone values based on the

classification accuracy of SVM and the size of feature subset.

In every iteration, a specified number of features with high

pheromone values were added to the subset. The subsets were

evaluated using SVM classifier. The subset that yielded maxi-

mum classification accuracy was considered as the best subset.

They tested their approach on Corel image databases, from

which 80 images containing 19 features with 4 class labels were

used. The algorithm selected 9 features on an average using 10-

fold cross validation. The recall and precision values of the sys-

tem are found to be 96.45% and 97.08%.

Tabakhi et al. proposed a feature selection approach using

ant colony optimization (ACO) [25], in which cosine similarity

measure (CSM) was used as the filter evaluation function. Fea-

tures with highest pheromone values and lowest similarity val-

ues to the existing features in the partially constructed subsets

were added to the subsets. Pheromone updation was based on

the frequency of the features selected in all the subsets. After

all the specified iterations, the features were sorted based on

the pheromone values and the required features were consid-

ered to form the subset to train the SVM classifier. They eval-

uated their approach on Wine, Hepatitis, Ionosphere,

Dermatology, Spam-base, Arrhythmia, Madelon and Arcene

datasets taken from UCI repository. Their approach gave an

average classification error rate of 19.84%.

Liu et al. investigated nine common CT imaging signs to

find the correlation between CT findings and the lung diseases

[26]. The lung tissues with the imaging signs were considered as

ROIs. From these ROIs, they extracted 180 features collec-

tively using histogram of gradient (HOG) features, wavelet

features, local binary pattern features and the features gener-

ated from histogram. Optimal features were selected using a

genetic optimization algorithm in which FIsher criterion was

used as the fitness measure. All the feature subsets yielding fit-

ness above a threshold are used in the evaluation of a k-NN

classifier. The subset giving maximum classification accuracy

was used to train SVM, Bag, Naive Bayesian, k-NN and Ada-

boost classifiers. They tested their approach on a set of 511

ROIs using fivefold cross-validation and obtained 92 features

at 0.5 threshold value. They obtained an average accuracy of

80.26% with SVM, 77.88% with Bag, 77.84% with Naive

Bayesian, 73.58% with k-NN and 75.70% with Adaboost

classifiers.

Christopher et al. used filter approach to select features for

the CAD system which they developed to diagnose allergic

rhinitis [27]. Their system used information gain and Pearson’s

correlation to select 40 features from a set of 91 features. When

evaluated on 872 samples collected from an Allergy testing

centre at Chennai, India, their system was able to achieve an

accuracy of 88.31%.

The following three inferences are arrived from the review

of the works carried out by other researchers. First, the nodu-

lar CT sign of different pulmonary diseases may look similar

and present difficulty for the clinician to interpret accurately

[26,28]. Second, introducing feature selection in a diagnosis

system which deals with numerous image features, increases

the performance of the classifier and decreases the computa-

tion time [24,29]. Third, meta-heuristic algorithms suggest bet-

ter solutions compared to traditional optimization algorithms

in medical diagnosis as it involves features in large scale [30].

Hence in this proposed work, a dedicated computer aided

diagnosis system to detect the presence of hamartoma is devel-
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oped in which features are selected using ant colony optimiza-

tion approach. To find the optimal subset, dependency mea-

sure based on rough sets and cosine similarity measures are

used as filter evaluation functions in ant colony algorithm.

To the best of our knowledge, this is the first work to develop

a CAD system to diagnose pulmonary hamartoma and apply

ACO in feature selection.

3. System framework

The framework of the proposed CAD system is presented in

Fig. 1. The major subsystems of this framework are segmenta-

tion subsystem, ROI extraction subsystem, feature extraction

subsystem, feature selection subsystem, classification subsys-

tem and two databases namely image database and feature

database.

3.1. Segmentation subsystem

Otsu’s segmentation algorithm is used to separate the lung tis-

sues from the CT slice by finding a suitable threshold. Airways,

disease patterns and sometimes image noise may be seen as

holes in the segmented binary image [31]. In a CT image, the

intensity values of the lung pixels are the same as the back-

ground pixels [32] and hence they are also removed to get

the segmented lung fields.

Training CT Images  

Feature Extraction Subsystem

Segmentation Subsystem

ROI Extraction Subsystem 

Query CT Image 

Feature Selection Subsystem 

Image Database  

ACO with CSM 

(ACO-CSM)

ACO with RDM 

(ACO-RDM)  

Classifier Evaluation  

Feature Database

SVM 

Classifier 

NB   

Classifier

Trained Classifier 

SVM 

Classifier 

NB   

Classifier

Classification 

Subsystem  

Diagnostic Results 

Feature Extraction Subsystem  

Segmentation Subsystem

ROI Extraction Subsystem 

Feature 

Set

Figure 1 System framework.
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Input: Chest CT slice

Step 1: Apply Otsu’s thresholding algorithm to the input

chest CT slice to obtain the binary image [33].

Step 2: Fill the holes or gaps present in the binary lung

image with the intensity level of the pixels surrounding

the holes using image morphological operations.

Step 3: Remove the background of the image using mor-

phological operations to obtain the lung fields [31].

Output: Segmented lungs.

3.2. ROI extraction system

The pathology bearing regions are considered as ROIs in this

work. Hamartoma nodules are well-defined, smooth and

round exhibiting fat and calcification [5]. The size of the nod-

ules may range from 1 to 3 cm [3,4].

Input: Segmented lungs.

Process: Extract all the nodular pathology bearing regions

using pixel based segmentation, by finding a suitable

threshold level and obtain their class labels from an expert.

Output: Region of Interests with their class labels.

3.3. Feature extraction subsystem

Input: ROIs.

Process:

Step 1: Compute the twenty-one GLCM features for each

ROI in four orientations 0o, 45o, 90o, and 135o given in [34].

The features are auto-correlation, contrast, correlation, cluster

prominence, cluster shade, dissimilarity, energy, entropy, two

measures of homogeneity, maximum probability, variance,

sum average, sum entropy, sum variance, difference variance,

difference entropy, two information measures of correlation,

normalized inverse difference and normalized inverse differ-

ence moment.

Step 2: Compute the run length features [35] suggested by

Tang namely short run emphasis, long run emphasis, gray level

non-uniformity, run length non-uniformity, run percentage,

low gray level run emphasis, high gray level run emphasis,

short run low gray level emphasis, short run high gray level

emphasis, long run low gray level emphasis and long run high

gray level emphasis in 0�, 45�, 90� and 135� orientations.

Step 3: Compute the shape features namely area, major axis

length, minor axis length, eccentricity, elongation, circularity

ratio, centroid, orientation, filled area, convex area, Euler

number, equiv-diameter, solidity, smoothness, extent and

perimeter from each ROI [31].

Step 4: Combine the eighty-four features obtained from

step 1, forty-four features from step 2 and sixteen features

from step 3 to form the feature vector of an ROI.

Step 5: Perform min-max normalization [36] to the features

in the feature vectors and convert the values to the range [0,1]

using Eq. (1).

X0 ¼
X�Xmin

Xmax �Xmin

� �

ðnew Xmax � new XminÞ þ new Xmin ð1Þ

where X is the actual value of that feature in the feature vec-

tor, X0 is the normalized value that is to be substituted for X in

the feature vector, Xmin is the minimum value of the feature

and Xmax is the maximum value of that feature.

Output: Training dataset containing the normalized feature

vectors of each ROI.

3.4. Image database

The CT scan images of the lung, the slices corresponding to

each CT scan image, the ROIs extracted from each CT slice

along with their class labels, and the features extracted from

the ROIs corresponding to each CT slice are stored as six rela-

tions in the image database.

The relations are CT_IMG (Img_ID, CTimage) with

Img_ID as primary key, CTSLICE (Img_ID, SliceId, Slice)

with {Img_ID, SliceId} as the primary key, ROI (Img_ID, Sli-

ceId, ROI_ID, ClassLabel) with {Img_ID, SliceId, ROI_ID}

as the primary key, ROI_GLCM_FEATURES (Img_ID, Sli-

ceId, ROI_ID, FName, Orientation1, Orientation2, Orienta-

tion3, Orientation4) with {Img_ID, SliceId, ROI_ID,

FName} as the primary key, ROI_RUNLENGTH_FEA-

TURES (Img_ID, SliceId, ROI_ID, FName, Orientation1,

Orientation2, Orientation3, Orientation4) with {Img_ID, Sli-

ceId, ROI_ID, FName} as the primary key and ROI_SHA-

PE_FEATURES (Img_ID, SliceId, ROI_ID, Area,

MajorAxisLength, MinorAxisLength, Eccentricity, Elonga-

tion, CircularityRatio, Centroid, Orientation, FilledArea,

ConvexArea, EulerNumber, Equiv-Diameter, Solidity,

Smoothness, Extent, Perimeter) with {Img_ID, SliceId,

ROI_ID} as the primary key.

3.5. Feature selection subsystem

The objective of this subsystem is to select a subset of relevant

features to construct a classifier model. In this work, a filter

based ant colony optimization is used in which features are

selected based on the intrinsic characteristics of the features.

A learning model is not used in the process of feature selection.

This makes the filter approaches faster to implement thereby

increasing its computational efficiency [25].

3.5.1. Ant colony based feature selection

ACO is a population based meta-heuristic approach [37] sug-

gested by Dorigo et al. which is used to select a subset of fea-

tures based on the behavior of ants searching for food. If an

ant needs to choose between paths, it prefers the path with

high pheromone level which indicates that a promising food

source is available in that path. Over time, the pheromone trail

starts to evaporate, thus reducing its attractive strength and

avoids the convergence to a locally optimal solution. There

would not be any exploration of new paths, if evaporation is

not present.

The idea of ant colony optimization is to mimic this behav-

ior of ants with simulated ants. The simulation environment is

represented as a fully connected undirected graph G= hV, Ei
where V, the set of vertices v1, v2 . . . vn corresponds to the fea-

tures F = {f1, f2 . . . fn} present in the feature database, E

denotes the set of edges connecting vertices and ‘n’ represents

the total number of vertices in the graph. Each feature is
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mapped onto a vertex and hence the number of vertices in the

graph is the same as the number of features in the image data-

base. In this work, the number of ants Nant, to explore the fea-

ture space is the same as the number of features ‘n’. Each ant is

initially placed on a vertex in the graph. Each ant visits a set of

vertices thereby choosing features independently using cosine

similarity [25] and rough dependency measures [38].

3.5.1.1. Cosine similarity measure.

Cosine similarity measure identifies the cosine value of the

angle between two features. This measure gives information

about the orientation of two features without considering their

magnitude [39]. It is computed using Eq. (2).

simðfi; fjÞ ¼

Pm

a¼1ð fia fjaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm

a¼1 f
2
ia

q

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm

a¼1 f
2
ja

q� �

s

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð2Þ

where fi; fj are any two features in ’m’ feature vectors.

If two features have the cosine similarity value as 1, then

they are said to be in same orientation.

Two features at 90o orientation have a similarity value 0

and features diametrically opposed have a similarity of 1 con-

sidering only the magnitude. Features with low similarity value

are chosen to form the feature subsets.

3.5.1.2. Rough dependency measure.

A decision system is represented as IS = {U, A, C, D} where U

is a non-empty finite set of objects called Universe, A is a non-

empty set of features, C is the set of conditional features and D

is the decision feature. Also, C and D # A. For any feature

subset S � A an indiscernible relation denoted by IND(S) is

defined as given in Eq. (3).

INDðSÞ ¼ fðx; yÞ 2 UXU : 8a 2 S; aðxÞ ¼ aðyÞg ð3Þ

where a(x) gives the value of feature ‘a’ of object x. If S # A,

for any X # U then the lower and upper approximations of X

with respect to S are defined as given in Eqs. (4) and (5).

SðXÞ ¼ fX 2 U : ½x�INDðSÞ#X ð4Þ

SðXÞ ¼ fX 2 U : ½x�INDðSÞ \ X–£ ð5Þ

where ½x�INDðSÞ ¼ fy 2 U : aðyÞ ¼ aðxÞ8a 2 Sg is the equiva-

lence class of x in U/IND(S).

Positive region is the set of all objects from U which are

classified with certainty to one class of U/IND(S), employing

features from ‘C’. It is computed using Eq. (6).

POSðSÞðDÞ ¼
[

X2U=INDðPÞ
SðXÞ ð6Þ

Dependency of ‘D’ on S is defined as given in Eq. (7).

csðDÞ ¼
jPOSsðDÞj

jUj
ð7Þ

where jUj is the cardinality of the objects in the universe.

In the proposed method, the decision system is defined by

Is = {U, A, C, D} where U represents the training dataset con-

taining the feature vectors with their class labels; A refers to

{f1, f2 . . . fn, class label}; C refers to {f1, f2 . . . fn} and D refers

to {Class label = yes/No}. For any two features fi, fj є C, the

heuristic information is given as in Eq. (8).

cfi ;fjðDÞ ¼
jPOSfi ;fjðDÞj

jUj
ð8Þ

If the dependency measure of two features is equal to 1,

then they are dependent on each other and if independent,

the measure gives a value 0.

3.5.2. Algorithms for feature selection

Let F be a set of feature subsets;

F 3 fF1;F2 . . . :FNg where 0 < N 6 Nant. The number of fea-

ture subsets is represented using ‘N’ and the number of ants

is represented using Nant. Each feature subset contains a set

of features; Fi 3 ff1; f2 . . . :fnmax
g where 0 < nmax < n; n repre-

sents the total number of extracted features. The pheromone

value (s) associated with every feature is set to a constant ini-

tially. Heuristic values are associated with ACO algorithms,

which are prior known values used in tuning the algorithm to

find an optimal solution. Features are added to feature subsets

using either exploration or exploitation. Exploration is the abil-

ity to avoid local optima in feature search, thereby preventing

the ants from selecting the same set of features into the subset.

Exploitation is where the ants exploit the promising path based

on their experiences. The exploration and exploitation balance

is achieved using the parameters qrand and qconst є [0,1]. If qrand -

� qconst, the ants exploit the known paths and the next feature is

added to the subset using Eq. (9) when cosine similarity is used

as the selection measure and Eq. (10) when rough dependency

measure is used; if qrand > qconst, the feature space is explored

using the transition probability given in Eqs. (11) and (12)

respectively. The feature with higher probability is added to

the subset that is being generated.

fj ¼ maxð½su�½gðfi;fuÞ�
bÞ ð9Þ

fj ¼ maxð½su�½cfi ;fu ðDÞ�
bÞ ð10Þ

Pjði; jÞ ¼
½sj�½gðfi;fjÞ�

b

P

u2ji
½su�½gðfi;fuÞ�

b
ð11Þ

Pjði; jÞ ¼
½sj�½cfi ;fjðDÞ�

b

P

u2ji
½su�½½cfi ;fuðDÞ�

b�
ð12Þ

where sj is the pheromone level of feature fj; gðfi; fjÞ is the

heuristic information between the two features, cfi ;fjðDÞ is the

dependency measure of features fi; fj on the class label D, suis

the pheromone level of the considered feature that is not yet

included and b is the parameter to increase the significance

of the heuristic information in selecting features. In this work,

b is set to 1 and qconst is set to 0.7 [25].

3.5.2.1. Notations used.

Dataset: Training dataset with m feature vectors and n

features

nmax: number of features to be selected in the final subset

Nmax_iter: number of iterations

sim(fi, fj): cosine similarity between features fi and fj
g(fi, fj): heuristic information between features fi and fj
based on cosine similarity

c(fi, fj): heuristic information between features fi and fj
based on rough dependency

s (fi): Pheromone level of feature i
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Count[fi]: Selection count of feature i by different ants in

different iterations

qrand, qconst: parameters in the range [0,1] to decide on

exploration and exploitation

b: parameter to increase the effect of heuristic information

in selecting features

q: pheromone evaporation rate

Nant: Number of ants.

3.5.2.2. Subset Generation using cosine similarity measure

(ACO-CSM).

Algorithm ACO-CSM (Dataset)

begin

1. For all the features in Dataset compute cosine similarity

sim(fi,fj) between features using Eq. (2);

2. Set the heuristic information gðf i; f jÞ  1=simðf i; f jÞ;

3. For each feature in Dataset do

4. Assign initial pheromone level, s½f � ¼ 1=n
5. Set its selection count, Count[f] to 0.

6. EndFor

7. Set qconst 0.7 and b 1; /* Parameters to decide

exploration or exploitation */

8. Set q 0.2; /* Initialization of pheromone evapora-

tion rate */

9. Set Nant n; /* Number of ants equal to the number

of features in Dataset */

10. For k 1 to Nmax_iter do /* Repeat subset selection

for Nmax_iter iterations
*/

11. For i 1 to Nant do /* Every ant selects nmax fea-

tures into the subset */

12. For j 1 to nmax do

13. Generate qrand є [0,1];

14. If qrand � qconst /* Exploitation */

15. Select a feature f that is not yet added to the

subset using Eq. (9).

16. Else /* Exploration */

17. Select a feature f using transition probability

given in Eq. (11).

18. EndIf

19. Increment Count[f]; /* Count of the selected

feature is increased by 1*/

20. EndFor /* index j */

21. EndFor /* index i */

22. For each feature i in Dataset do

23. siðk þ 1Þ  ð1� qÞ:siðkÞ þ
Count½i�

Pn

j¼1
Count½j�

; /* Phero-

mone updation */

24. EndFor

25. EndFor /* index k */

26. Sort Count in descending order and select the topmost

‘nmax’ features to build the subset

27. End ACO-CSM

Output: Feature Subset Set_1

3.5.2.3. Subset Generation using rough dependency measure

(ACO-RDM).

The ACO_RDM subset generation algorithm is presented

briefly in this section. The heuristic information between two

attributes is computed using rough dependency measure as

given in Eq. (8). The heuristic information used in this algo-

rithm is proportional to the degree of dependency. The algo-

rithm parameters such as initial pheromone level and

evaporation rate are assumed to be the same as ACO-CSM

algorithm. Every ant iteratively adds a feature to its feature sub-

set by either exploitation or exploration using Eqs. (10) and

(12). The trade-off between exploration and exploitation is bal-

anced by the parameters qrand and qconst. At the end of the max-

imum number of iterations, each ant corresponds to a feasible

solution (feature subset). The feature subset is then used for

evaluating the performance of the classification approaches.

Output: Feature Subset Set_2

3.6. Feature database

The feature vectors of the ROIs present in the training set are

pruned according to the features selected by ACO-CSM and

ACO-RDM algorithms. The resultant sets are stored as two

relations in this database.

3.7. Classification subsystem

The selected feature subsets are used to train SVM and Naive

Bayes classifiers independently. Training is carried out using

tenfold cross validation.

Input: Feature subsets Set _1 and Set_2

Process:

Step 1: Train SVM and Naive Bayes classifiers using feature

subset Set_1 selected by ACO-CSM algorithm.

Step 2: Train SVM and Naive Bayes classifiers using feature

subset Set_2 selected by ACO-RDM algorithm.

Step 3: Evaluate the classifiers obtained in the previous

steps and identify the classifier model that yields the highest

accuracy as the best trained classifier for this system.

Step 4: Identify the feature subset used by the best trained

classifier for the diagnosis of the disease and store it in feature set.

Output: Trained classifier

Figure 2a Input image.
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3.8. Diagnosis phase

Input: Test CT slice

Process:

Step 1: Segment the lung tissues from the input CT slice

using the steps given in Section 3.1.

Step 2: Extract the ROIs from the segmented lung as given

in Section 3.2.

Step 3: Extract only the selected features from the ROIs by

referring to the features present in feature set.

Step 4: Present the extracted features to the trained classi-

fier model to obtain the classification results.

Output: Diagnostic results.

4. Results and discussions

The dataset used for experimentation is CT scan slices of

patients affected with pulmonary hamartoma and lung cancer.

Lung fields are segmented from 300 lung CT slices and 390

nodules of all sizes are extracted and given to a radiologist

for labeling. Of these, 181 nodules are hamartoma nodules

and the remaining nodules are cancerous. The system is trained

and tested using tenfold cross validation. Two input CT slices

containing Hamartoma, their segmentation outputs and their

ROIs are shown in Figs. 2a, 2b, 2c, 3a, 3b, 3c respectively.

In this work, the feature selection algorithms are run for 25

times with 144 ants, as the number of ants equals the number

of features extracted from the ROIs. The parameters q, b and

qconst are set to 0.2, 1 and 0.7 respectively [25]. The algorithms

are run for different values of ‘nmax’ ranging from 20 to 70 [25].

Better results are obtained when ‘nmax’ is set to a value in the

Figure 2b Segmented output.

Figure 2c Extracted ROIs.

Figure 3a Input image.

Figure 3b Segmented output.
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range 30–46. The performance measures [18] are computed

using equations (13) through (16) and are given in Tables 1,

2, 3 and 4 respectively, where TP is the number of hamartoma

nodules identified correctly by the system, FP is the number of

cancer nodules labeled as hamartoma nodules, TN is the num-

ber of cancer nodules identified correctly by the system and

FN is the number of hamartoma nodules labeled by the system

as cancer nodules.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN

� �

ð13Þ

Specificity ¼
TN

TNþ FP

� �

ð14Þ

Precision ¼
TP

TPþ FP

� �

ð15Þ

Sensitivity ¼
TP

TPþ FN

� �

ð16Þ

The feature subsets obtained from ACO_CSM and

ACO_RDM algorithms are used with J48 decision tree classi-

fier also and the results obtained are given in tables 5 and 6

respectively.

From the tables it can be inferred that, SVM classifier

trained with the 38 features selected using ACO_RDM yielded

a maximum accuracy of 94.36% whereas SVM trained with 38

features selected from ACO_CSM yielded an accuracy of

85.64%. Using the 38 features selected by ACO-RDM, Naive

Bayes and decision tree classifiers yielded a maximum accuracy

of 91.02% and 90% respectively. With the 38 features selected

by ACO-CSM Naive Bayes and decision tree classifiers yielded

only 83.07% and 84.87% respectively. It can be inferred that

ACO_RDM feature selection algorithm performed better in

all the cases, as rough dependency measure handles the indis-

cernibility that exists between the features more efficiently than

cosine similarity measure. Rough dependency measure finds

the informative features based on their dependency to the tar-

Figure 3c Extracted ROIs.

Table 1 Performance of SVM classifier when ACO-CSM is used.

No. of features to be selected ‘nmax’ Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

46 88.46 91.16 86.12 85.05

42 87.18 89.5 85.17 83.94

38 85.64 88.39 83.25 82.05

34 84.32 85.56 83.20 81.59

30 83.33 85.64 81.33 79.89

Table 2 Performance of NB Classifier when ACO-CSM is used.

No. of features to be selected ‘nmax’ Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

46 85.64 88.39 83.25 82.05

42 84.35 85.64 83.25 81.59

38 83.07 84.53 81.81 80.10

34 81.59 82.87 80.48 78.53

30 80.51 81.77 79.43 77.49

Table 3 Performance of SVM classifier when ACO-RDM is used.

No. of features to be selected ‘nmax’ Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

46 93.11 95.08 91.39 90.63

42 94.36 96.69 92.35 91.6

38 94.36 96.69 92.35 91.6

34 93.07 95.58 90.91 90.10

30 92.3 93.75 91.30 88.24
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get class label. Also the uncertainty (unclear boundary values)

present in the medical image datasets is approximated effec-

tively by rough sets, which in turn improves the classification

accuracy. On the other hand, cosine similarity measure consid-

ers only the orientation between the features. If two features

have the cosine similarity value as 1, then they are said to be

in same orientation. Two features at 90o orientation have a

similarity value 0. Features with low similarity value are cho-

sen to form the feature subsets. Hence features selected using

rough dependency measure with ACO improved the accuracy

in diagnosis.

5. Conclusion and future work

In this work, a computer diagnosis system to detect Hamar-

toma nodules from CT scan images is proposed. The features

selected by ant colony optimization algorithm with cosine sim-

ilarity and rough dependency measures are used to classify the

nodules using NB and SVM classifiers. The selected features

are also used with J48 decision tree classifier. From the results,

it can be seen that SVM classifier yielded better results when

rough dependency measure is used with ant colony optimiza-

tion to select features. The performance of the classifier model

can be improved further, if the segmentation algorithm is able

to detect the nodules even at periphery.
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