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Abstract. In this paper, we study the existence and controllability for frac-
tional evolution inclusions in Banach spaces. We use a new approach to obtain
the existence of mild solutions and controllability results, avoiding hypothe-
ses of compactness on the semigroup generated by the linear part and any
conditions on the multivalued nonlinearity expressed in terms of measures of

noncompactness. Finally, two examples are given to illustrate our theoretical
results.

1. Introduction. Fractional differential equation is concerned with the notion and
methods to solve differential equations involving fractional derivatives of the un-
known function. It can be also considered as an alternative model to nonlinear
differential equations. As a result, differential equation with fractional derivative
can be considered as an excellent instrument for the description of memory and
hereditary properties of various materials and processes. The fractional order mod-
els of real systems are always more adequate than the classical integer order models,
since the description of some systems is more accurate when the fractional deriva-
tive is used. The advantages of fractional derivatives becomes evident in modeling
mechanical and electrical properties of real materials, description of rheological
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properties of rocks and in various other fields. There has been a great deal of inter-
est in the solutions of fractional differential equations in analytical and numerical
senses. One can see the monographs of Kilbas et al. [14], Podlubny [20], Diethelm
[6], Tarasov [23], Zhou [30, 31] and the papers [25, 21, 15, 8, 29, 32].

In this paper, we are interested in the fractional semilinear differential inclusions
in Banach spaces of the type

{
CDq

tx(t) ∈ Ax(t) + F (t, x(t)), a.e. t ∈ [0, b], 0 < q ≤ 1,

x(0) = x0,
(1)

where CDq
t is the Caputo fractional derivative of order q, b > 0 is a finite number,

A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 in X,
the state x(·) takes values in a Banach space X, x0 is an element of the Banach
space X, F : [0, b]×X ⊸ X is a multivalued map.

Further, we investigate the following fractional control system
{

CDq
tx(t) ∈ Ax(t) +Bu(t) + F (t, x(t)), a.e. t ∈ [0, b], 0 < q ≤ 1,

x(0) = x0,
(2)

where the control function u(·) takes its value in L
1
q1 ([a, b];U) for q1 ∈ (0, q), a

Banach space of admissible control functions and U is a Banach space. B : U → X
is a bounded linear operator.

In recent years, the existence of mild solutions and controllability problems for
various types of nonlinear fractional evolution inclusions in infinite dimensional
spaces by using different kinds of approaches have been considered in many recent
publications (see, e.g., [24, 11, 16, 26, 27, 28, 1, 17] and the references therein).
In most of the existing articles, various fixed point theorems and measure of non-
compactness are employed to obtain the fixed points of the solution operator of the
Cauchy problems under the restrictive hypotheses of compactness on the semigroup
generated by the linear part and on the nonlinear term. But, in infinite dimensional
Banach spaces the compactness of the associated evolution operator is in contradic-
tion with the controllability of a linear system while using locally Lp−controls, for
p > 1. As it was pointed out by [2], it is meaningful to introduce conditions assur-
ing controllability for semilinear equations without requiring the compactness of the
semigroup or evolution operator generated by the linear part. In this paper another
approach is considered, it exploits the weak topology of the state space. This new
tool was introduced to study semilinear differential inclusions associated to bound-
ary value conditions, see [3]. We prove the existence of mild solutions of (1) and
the controllability results of (2) by means of weak topology, avoiding hypotheses of
compactness on the semigroup generated by the linear part and any conditions on
the multivalued nonlinearity expressed in terms of measures of noncompactness.

The paper is organized as follows. In Section 2 we recall some notions and results
that we use in the main part of the paper. In section 3 we study the existence of
mild solutions for (1). In Section 4 we prove the controllability for the fractional
control system (2) and in Section 5 two examples are given to illustrate the obtained
theory.

2. Preliminaries. In this section, we introduce notations, definitions, and pre-
liminary facts which are used throughout this paper. Let A : D(A) → X be the
infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0. There exists
a constant M1 > 0 such that supt∈J ‖T (t)‖ ≤ M1. Let (X, ‖ · ‖) be a reflexive
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Banach space and Xw denote the space X endowed with the weak topology. For
a set D ⊂ X, the symbol D

w
denotes the weak closure of D. We recall that a

bounded subset D of a reflexive Banach space X is weakly relatively compact. In
the whole paper, without generating misunderstanding, we denote by ‖ · ‖p both
the Lp([0, b];X)-norm and Lp([0, b];R)-norm and by ‖·‖0 the C([0, b];X)-norm. We
recall (see [4, Theorem 4.3]) that a sequence {xn} ⊂ C([0, b];X) weakly converges
to an element x ∈ C([0, b];X) if and only if

(i) there exists N > 0 such that, for every n ∈ N and t ∈ [0, b], ‖xn(t)‖ ≤ N ;
(ii) for every t ∈ [0, b], xn(t) ⇀ x(t).

For sake of completeness, we recall some results that we will need in the main
section. Firstly we state the fixed point theorem by Donal O’Regan.

Theorem 2.1. [18] Let E be a metrizable locally convex linear topological space and

let Q be a weakly compact, convex subset of E. Suppose G : Q → C(Q) has weakly

sequentially closed graph. Then G has a fixed point; here C(Q) denoted the family

of nonempty closed, convex subsets of Q.

We mention also two results that are contained in the so called Eberlein-Smulian
theory.

Theorem 2.2. [13, Theorem 1, p. 219] Let Ω be a subset of a Banach space E.

The following statements are equivalent:

(i) Ω is relatively weakly compact;

(ii) Ω is relatively weakly sequentially compact.

Corollary 2.1. [13, p. 219] Let Ω be a subset of a Banach space X. The following

statements are equivalent:

(i) Ω is weakly compact;

(ii) Ω is weakly sequentially compact.

We recall the Krein-Smulian theorem.

Theorem 2.3. [7, p. 434] The convex hull of a weakly compact set in a Banach

space E is weakly compact.

In conclusion we recall the Pettis measurability theorem.

Theorem 2.4. [19, p. 278] Let (E,Σ) be a measure space, X be a separable Banach

space. Then a function f : E → X is measurable if and only if for every e ∈ X ′ the

function e ◦ f : E → R is measurable with respect to Σ and the Borel σ-algebra in

R.

Let us recall the following known definitions. For more details, see [14].

Definition 2.5. The fractional integral of order γ with the lower limit zero for a
function f is defined as

Iγf(t) =
1

Γ(γ)

∫ t

0

f(s)

(t− s)1−γ
ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.
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Definition 2.6. The Riemann-Liouville derivative of order γ with the lower limit
zero for a function f : [0,∞) → R can be written as

LDγf(t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)γ+1−n
ds, t > 0, n− 1 < γ < n.

Definition 2.7. The Caputo derivative of order γ for a function f : [0,∞) → R

can be written as

CDγf(t) = LDγ
(
f(t)−

n−1∑

k=1

tk

k!
fk(0)

)
, t > 0, n− 1 < γ < n.

Remark 2.1. (i) If f(t) ∈ Cn[0,∞), then

CDγf(t) =
1

Γ(n− γ)

∫ t

0

fn(s)

(t− s)γ+1−n
ds

= In−γfn(t), t > 0, n− 1 < γ < n;

(ii) the Caputo derivative of a constant is equal to zero;
(iii) if f is an abstract function with values in X, then integrals which appear in

Definitions 2.5, 2.6 and 2.7 are taken in Bochner’s sense.

3. Existence of mild solutions. We study the fractional semilinear differential
inclusion (1) under the following assumptions:

(HA) the operator A generates a strongly continuous semigroup {T (t)}t≥0 in X,
and there exists a constant M1 ≥ 1 such that supt∈J ‖T (t)‖ ≤ M1.

We assume that the multivalued nonlinearity F : [0, b]×X ⊸ X has nonempty
convex and weakly compact values and:

(H1) the multifunction F (·, x) : [0, b] ⊸ X has a measurable selection for every
x ∈ X;

(H2) the multimap F (t, ·) : X ⊸ X is weakly sequentially closed for a.e. t ∈ [0, b],
i.e., it has a weakly sequentially closed graph;

(H3) there exists a constant q1 ∈ (0, q) and for every r > 0, there exists a function

µr ∈ L
1
q1 ([0, b];R+) such that for each c ∈ X, ‖c‖ ≤ r:

‖F (t, c)‖ = sup{‖x‖ : x ∈ F (t, c)} ≤ µr(t) for a.e. t ∈ [0, b];

Now, we define the mild solution of fractional evolution inclusion (1).

Definition 3.1. [30] A continuous function x : [0, b] → X is said to be a mild
solution of fractional differential system (1) if x(0) = x0 and there exists f ∈
L

1
q1 ([0, b];X) such that f(t) ∈ F (t, x(t)) on t ∈ [0, b] and x satisfies the following

integral equation

x(t) =T (t)(x0) +

∫ t

0

(t− s)q−1
S (t− s)f(s)ds,

where

T (t) =

∫ ∞

0

ξq(θ)T (t
qθ)dθ, S (t) = q

∫ ∞

0

θξq(θ)T (t
qθ)dθ,

ξq(θ) =
1

q
θ−1− 1

q ̟q

(
θ−

1
q

)
≥ 0,

̟q(θ) =
1

π

∞∑

n=1

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq), θ ∈ (0,∞),
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and ξq is a probability density function defined on (0,∞), that is,

ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞

0

ξq(θ)dθ = 1.

Remark 3.1. It is not difficult to verify that for v ∈ [0, 1],
∫ ∞

0

θvξq(θ)dθ =

∫ ∞

0

θ−qv̟q(θ)dθ =
Γ(1 + v)

Γ(1 + qv)
.

The following results will be used in the proof of our main results.

Lemma 3.2. [30, 33] The operators T and S have the following properties:

(i) for any fixed t ≥ 0, T (t) and S (t) are linear and bounded operators, i.e., for

any x ∈ X,

‖T (t)x‖ ≤ M1‖x‖ and ‖S (t)x‖ ≤ qM1

Γ(1 + q)
‖x‖;

(ii) {T (t), t ≥ 0} and {S (t), t ≥ 0} are strongly continuous.

Given p ∈ C([0, b];X), let us denote

Λp =
{
f ∈ L

1
q1 ([0, b];X) : f(t) ∈ F (t, p(t)) for a.e. t ∈ [0, b]

}
.

The set Λp is always nonempty as Proposition 3.1 below shows.

Proposition 3.1. Assume that a multimap F : [0, b]×X ⊸ X satisfies (H1), (H2)
and (H3), the set Λp is nonempty for any p ∈ C([0, b];X).

Proof. Let p ∈ C([0, b];X). By the uniform continuity of p there exists a sequence
{pn} of step functions, pn : [0, b] → X such that

sup
t∈[0,b]

‖pn(t)− p(t)‖ → 0, as n → ∞. (3)

Hence, by (H1), there exists a sequence of functions {fn} such that fn(t) ∈
F (t, pn(t)) for a.e. t ∈ [0, b] and fn : [0, b] → X is measurable for any n ∈ N. From
(3) there exists a bounded set E ⊂ X such that pn(t), p(t) ∈ E, for any t ∈ [0, b]

and n ∈ N and by (H3) there exists ηn ∈ L
1
q1 ([0, b];R) such that

‖fn(t)‖ ≤ ‖F (t, pn(t))‖ ≤ ηn(t), ∀ n ∈ N, and a.e. t ∈ [0, b].

Hence, {fn} ⊂ L
1
q1 ([0, b];X) is bounded and uniformly integrable and {fn(t)} is

bounded in X for a.e. t ∈ [0, b]. According to the reflexivity of the space X and by
the Dunford-Pettis theorem (see [7, p. 294]), we have the existence of a subsequence,
denoted as the sequence, such that

fn ⇀ g ∈ L
1
q1 ([0, b];X).

By Mazur’s convexity theorem we obtain a sequence

f̃n =

kn∑

i=0

λn,iwn+i, λn,i ≥ 0,

kn∑

i=0

λn,i = 1

such that f̃n → g in L
1
q1 ([0, b];X) and, up to subsequence, f̃n(t) → g(t) for all

t ∈ [0, b].
By (H3), the multimap F (t, ·) is locally weakly compact for a.e. t ∈ [0, b], i.e., for

a.e. t and every x ∈ X there is a neighbourhood V of x such that the restriction of
F (t, ·) to V is weakly compact. Hence by (H2) and the locally weak compactness, we
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easily get that F (t, ·) : Xw ⊸ Xw is u.s.c. for a.e. t ∈ [0, b]. Thus, F (t, ·) : X ⊸ Xw

is u.s.c. for a.e. t ∈ [0, b].
To conclude we have only to prove that g(t) ∈ F (t, p(t)) for a.e. t ∈ [0, b].

Indeed, let N0 with Lebesgue measure zero be such that F (t, ·) : X ⊸ Xw is u.s.c.

fn(t) ∈ F (t, pn(t)) and f̃n(t) → g(t) for all t ∈ [0, b] \N0 and n ∈ N.
Fix t0 /∈ N0 and assume, by contradiction, that g(t0) /∈ F (t0, p(t0)). Since

F (t0, p(t0)) is closed and convex, from the Hahn-Banach theorem there is a weakly
open convex set V ⊃ F (t0, p(t0)) satisfying g(t0) /∈ V . Since F (t0, ·) : X ⊸ Xw is
u.s.c., we can find a neighbourhood U of p(t0) such that F (t0, x) ⊂ V for all x ∈ U .
The convergence pn(t0) ⇀ p(t0) as m → ∞ then implies the existence of n0 ∈ N

such that pn(t0) ∈ U for all n > n0. Therefore g0(t0) ∈ F (t0, pn(t0)) ⊂ V for all

n > n0. Since V is convex we also have that f̃n(t0) ∈ V for all n > n0 and, by the
convergence, we arrive to the contradictory conclusion that g(t0) ∈ V . We obtain
that g(t) ∈ F (t, p(t)) for a.e. t ∈ [0, b].

We define the solution multioperator Γ : C([0, b];X) ⊸ C([0, b];X) as

Γ(p) = {x ∈ C([0, b];X) : x(t) = T (t)x0 + S(f)(t), f ∈ Λp}, (4)

where S(f)(t) =

∫ t

0

(t− s)q−1
S (t− s)f(s)ds.

We first prove that the operator S is continuous.

For any fn, f ∈ L
1
q1 ([0, b];X) and fn → f (n → ∞), using (H3), we get for each

t ∈ [0, b]

(t− s)q−1‖fn(s)− f(s)‖ ≤ 2(t− s)q−1µr(s), a.e. s ∈ [0, t).

On the other hand, the function

∫ t

0

(t−s)q−1µr(s)ds =
[(1− q1

q − q1

)
b

q−q1
1−q1

]1−q1
‖µr‖ 1

q1

is integrable for t ∈ [0, b]. By Lebesgue dominated convergence theorem, we have
∫ t

0

(t− s)q−1‖fn(s)− f(s)‖ds → 0, as n → ∞.

Thus

‖S(fn)− S(f)‖ ≤
∥∥∥∥
∫ t

0

(t− s)q−1
S (t− s)(fn(s)− f(s))ds

∥∥∥∥

≤ qM1

Γ(1 + q)

∫ t

0

(t− s)q−1‖fn(s)− f(s)‖ds → 0, as n → ∞.

So the operator S is continuous.
It is easy to verify that the fixed points of the multioperator Γ are mild solutions

of fractional differential system (1).
Fix n ∈ N, consider Qn the closed ball of radius n in C([0, b];X) centered at

the origin and denote by Γn = Γ|Qn
: Qn ⊸ C([0, b];X) the restriction of the

multioperator Γ on the set Qn. We describe some properties of Γn.

Proposition 3.2. The multioperator Γn has a weakly sequentially closed graph.

Proof. Let {pm} ⊂ Qn and {xm} ⊂ C([0, b];X) satisfying xm ∈ Γn(pm) for all m
and pm ⇀ p, xm ⇀ x in C([0, b];X); we will prove that x ∈ Γn(p).

Since pm ∈ Qn for all m and pm(t) ⇀ p(t) for every t ∈ [0, b], it follows that
‖p(t)‖ ≤ lim infm→∞ ‖pm(t)‖ ≤ n for all t (see [5, Proposition III.5]). The fact that
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xm ∈ Γn(pm) means that there exists a sequence {fm}, fm ∈ Λpm
such that for

every t ∈ [0, b],

xm(t) = T (t)x0 +

∫ t

0

(t− s)q−1
S (t− s)f(s)ds.

We observe that, according to (H3), ‖fm(t)‖ ≤ µn(t) for a.e. t and every m, i.e.,
{fm} is bounded and uniformly integrable and {fm(t)} is bounded in X for a.e.
t ∈ [0, b]. Hence, by the reflexivity of the space X and by the Dunford-Pettis
theorem (see [7, p. 294]), we have the existence of a subsequence, denoted as the

sequence, and a function g such that fm ⇀ g in L
1
q1 ([0, b];X).

Therefore, we have Sfm ⇀ Sg. Indeed, let e′ : X → R be a linear continuous
operator. By the linearity and continuity of the operator S, we have that the
operator

g → e′
(∫ t

0

(t− s)q−1
S (t− s)g(s)ds

)

is a linear and continuous operator from L
1
q1 ([0, b];X) to R for all t ∈ [0, b]. Then,

from the definition of the weak convergence, we have for every t ∈ [0, b]

e′
(∫ t

0

(t− s)q−1
S (t− s)fm(s)ds

)
→ e′

(∫ t

0

(t− s)q−1
S (t− s)g(s)ds

)
.

Thus

xm(t) ⇀ T (t)x0 +

∫ t

0

(t− s)q−1
S (t− s)g(s)ds = x0(t), ∀ t ∈ [0, b].

implying, for the uniqueness of the weak limit inX, that x0(t) = x(t) for all t ∈ [0, b].
Finally, as the reason for the fourth part of Proposition 3.1, it is possible to show

that g(t) ∈ F (t, p(t)) for a.e. t ∈ [a, b].

Proposition 3.3. The multioperator Γn is weakly compact.

Proof. We first prove that Γn(Qn) is relatively weakly sequentially compact.
Let {pm} ⊂ Qn and {xm} ⊂ C([0, b];X) satisfying xm ∈ Γn(pm) for all m. By

the definition of the multioperator Γn, there exists a sequence {fm}, fm ∈ Λpm
such

that

xm(t) =T (t)x0 +

∫ t

0

(t− s)q−1
S (t− s)fm(s)ds, ∀ t ∈ [0, b].

Further, as the reason for Proposition 3.2, we have that there exists a subse-

quence, denoted as the sequence, and a function g such that fm ⇀ g in L
1
q1 ([0, b];X).

Therefore,

xm(t) ⇀ l(t) = T (t)x0 +

∫ t

0

(t− s)q−1
S (t− s)g(s)ds, ∀ t ∈ [0, b].

Furthermore, by the weak convergence of {fm}, by (HA), we have

‖xm(t)‖ ≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖µn‖ 1

q1

for all m ∈ N and t ∈ [0, b]. As the reason for Proposition 3.2, it is then easy to
prove that xm ⇀ l in C([0, b];X). Thus Γn(Qn) is relatively weakly compact by
Theorem 2.2.

Proposition 3.4. The multioperator Γn has convex and weakly compact values.
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Proof. Fix p ∈ Qn, since F is convex valued, from the linearity of the integral and
of the operators T (t) and S (t), it follows that the set Γn(p) is convex. The weak
compactness of Γn(p) follows by Propositions 3.2 and 3.3.

We are able now to state the main results of this section.

Theorem 3.3. Assume that (HA), (H1) and (H2) hold. In addition, suppose that

(H4) there exists a sequence of functions {ωn} ⊂ L
1
q1 ([0, b];R+) such that

sup
‖c‖≤n

‖F (t, c)‖ ≤ ωn(t)

for a.e. t ∈ [0, b], n ∈ N with

lim inf
n→∞

‖wn‖ 1
q1

n
= 0. (5)

Then inclusion (1) has at least a mild solution.

Proof. We show that there exists n ∈ N such that the operator Γn maps the ball
Qn into itself.

Assume, to the contrary, that there exist sequences {zn}, {yn} such that zn ∈
Qn, yn ∈ Γn(zn) and yn /∈ Qn, ∀ n ∈ N. Then there exists a sequence {fn} ⊂
L

1
q1 ([0, b];X), fn(s) ∈ F (s, zn(s)) such that

yn(t) =T (t)x0 +

∫ t

0

(t− s)q−1
S (t− s)yn(s)ds, ∀ t ∈ [0, b].

As the reason for Proposition 3.3, we have

n < ‖yn‖0 ≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖wn‖ 1

q1

.

Then

1 <
‖y‖0
n

≤ M1‖x0‖
n

+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1 ‖wn‖ 1
q1

n
, n ∈ N,

which contracts (5).

Fix n ∈ N such that Γn(Qn) ⊆ Qn. By Proposition 3.3 the set Vn = Γn(Qn)
w

is weakly compact. Let now Wn = co(Vn), where co(Vn) denotes the closed convex
hull of Vn. By Theorem 2.3, Wn is a weakly compact set. Moreover, from the fact
that Γn(Qn) ⊂ Qn and that Qn is a convex closed set, we have that Wn ⊂ Qn and
hence

Γn(Wn) = Γn(co(Γn(Qn))) ⊆ Γn(Qn) ⊆ Γn(Qn)
w
= Vn ⊂ Wn.

In view of Proposition 3.2, Γn has a weakly sequentially closed graph. Thus from
Theorem 2.1, inclusion (1) has a solution. The proof is now completed.

Remark 3.2. Suppose, for example, that there exists α ∈ L
1
q1 ([0, b];R+) and a

nondecreasing function β : [0,+∞) → [0,+∞) such that ‖F (t, c)‖ ≤ α(t)β(‖c‖) for
a.e. t ∈ [0, b] and every c ∈ X. Then condition (5) is equivalent to

lim inf
n→∞

β(n)

n
= 0.
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Theorem 3.4. Assume that (HA), (H1) and (H2) hold. If

(H5) there exists α ∈ L
1
q1 ([0, b];R+) such that

‖F (t, c)‖ ≤ α(t)(1 + ‖c‖), for a.e. t ∈ [0, b], ∀ c ∈ X

and

M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖α‖ 1

q1

< 1, (6)

then inclusion (1) has at least a mild solution.

Proof. As the reason for Theorem 3.3. Assume that there exist {zn}, {yn} such
that zn ∈ Qn, yn ∈ Γn(zn) and yn /∈ Qn, ∀ n ∈ N, we get

n <‖yn‖0

≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
(∫ b

0

|α(η)|
1
q1 (1 + ‖zn(η)‖)

1
q1 dη

)q1

≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
(1 + n)‖α‖ 1

q1

, n ∈ N,

which contracts (6).
The conclusion then follows by Theorem 2.1, like Theorem 3.3.

Furthermore we are able to consider also superlinear growth condition, as next
theorem shows.

Theorem 3.5. Assume that (HA), (H1) and (H2) hold. If

(H6) there exists α ∈ L
1
q1 ([0, b];R+) and a nondecreasing function β : [0,+∞) →

[0,+∞) such that

‖F (t, c)‖ ≤ α(t)β(‖c‖), for a.e. t ∈ [0, b], ∀ c ∈ X

and L > 0 such that

L

M1‖x0‖+ M1q
Γ(1+q)

[(
1−q1
q−q1

)
b

q−q1
1−q1

]1−q1
‖α‖ 1

q1

β(L)
> 1, (7)

then inclusion (1) has at least a mild solution.

Proof. It is sufficient to prove that the operator Γ maps the ball QL into itself. In
fact, given any z ∈ QL and y ∈ Γ(z), we have

‖yn‖0 ≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
(∫ b

0

|α(η)|
1
q1 (β(‖z(η)‖))

1
q1 dη

)q1

≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖α‖ 1

q1

β(L) < L,

The conclusion then follows by Theorem 2.1, like Theorem 3.3.

4. Controllability results. In this section, we deals with the controllability for
fractional semilinear differential inclusions (2) in a reflexive Banach space. We
assume that
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(HB) The control function u(·) takes its value in U , a Banach space of admissible

control functions, where U = L
1
q1 ([a, b];U) for q1 ∈ (0, q) and U is a Banach

space. B : U → X is a bounded linear operator, with

‖B‖ ≤ M2. (8)

Definition 4.1. A continuous function x : [0, b] → X is said to be a mild solution of

system (2) if x(0) = x0 and there exists f ∈ L
1
q1 ([0, b];X) such that f(t) ∈ F (t, x(t))

on t ∈ [0, b] and x satisfies the following integral equation

x(t) =T (t)(x0) +

∫ t

0

(t− s)q−1
S (t− s)Bu(s)ds+

∫ t

0

(t− s)q−1
S (t− s)f(s)ds.

We will consider the controllability problem for system (2), i.e., we will study
conditions which guarantee the existence of a mild solution to problem (2) satisfying

x(b) = x1, (9)

where x1 ∈ X is a given point. A pair (x, u) consisting of a mild solution x(·) to

(2) satisfying (9) and of the corresponding control u(·) ∈ L
1
q1 ([0, b];U) is called a

solution of the controllability problem.
We assume the standard assumption that the corresponding linear problem (i.e.,

when F (t, c) ≡ 0) has a solution. More precisely, we suppose that

(HW) The controllability operator W : U → X given by

Wu =

∫ b

0

(b− s)q−1
S (b− s)Bu(s)ds

has a bounded inverse which takes value in U/ker(W ) and there exists a
positive constant M3 > 0 such that

‖W−1‖ ≤ M3. (10)

Let q1 ∈ (0, q). We denote with S1 : L
1
q1 ([0, b];X) → C([0, b];X) and S2 :

L
1
q1 ([0, b];X) → C([0, b];X) the following integral operators

S1f(t) =

∫ t

0

(t− s)q−1
S (t− s)f(s)ds, ∀ t ∈ [0, b], (11)

S2f(t) =

∫ t

0

(t− s)q−1
S (t− s)BW−1

(
−

∫ b

0

(t− s)q−1
S (b− s)f(η)dη

)
(s)ds,

∀ t ∈ [0, b], (12)

and we define the solution multioperator Π : C([0, b];X) ⊸ C([0, b];X) as

Π(p) =

{
x ∈ C([0, b];X) : x(t) = T (t)x0 + S1(f)(t)

+

∫ t

0

(t− s)q−1
S (t− s)BW−1

(
x1 − T (b)x0

)
(s)ds+ S2f(t), f ∈ Λp

}
.

It is easy to verify that the fixed points of the multioperator Π are mild solutions
of fractional differential system (2) and (9).

Proposition 4.1. The operators S1 and S2 defined in (11) and (12) are linear and

continuous.
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Proof. The linearity follows from the linearity of the integral operator and of the
operators B, W−1, we have

‖S1f(t)‖ =

∥∥∥∥
∫ t

0

(t− s)q−1
S (t− s)f(s)ds

∥∥∥∥

≤ M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖f‖ 1

q1

, ∀ t ∈ [0, b].

Moreover, by (8) and (10), we obtain

‖S2f(t)‖ =

∥∥∥∥
∫ t

0

(t− s)q−1
S (t− s)BW−1

(
−

∫ b

0

(t− s)q−1
S (b− s)f(η)dη

)
(s)ds

∥∥∥∥

≤ qM1M2

Γ(1 + q)

∫ t

0

(t− s)q−1

∥∥∥∥W
−1

(
−
∫ b

0

(b− s)q−1
S (b− s)f(η)dη

)
(s)

∥∥∥∥ds

≤ qM1M2

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1

×
∥∥∥∥W

−1

(
−
∫ b

0

(b− s)q−1
S (b− s)f(η)dη

)∥∥∥∥
1
q1

=
qM1M2M3

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
∥∥∥∥

M1q

Γ(1 + q)

∫ b

0

(b− s)q−1f(η)dη

∥∥∥∥

=
q2M2

1M2M3

Γ2(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]2(1−q1)

‖f‖ 1
q1

,

for t ∈ [0, b].

Fix n ∈ N, we denote by Πn = Π|Qn
: Qn ⊸ C([0, b];X) the restriction of the

multioperator Π on the set Qn. We describe some properties of Πn.

Proposition 4.2. The multioperator Πn has a weakly sequentially closed graph.

Proof. Let {pm} ⊂ Qn and {xm} ⊂ C([0, b];X) satisfying xm ∈ Πn(pm) for all m
and pm ⇀ p, xm ⇀ x in C([0, b];X); we will prove that x ∈ Πn(p).

Since pm ∈ Qn for all m and pm(t) ⇀ p(t) for every t ∈ [0, b], it follows that
‖p(t)‖ ≤ lim infm→∞ ‖pm(t)‖ ≤ n for all t (see [5, Proposition III.5]). The fact that
xm ∈ Πn(pm) means that there exists a sequence {fm}, fm ∈ Λpm

such that for
every t ∈ [0, b],

xm(t) =T (t)x0 + S1fm(t) +

∫ t

0

(t− s)q−1
S (t− s)BW−1

(
x1 − T (b)x0

)
(s)ds

+ S2fm(t).

We observe that, according to (H3), ‖fm(t)‖ ≤ µn(t) for a.e. t and every m, i.e.,
{fm} is bounded and uniformly integrable and {fm(t)} is bounded in X for a.e.
t ∈ [0, b]. Hence, by the reflexivity of the space X and by the Dunford-Pettis
theorem (see [7, p. 294]), we have the existence of a subsequence, denoted as the

sequence, and a function g such that fm ⇀ g in L
1
q1 ([0, b];X).

In view of the linearity and continuity for Si, we have Sifm ⇀ Sig for i = 1, 2.
Thus

xm(t) ⇀T (t)x0 + S1g(t) +

∫ t

0

(t− s)q−1
S (t− s)BW−1(x1 − T (b)x0)(s)ds

+ S2g(t) = x0(t), ∀ t ∈ [0, b].
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implying, for the uniqueness of the weak limit inX, that x0(t) = x(t) for all t ∈ [0, b].
Similar to the proof of Proposition 3.2, we can prove that g(t) ∈ F (t, p(t)) for

a.e. t ∈ [0, b].

Proposition 4.3. The multioperator Πn is weakly compact.

Proof. We first prove that Πn(Qn) is weakly relatively sequentially compact.
Let {pm} ⊂ Qn and {xm} ⊂ C([0, b];X) satisfying xm ∈ Πn(pm) for all m. By

the definition of the multioperator Πn, there exist a sequence {fm}, fm ∈ Λpm
such

that

xm(t) =T (t)x0 + S1fm(t) +

∫ t

0

(t− s)q−1
S (t− s)BW−1(x1 − T (b)x0)(s)ds

+ S2fm(t), ∀ t ∈ [0, b].

Further, as the reason for Proposition 4.2, we have that there exists a subse-

quence, denoted as the sequence, and a function g such that fm ⇀ g in L
1
q1 ([0, b];X).

Therefore

xm(t) ⇀ l(t) =T (t)x0 + S1g(t) +

∫ t

0

(t− s)q−1
S (t− s)BW−1(x1 − T (b)x0)(s)ds

+ S2g(t), ∀ t ∈ [0, b].

Furthermore, by the weak convergence of {fm}, by (HA), (8), (10), and the conti-
nuity of the operators S1 and S2 we have

‖xm(t)‖ ≤M1‖x0‖+
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖µn‖ 1

q1

+
qM1M2M3

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1

×
(
‖x1‖+M1‖x0‖+

M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
‖µn‖ 1

q1

)
,

for all m ∈ N and t ∈ [0, b]. As the reason for Proposition 4.2, it is then easy to
prove that xm ⇀ l in C([0, b];X). Thus Πn(Qn) is relatively weakly compact by
Theorem 2.2.

Proposition 4.4. The multioperator Πn has convex and weakly compact values.

Proof. Fix p ∈ Qn, since F is convex valued, from the linearity of the integral and
of the operators T (t), S (t), B and W−1, it follows that the set Πn(p) is convex.
The weak compactness of Πn(p) follows by Propositions 4.2 and 4.3.

We are able now to state the main results of this section.

Theorem 4.2. Assume that (HA), (H1) (H2), (HB), (HW) hold. If

(H4)
′ there exists a sequence of functions {ωn} ⊂ L

1
q1 ([0, b];R+) such that

sup
‖c‖≤n

‖F (t, c)‖ ≤ ωn(t)

for a.e. t ∈ [0, b], n ∈ N with

lim inf
n→∞

‖ωn‖ 1
q1

n
= 0, (13)
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then controllability problem (2) and (9) has a solution.

Proof. We show that there exists n ∈ N such that the operator Πn maps the ball
Qn into itself.

Assume, to the contrary, that there exist sequences {zn}, {yn} such that zn ∈
Qn, yn ∈ Πn(zn) and yn /∈ Qn, ∀ n ∈ N. Then there exists a sequence {fn} ⊂
L

1
q1 ([0, b];X), fn(s) ∈ F (s, zn(s)) such that

yn(t) =T (t)x0 + S1yn(t) +

∫ t

0

(t− s)q−1
S (t− s)BW−1(x1 − T (b)x0)(s)ds

+ S2yn(t), ∀ t ∈ [0, b].

As the reason for Proposition 4.3, we have

‖yn‖0 ≤C1 + C2

(∫ b

0

‖fn(η)‖
1
q1 dη

)q1

≤C1 + C2

(∫ b

0

|ωn(η)|
1
q1 dη

)q1

,

where

C1 =M1‖x0‖+
qM1M2M3

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1(
‖x1‖+M1‖x0‖

)
, (14)

C2 =
M1q

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
(
1 +

qM1M2M3

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
)
. (15)

Then

1 <
‖y‖0
n

≤ C1

n
+ C2

‖ωn‖ 1
q1

n
, n ∈ N,

which contracts (13).

Fix n ∈ N such that Πn(Qn) ⊆ Qn. By Proposition 4.3 the set Vn = Πn(Qn)
w

is weakly compact. Let now Wn = co(Vn), where co(Vn) denotes the closed convex
hull of Vn. By Theorem 2.3, Wn is a weakly compact set. Moreover from the fact
that Πn(Qn) ⊂ Qn and that Qn is a convex closed set we have that Wn ⊂ Qn and
hence

Πn(Wn) = Πn(co(Πn(Qn))) ⊆ Πn(Qn) ⊆ Πn(Qn)
w
= Vn ⊂ Wn.

In view of Proposition 4.2, Πn has a weakly sequentially closed graph. Thus from
Theorem 2.1, the system (1) has a solution. The proof is now completed.

We are able to prove the controllability results also under less restrictive growth
assumptions, for instance sublinearity.

Theorem 4.3. Assume that (HA), (H1), (H2), (HB), (HW) hold. If

(H5)
′ there exists α ∈ L

1
q1 ([0, b];R+) such that

‖F (t, c)‖ ≤ α(t)(1 + ‖c‖), for a.e. t ∈ [0, b], ∀ c ∈ X

and

M1q

Γ(1 + q)
‖α‖ 1

q1

(
1 +

qM1M2M3

Γ(1 + q)

[(1− q1
q − q1

)
b

q−q1
1−q1

]1−q1
)

< 1, (16)

then controllability problem (2) and (9) has a solution.
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Proof. As the reason for Theorem 4.2. Assume that there exist {zn}, {yn} such
that zn ∈ Qn, yn ∈ Πn(zn) and yn /∈ Qn, ∀ n ∈ N, we get

n < ‖yn‖0 ≤C1 + C2

(∫ b

0

|α(η)|
1
q1 (1 + ‖zn(η)‖)

1
q1 dη

)q1

≤C1 + C2(1 + n)‖α‖ 1
q1

, n ∈ N,

which contracts (16).
The conclusion then follows by Theorem 2.1, like Theorem 4.6.

Furthermore we are able to consider also superlinear growth condition, as next
theorem shows.

Theorem 4.4. Assume that (HA), (H1), (H2), (HB) and (HW) hold. If

(H6)
′ there exists α ∈ L

1
q1 ([0, b];R+) and a nondecreasing function β : [0,+∞) →

[0,+∞) such that

‖F (t, c)‖ ≤ α(t)β(‖c‖), for a.e. t ∈ [0, b], ∀ c ∈ X,

and L > 0 such that

L

C1 + C2‖α‖ 1
q1

β(L)
> 1,

where C1 and C2 are the positive constants defined in (14) and (15), then the

controllability problem (2) and (9) has a solution.

Proof. It is sufficient to prove that the operator Π maps the ball QL into itself. In
fact, given any z ∈ QL and y ∈ Π(z), we have

‖yn‖0 ≤ C1 + C2

(∫ b

0

|α(η)|
1
q1 (β(‖zn(η)‖))

1
q1 dη

)q1

≤ C1 + C2‖α‖ 1
q1

β(L) < L,

The conclusion then follows by Theorem 2.1, like in Theorem 4.6.

5. Examples. As applications we give two examples to illustrate our theoretical
results.

Example 5.1. Consider the following fractional differential inclusion of the form




∂
2
3

∂t
2
3

x(t, y) ∈ xyy(t, y) + P (t, x(t, y)), t ∈ J = [0, 1],

x(t, 0) = x(t, 1) = 0,
x(0, y) = 0, 0 < y < 1,

(17)

where P : J ×X → 2X \ {Ω}.
Let X = L2(0, 1) and define A : D(A) ⊂ X → X by Ax = xyy , where domain

D(A) is given by {x ∈ X : x, xy are absolutely continuous, xyy ∈ X, x(t, 0) =
x(t, 1) = 0}. A can be written as

Ax =

∞∑

n=1

n2〈x, xn〉, x ∈ D(A),

where xn(y) =
√
2 sinny, n = 1, 2, · · · is the orthonormal set of eigenfunctions of

A. Moreover, for any x ∈ X we have

T (t)x =

∞∑

n=1

e−n2t〈x, xn〉xn.
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Clearly, A generates the above strongly continuous semigroup T (t) on Y , here, T (t)
satisfies the hypotheses (HA).

Define x(t)(y) = x(t, y), F (t, x(t)) (y) = P (t, x(t, y)).
Here F : J ×X → 2X \ {Ω}. With the choice of A and F , system (17) can be

rewritten as
{

CDq
tx(t) ∈ Ax(t) + F (t, x(t)) , t ∈ J, q = 2

3 ∈ (0, 1),
x(0) = 0.

Assume that F satisfies (H1), (H2) and one of (H4)-(H6). Thus all the conditions
of Theorem 3.3, 3.4 and 3.5 are satisfied. Hence, system (17) has at least a mild
solution on J .

Example 5.2. Let X = U = L2(0, 1). Consider the following fractional differential
inclusion with control




C
0 D

3
4

t x(t, y) ∈ xyy(t, y) + F (t, x(t, y)) +Bu(t, y), y ∈ [0, 1], t ∈ J = [0, 1],
x(t, 0) = x(t, 1) = 0, t ≥ 0,
x(0, y) = φ(y), 0 ≤ y ≤ 1.

(18)

Similarly, A and T (t) are defined as in Example 1. Then the operator S (·) can be
written as

S (t) =
3

4

∫ ∞

0

θξ 3
4
(θ)T (t

3
4 θ)dθ.

Define

Bu =

∞∑

n=1

e
− 1

1+n2 〈u, xn〉xn,

and W : U → X as follows:

Wu :=

∫ 1

0

(1− s)−
1
4 S (1− s)Bu(s, y)ds.

Since

‖u‖ =

√√√√
∞∑

n=1

〈u, xn〉2,

for u ∈ U , we have

‖Bu‖ =

√√√√
∞∑

n=1

e
− 2

1+n2 〈u, xn〉2 ≤

√√√√
∞∑

n=1

〈u, xn〉2 = ‖u‖,

which implies ‖B‖ ≤ 1. Hence, (HB) holds.

Since q = 3
4 > 1

2 = q1, we take U = L
1
q1 (J, U) = L2(J, U). Next, let u(s, y) =

x(y) ∈ U . Then

Wu =

∫ 1

0

(1− s)−
1
4
3

4

∫ ∞

0

θξ 3
4
(θ)T ((1− s)

3
4 θ)Bxdθds

=

∫ 1

0

(1− s)−
1
4
3

4

∫ ∞

0

θξ 3
4
(θ)

∞∑

n=1

e
− 1

1+n2 e−n2(1−s)
3
4 θ〈x, xn〉xndθds

=

∫ ∞

0

ξ 3
4
(θ)

∞∑

n=1

e
− 1

1+n2

∫ 1

0

3

4
θ(1− s)−

1
4 e−n2(1−s)

3
4 θds〈x, xn〉xndθ
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=

∫ ∞

0

ξ 3
4
(θ)

∞∑

n=1

∫ 1

0

n−2e
− 1

1+n2
d

ds

(
e−n2(1−s)

3
4 θ

)
ds〈x, xn〉xndθ

=

∫ ∞

0

ξ 3
4
(θ)

∞∑

n=1

n−2e
− 1

1+n2

(
1− e−n2θ

)
〈x, xn〉xndθ

=

∞∑

n=1

n−2e
− 1

1+n2

(
1− E 3

4

(
−n2

))
〈x, xn〉xn,

where

E 3
4

(
−n2

)
:=

∫ ∞

0

e−n2θξ 3
4
(θ)dθ

is a Mittag-Leffler function (for more details, see [14]). Note that 0 < 1 − e−θ <

1 − e−n2θ < 1 for any θ > 0. So 1 − E 3
4
(−1) ≤ 1 − E 3

4

(
−n2

)
≤ 1. From the

above computations we know that W is surjective. So we may define a right inverse
W−1 : X → U by

(W−1x)(t, y) :=

∞∑

n=1

n2e
1

1+n2 〈x, xn〉xn

1− E 3
4
(−n2)

,

for x =
∑∞

n=1〈x, xn〉xn. Since

‖x‖D(A) := ‖Ax‖ :=

√√√√
∞∑

n=1

n2〈u, xn〉2,

for x ∈ D(A), we derive

‖(W−1x)(t, ·)‖ =

√√√√√
∞∑

n=1

n4e
1

1+n2 〈x, xn〉2(
1− E 3

4
(−n2)

)2

≤ e
1
2

1− E 3
4
(−1)

√√√√
∞∑

n=1

n2〈x, xn〉2

=
e

1
2

1− E 3
4
(−1)

‖x‖D(A).

Note that W−1x is independent of t ∈ J . Consequently, we obtain

‖W−1‖ ≤ e
1
2

1− E 3
4
(−1)

=: M3.

Hence, condition (HW) is satisfied.
Next, we suppose that F : J ×X → 2X satisfies (H1), (H2) and (H4)

′. Now, the
system (18) can be abstracted as

{
C
0 D

3
4

t x(t) ∈ Ax(t) + F (t, x(t)) +Bu(t), t ∈ J,
x(0) = φ.

Clearly, all the assumptions in Theorem 4.2 are satisfied. Then the system (18) is
controllable on J .
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[21] R. Ponce, Hölder continuous solutions for fractional differential equations and maximal reg-

ularity, Journal of Differential Equations, 255 (2013), 3284–3304.
[22] L. Schwartz, Cours d’Analyse I, 2nd ed. Hermann, Paris, 1981.

[23] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of

Particles, Fields and Media, Springer, 2010.

[24] J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential
inclusions, Nonlinear Analysis: Real World Analysis, 12 (2011), 3642–3653.

[25] R. N. Wang, D. H. Chen and Ti-Jun Xiao, Abstract fractional Cauchy problems with almost
sectorial operators, Journal of Differential Equations, 252 (2012), 202–235.



524 YONG ZHOU, V. VIJAYAKUMAR AND R. MURUGESU

[26] R. N. Wang, Q. M. Xiang and P. X. Zhu, Existence and approximate controllability for systems
governed by fractional delay evolution inclusions, Optimization, 63 (2014), 1191–1204.

[27] V. Vijayakumar, C. Ravichandran and R. Murugesu, Existence of mild solutions for nonlocal
Cauchy problem for fractional neutral evolution equations with infinite delay, Surveys in

Mathematics and its Applications 9 (2014), 117–129.

[28] V. Vijayakumar, C. Ravichandran and R. Murugesu, Nonlocal controllability of mixed
Volterra-Fredholm type fractional semilinear integro-differential inclusions in Banach spaces,
Dynamics of Continuous, Discrete Impulsive Systems, Series B: Applications & Algorithms,
20 (2013), 485–502.

[29] L. Zhang and Y. Zhou, Fractional Cauchy problems with almost sectorial operators, Applied

Mathematics and Computation, 257 (2015), 145–157.

[30] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore,
2014.

[31] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier &
Academic Press, 2015.

[32] Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equa-
tions, Journal of Integral Equations and Applications, 25 (2013), 557–586.

[33] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear

Analysis, 11 (2010), 4465–4475.

Received August 2015; revised October 2015.

E-mail address: yzhou@xtu.edu.cn

E-mail address: vijaysarovel@gmail.com
E-mail address: arjhunmurugesh@gmail.com


	1. Introduction
	2. Preliminaries
	3. Existence of mild solutions
	4. Controllability results
	5. Examples
	Acknowledgments
	REFERENCES

