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This study is motivated by the preliminary direct numerical simulations in double-diffusive (DD)

core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a

rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters

and increases the phase speed. This increased our curiosity to have a thorough understanding of the

linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The

present study, therefore, addresses the linear stability of viscosity-stratified core-annular Poiseuille

flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing

at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD

system are explained through an energy budget analysis. The differences and similarities between

core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored.

The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is

non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers

is destabilized in the presence of moderate to large inertial effects. Both the longwave and shortwave

are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing

the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability

analysis. The present study reveals that it may be possible to control the instabilities in core-annular

pressure driven pipe flows by imposing a velocity slip at the walls. Published by AIP Publishing.

https://doi.org/10.1063/1.4989744

I. INTRODUCTION

The study of instabilities in core-annular immiscible or

miscible flow configurations gains its importance due to its

relevance in a number of applications and the details of several

aspects of the analysis with respect to both axisymmetric and

swirling disturbances are summarized in Refs. 1–3 and the

references therein.

Motivated by the curiosity to understand the differences

and similarities between miscible core-annular flows in a pipe

and those in a plane channel, several researchers4–7 have con-

ducted linear stability analysis in two-fluid channel flows.

Selvam et al.8 have examined the linear stability of variable

miscible core-annular flow in a pipe. Their study revealed that

the flow is stable at any Reynolds number up to a critical

value of viscosity ratio and this is in contrast with the immis-

cible counterpart which is unstable at any viscosity ratio.3

The stability properties in pipe flows are different from those

observed in plane channel flows with finite interface thickness,

when the less viscous fluid is adjacent to the wall. While the

plane channel flow is stabilized with respect to single fluid

flow, the core-annular flow is destabilized beyond the criti-

cal value of viscosity ratio and this is also in contrast with

a)Also at Department of Mathematics, Indian Institute of Technology Madras.
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c)ksahu@iith.ac.in

the miscible planar channel flows.5,7,9 For a pipe flow with

more viscous core, the axisymmetric mode is more unstable

than the swirl mode which is again different from the single

fluid pipe flow, in which the swirl mode is the most unstable

one.

The studies on the double-diffusive (DD) effects on the

stability properties of the miscible plane channel10 and core-

annular flows11 clearly demonstrate different characteristics

displayed by the two geometries. Sahu11 has shown that a

stable flow configuration in the context of single-component

(SC) flows become unstable due to the DD phenomenon. An

increase in diffusivity ratio of faster to slower-diffusing scalar

enhances the instability. The diffusion and the radial location of

the mixed layer display non-monotonic effects on the stability

characteristics. This is in contrast to that observed in a single-

component (SC) flow of miscible fluids examined by Selvam

et al.8 The physical mechanism responsible for DD instability

in core-annular pipe flows has been examined and explained by

Sahu11 through an energy budget analysis and an inviscid sta-

bility analysis. He shows that the rate of transfer of energy from

the basic flow to the perturbations (the Reynolds stress term)

and the rate of energy associated with the gradient of viscosity

perturbations in the radial direction are responsible for the DD

instability. The inviscid analysis reveals that the DD flows in a

cylindrical pipe are inviscidly stable. Further, the direct

numerical simulation (DNS) results are presented on DD

effects in the nonlinear regime, and the simulations reveal an

1070-6631/2017/29(9)/097106/16/$30.00 29, 097106-1 Published by AIP Publishing.
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interesting new type of elliptical shaped instability pattern in

the work of Sahu.11

As a preliminary investigation, we extended the DNS

computations of Sahu11 by incorporating the slip effects appro-

priately, and the results revealed (Fig. 1) that the slip at the pipe

wall delayed the occurrence of instability in a DD core-annular

flow configuration for the range of parameters considered and

that the instabilities propagated with greater phase speed (cr)

in a slippery pipe [βs = 0; αc = 2.11,
ωr max

αc
= cr = 1.2684;

βs = 0.05; αc = 2.21,
ωr max

αc
= cr = 1.3379; where βs is

the slip parameter and ωr max is the real part of the pertur-

bation frequency (ω) when the growth rate (ωi) is maximum

and αc is the critical wavenumber where this maximum value

is attained]. The DNS results with slip effects increased our

curiosity to understand the slip effects on the linear stabil-

ity characteristics of core-annular flows of miscible two-fluid

flow in a slippery pipe and it is with this as our objective,

the present study has been taken up. Such a study would also

provide an opportunity to understand the similarities and dif-

ferences between the present results in a slippery pipe and

the results by Ghosh et al.12,13 in a slippery channel. Ghosh

et al.12,13 have considered the linear stability analysis of

pressure-driven miscible two-fluid three layer channel flows

with slip at the walls of the channel. Their results demon-

strated that the slip plays a dual role of either stabilizing

or destabilizing the flow in a rigid channel and this in turn

provides an effective way to control the flow in such a config-

uration with viscosity stratification. The present study gains

its significance in applications where the walls of the pipe are

porous, chemically patterned, or molecular rough surfaces, and

which can be modeled and represented by appropriate velocity

slip at the walls. What does the slip do? The velocity slip at

the wall reduces the flow resistance provided by viscous drag

and thus enhances significantly the primary flow distribution

near the wall; thereby, slip plays a crucial role on instability

behavior.

It is important to note that such investigations have been

carried out to assess slip effects in different flow configura-

tions. Note that the slip length measures the surface slip and it

is the depth beyond the macroscopic solid surface at which

the velocity extrapolates to zero. The slip length is equal

in magnitude to the slip velocity per unit shear rate of the

flow near a boundary surface, and it can be of the order of

10 nm–10 µm.14–16 In view of the necessity to understand the

effects of slip (arising due to wettability, surface chemistry, and

surface roughness), there are reports on the plane Poiseuille

flow with both symmetric and asymmetric slip conditions at the

walls.17–20 The linear stability analysis by Lauga and Cossu20

reveals that the presence of slip at the wall increases the criti-

cal value of the Reynolds number significantly. An asymmetric

slip condition imposed at the walls by Ling et al.21 shows that

the slip plays a dual role of stabilizing/destabilizing the flow

without slip and it depends on the slip length. The results for

a diverging channel flow, with slip at the wall, examined by

Sahu et al.22 showed that the wall slip has a destabilizing influ-

ence at low Knudsen numbers, Kn (ratio of slip-length to half

the local width of the channel). They used the Maxwell slip

boundary condition23 to model the velocity slip at the walls.

If the slip wall conditions are used, then the Navier-Stokes

equations are valid up to Kn = 0.1.24

The interface dominated flow of two immiscible fluids in a

slippery channel analyzed by You and Zheng25 shows that the

stability of viscosity stratified microchannel flow is enhanced

by slip. The slip effects have been observed to be strong

(relatively weak) at small and large (close to one) viscosity

contrasts. The linear stability of pressure-driven miscible two-

fluid three-layer channel flows with slip at the walls of the

channel examined by Ghosh et al.12,13 reveal that when the

FIG. 1. Evolutions of the slowly diffusing species (s) contour in a DD flow for (a) βs = 0 (rigid pipe) and (b) βs = 0.05 (slippery pipe) for

δ = 100 with other parameters as Re = 500, Sc = 1000, q = 0.1, R1 = 0.6, Rs = 1, Rf = ☞1.1. From top to bottom, t = 100, 150, 200, 250, 350, and 750.

Here, βs denotes the slip parameter; the other dimensionless parameters are introduced and described in Sec. II. The phase speed =
ωr max
αc

= cr , where cr =

1.2684 in a rigid pipe and cr = 1.3379 in a slippery pipe. Here ωr max denotes the maximum frequency, αc denotes the critical wavenumber. The results were

generated with no slip/slip conditions for the velocity components at the wall of the pipe together with the no-flux conditions for the slowly diffusing (scalar s)

and faster diffusing (scalar f ) species at the pipe wall and with a periodic boundary condition along the axis of the pipe.
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less viscous fluid is adjacent to the slippery walls, the flow is

stable for single component (SC) system but is unstable at low

Reynolds numbers in the presence of double-diffusive (DD)

phenomenon. A new unstable mode (DD mode) distinct from

the TS mode arises at Reynolds numbers smaller than the crit-

ical Reynolds number for the TS mode, when the mixed layer

of the fluids moves towards the slippery walls of the channel.

This mode is prominent when the mixed layer overlaps with

the critical layer. The velocity slip at the channel wall has a

non-monotonic effect on the stability properties of the DD sys-

tem. The first occurrence of the DD mode is delayed as the slip

velocity at the wall increases. In a DD configuration, when the

less viscous fluid is placed adjacent to the slippery wall with

strong slip effects, the DD system is more stable than the cor-

responding flow system in a rigid channel. However, for weak

slip effects, there exists a region in the α-Re plane, where the

DD system in a slippery channel is more unstable than in a

rigid channel. There are several investigations on the mecha-

nisms of slip flow past a surface (rough/porous/hydrophobic)

in the past decade, which have been reviewed in the stud-

ies of Neto et al.,26 Lauga et al.,27 Zhang et al.,28 Roth-

stein,29 Kumar et al.,30 Ng et al.,31 and the references

therein.

The results of the present study show that slip at the

wall of the pipe plays a dual role in the sense that there is

either stabilization or destabilization of the flow system with

slip as compared to the same configuration without slip. This

has relevance in a number of engineering applications where

friction reduction of liquid is achieved through effective slip

at the wall. In fact, Choi et al.32 have designed the walls

of the channel as one with slip and have observed flatten-

ing of the velocity profiles within microchannels (nanograted

hydrophobic microchannel). They have pointed out that this

could be used to reduce the dispersion in microfluidic sep-

aration systems. The dual role exhibited by slip is impor-

tant in scientific and engineering applications as one can

design the walls of the pipe either as a hydrophobic/porous

or a rough surface with appropriate slip at the wall so as to

enhance or inhibit the instability in the considered system

(Fig. 2).

The paper is organized as follows: The mathematical for-

mulation and the linear stability analysis are presented in

FIG. 2. Schematic diagram of the problem considered. The core (0 ≤ r ≤ R1)

and the annular (R1 + q ≤ r < R) regions of the slippery pipe contain fluids

“1” and “2,” respectively. A mixed layer of thickness q occupies the region

R1 ≤ r ≤ R1 + q. There is velocity slip at the walls of the pipe (r = R).

Secs. II and III; the energy budget analysis is presented in

Sec. IV; the results for the DD core-annular flow systems in a

slippery pipe are discussed in Sec. V; the concluding remarks

are given in Sec. VI.

II. MATHEMATICAL FORMULATION

We consider the linear stability of pressure-driven core

annular, laminar flow of two miscible, incompressible New-

tonian fluids of matched densities and different viscosities in

a circular tube of radius R, with velocity slip at the walls of

the tube. The fluids contain the same solvent but have two

species diffusing at different rates; F(S) is the species with

high (low) diffusion rate Df (Ds). The ratio
Df

Ds
is denoted

by δ (δ ≥ 1). The diffusion of the fluids is proportional to

the inverse of the Peclet number (Pe), where Pe = ReSc. Here

Re and Sc are the Reynolds and Schmidt numbers defined in

the discussion below. We will also see later that the Peclet

number is the ratio of convective to diffusive transport in the

species concentration equation. A cylindrical polar coordi-

nate system (r, θ, z), where r, θ, and z denote, respectively,

the radial, azimuthal, and axial coordinates, is employed. The

concentrations of S and F in fluid 1 of viscosity µ1 (core fluid;

occupying 0 ≤ r ≤ R1) are S1 and F1, respectively. The con-

centrations of S and F in fluid 2 of viscosity µ2 (annular fluid;

occupying R1 + q ≤ r < R) are S2 and F2, respectively. A

mixed layer of uniform thickness q separates the two-fluids

and occupies the region R1 ≤ r ≤ R1 + q.5,8,10–12 The parallel

flow approximation (see Appendix C in the work of Sahu11 for

justification) is used in assuming the thickness q to be uniform.

As the Reynolds numbers considered in this study are at least

of O(102), the above assumption is justified unless Sc ≪ 1.

The dynamic viscosity µ of the two fluids is assumed to depend

exponentially on the concentration of the solute species,10

µ = µ1 exp

[

Rs

(

S − S1

S2 − S1

)

+ Rf

(

F − F1

F2 − F1

)]

, (1)

where Rs = (S2 − S1)
∂(ln µ)

∂S
and Rf = (F2 − F1)

∂(ln µ)

∂F
are the

log-mobility ratios of the slower and faster diffusing scalars S

and F, respectively.

The incompressible Navier-Stokes equations along with

the convection-diffusion equation for both the scalars are made

dimensionless by taking the radius (R) of the pipe as the length

scale and V =
Q

πR2 (Q is the volumetric flow rate) as the veloc-

ity scale, ρV2 and µ1 as pressure and viscosity scales. The

dimensionless governing equations are given by

∇ · ~v = 0, (2)
[

∂~v

∂t
+ ~v · ∇~v

]

= −∇p +
1

Re
∇ ·

[

µ(∇~v + ∇~vT )
]

, (3)

∂s

∂t
+ ~v · ∇s =

1

ReSc
∇2s, (4)

∂f

∂t
+ ~v · ∇f =

δ

ReSc
∇2f , (5)

where (vr , vθ , vz) denote the dimensionless flow velocity in the

r, θ, and z directions, respectively, t is the time, and p denotes

the pressure. Here, Re ≡ ρVR/µ1, Sc ≡ µ1/ρDs ≡ Pe/Re

are the Reynolds number and Schmidt numbers, respectively.
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The effective Schmidt number of the faster diffusing fluid is

Sc/δ.

The dimensionless viscosity is given by

µ = exp(Rss + Rf f ). (6)

When Rs + Rf > 0 (<0), the flow configuration has more (less)

viscous fluid in the annular region than that in the core. Rs +

Rf = 0 corresponds to a system without viscosity stratification;

when either Rf = 0 or Rs = 0, the configuration corresponds

to continuously viscosity stratified single component (SC)

system of miscible fluids.

The dimensionless boundary conditions are the Navier

slip condition,33,34 which are given by

vr = 0 on r = 1, (7)

vz = −βs

∂vz

∂r
on r = 1, (8)

along with the symmetry condition on the center line r = 0,

given by
∂vz

∂r
= 0 on r = 0, (9)

where βs is the dimensionless slip coefficient. In the present

study, the focus is on the effects of slip on DD phe-

nomenon related instabilities in core-annular flows that are

stable/unstable in a rigid pipe11 and on the comparison of

the present results with miscible double-diffusive flows in a

channel with slippery walls.

In the present study, the slip parameter (βs) values con-

sidered are (0 < βs ≤ 0.1) based on the experimental obser-

vations presented in the review by Lauga and Cossu20 and are

the same as those employed in the investigations of a single or

immiscible/miscible two-fluid flows in channels with veloc-

ity slip at the walls.12,13,17,20,25,35 The range of βs used in the

computations is realized for a flow in a hydrophobic channel

of height ranging from 0.8 µm (40 µm) to 4 µm (200 µm) and

corresponds to a slip length of 20 nm (40 nm). It is also worth

mentioning here that the experimental measurements of slip

lengths corresponding to different solid substrates have been

provided by Voronov et al.36 and this is in accordance with

the definition of slip proposed by Blake37 and Vinogradova.38

In some cases, it is possible that the maximum value of slip

length can reach up to 250 µm.

III. LINEAR STABILITY ANALYSIS

The temporal stability of the base flow (see Appendix A)

to infinitesimal perturbations is considered in this section. The

flow variables are decomposed as a sum of quasi-steady base

state and small perturbations as

(vr , vθ , vz, p, s, f )(r, θ, z, t) = (0, 0, Uz(r), P, s0(r), f0(r))

+ (iv̂r , v̂θ , v̂z, p̂, ŝ, f̂ )(r)

× ei(αz+βθ−ωt), (10)

where i =
√−1, α, β are the wavenumbers in the axial and

the azimuthal directions, respectively, and ω ≡ αc is the

frequency of the perturbation, c is the complex phase speed

(c = cr + ici) of the perturbation. Note that αci represents the

growth of the disturbance amplitude and αcr gives the phase

velocity of the disturbance wave. The flow is linearly unstable

if ωi > 0, stable if ωi < 0, and neutrally stable if ωi = 0.

The perturbation viscosity is given by µ̂ =
∂µ0

∂s0
ŝ +

∂µ0

∂f0
f̂ . Using

the standard procedure,39 the linearized equations governing

the stability problem for the perturbations are obtained [after

suppressing the hat (ˆ)] as

v ′r +
vr

r
+
βvθ

r
+ αvz = 0, (11)

−ωvr + αvrUz = p′ − i

Re

[

µ0

{

vr
′′ +
vr
′

r
−

(

β2 + 1

r2
+ α2

)

× vr − 2β

r2
vθ

}

+ 2µ′0vr
′ + αU ′z µ

]

, (12)

−ωvθ + αvθUz = − βp
r
− iµ0

Re

{

vθ
′′ +
vθ
′

r
−

(

β2 + 1

r2
+ α2

)

× vθ − 2β

r2
vr

}

− iµ0
′

Re

[

vθ
′ − vθ

r
− βvr

r

]

,

(13)

−ωvz + Uz
′vr + αUzvz = − αp− iµ0

Re

{

vz
′′ +
vz
′

r
−

(

β2

r2
+ α2

)

× vz
}

− iµ′
0

Re

[

v ′z − αvr
]

− iU ′z
Re
µ′ − iµ

Re

[

Uz
′′ +

U ′z
r

]

, (14)

− ωs + s0
′vr + αUzs = − i

ReSc

{

s′′ +
s′

r
−

(

β2

r2
+ α2

)

s

}

,

(15)

− ωf + f0
′vr + αUz f = − iδ

ReSc

{

f ′′ +
f ′

r
−

(

β2

r2
+ α2

)

f

}

.

(16)

In the above equations, a prime denotes differentiation with

respect to r. Equations (11)–(16) reduce to the linearized

stability equations for the Hagen-Poiseuille flow of a sin-

gle fluid in a pipe39 by setting Rf = Rs = 0, δ = 1, and

µ0 = 1. The slip boundary condition at the wall of the pipe

(r = 1) and the symmetry condition at the centerline (r = 0) are

given by

vr = 0, vθ = 0, vz = −βs

∂vz

∂r
, s′ = 0 and f ′ = 0, on r = 1,

(17)

and

vr = 0, vθ = 0, vz
′
= 0, p′ = 0, s′ = 0 and

f ′ = 0 for β = 0, (18)

vr + vθ = 0, 2v ′r + v ′θ = 0, vz = 0, p = 0,

s = 0 and f = 0 for β = 1, (19)

vr = 0, vθ = 0, vz = 0, p = 0, s = 0 and f = 0 for β ≥ 2. (20)

In the absence of slip at the wall, Eqs. (17)–(20) reduce to

those of a DD (Rf + Rs , 0) flow system in a rigid pipe11 and

reduce to those of a SC system when either Rs = 0 or Rf = 0.
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The above system of equations [Eqs. (11)–(16)] and boundary

conditions [Eqs. (17)–(20)] constitutes an eigenvalue prob-

lem AX = ωBX , and the linear stability characteristics of

the flow system are determined by the sign of the eigen-

value, ω = αci, which is obtained by solving the dispersion

relation

F(α, β,ω, Re, Pe, Sc, Rs, Rf , R1, δ, βs) = 0. (21)

Here X = (vr , vθ , vz, p, s, f ) is the eigenvector and the entries

in matrices A and B are presented in Appendix B.

The eigenvalue problem is solved numerically by the pub-

lic domain software, LAPACK, after discretizing the domain

(0 < r < 1) using the Chebyshev spectral collocation

method.40 Large gradients in the mixed layer region are taken

care of in the computation by using a sufficiently large num-

ber of grid points. This is achieved by using the stretching

function5

rj =
a

sinh(br0)
[sinh {(rc − r0)b} + sinh(br0)], (22)

where rj are the grid point locations, rc is a Chebyshev col-

location point defined by 2rc = cos
{[

π( j−1)

(n−1)

]

+ 1
}

, n is the

number of collocation points, a is the mid-point of the mixed

layer, b is the degree of clustering, and r0 is given by

r0 =
1

2b
ln

[

1 + (eb − 1)a

1 + (e−b − 1)a

]

. (23)

For the range of parameters considered in this study, the

computations yielded results that are accurate at least up to

five decimal places with b = 8.

IV. ENERGY BUDGET ANALYSIS

An energy budget analysis is presented here to facilitate

the understanding of the physical mechanism underlying the

instabilities that occur due to the DD phenomenon in a slip-

pery pipe. This will help in assessing the role of wall slip on

the instabilities that occur in a DD flow in a rigid pipe.8,11 The

derivation is similar to those presented for SC miscible flow

systems in a pipe8 and for a two-dimensional channel11 and for

DD miscible flow systems12 in a channel. Equations (12)–(14)

are, respectively, multiplied by the radial, azimuthal, and

axial components of the disturbances in velocity, added, and

integrated across the domain (0 < r < 1) to obtain the energy

budget equations, given by

Ė = P −D + A + Br + Bz + C. (24)

Here Ė representing the temporal rate of change of the

perturbation kinetic energy is

Ė =

∫ 1

0

Ėrdr = ωi

∫ 1

0

(

vrv
∗
r + vθ v

∗
θ + vzv

∗
z

)

rdr, (25)

and the terms on the right in Eq. (24) are

P =

∫ 1

0

Pdrdr =

∫ 1

0

Imag
(

vrv
∗
z

)

U ′zrdr, (26)

the “Reynolds stress” term, which denotes the rate of energy

transfer from the base flow to the perturbations, is

D =

∫ 1

0

Drdr =
1

Re

∫ 1

0

µ0 [ v ′r v
′
r
∗

+ v ′θ v
′
θ
∗

+ v ′z v
′
z
∗

+

(

β2

r2
+ α2

)

(

vrv
∗
r + vθ v

∗
θ + vzv

∗
z

)

+
1

r2

{

vrv
∗
r + vθ v

∗
θ + 4β Real

(

vθ v
∗
r

)

}

] rdr, (27)

which corresponds to the viscous dissipation of energy of the

perturbation,

A =

∫ 1

0

Ardr =
1

Re

∫ 1

0

µ′
0

r

(

d

dr

(

rvrv
∗
r

) − vθ v∗θ
)

rdr, (28)

which determines the energy of the perturbations due to mean

viscosity gradients,

C =

∫ 1

0

Crdr =
dP

dz

∫ 1

0

Real
(

µv∗z
)

rdr, (29)

which represents the perturbation energies due to viscosity

perturbations and

Br =
1

Re

∫ 1

0

U ′z Real
(

µ′z∗
)

rdr, (30)

Bz =
1

Re

∫ 1

0

U ′z Real
(

αµv∗r
)

rdr, (31)

which are the perturbation energies associated with the gradi-

ent of viscosity perturbations in the radial and axial directions,

respectively. The new features of the energy equation are the

extra terms arising from the interface; it is important to note

that these terms in the linearized energy equation incorporate

the viscosity stratification effects and slip effects.

V. RESULTS AND DISCUSSION

The effects of velocity slip (βs) at the pipe wall on the

stability characteristics of the flow system in a rigid pipe when

the location of the mixed layer (R1), the ratio of diffusion coef-

ficients of the species (δ), and diffusivity level (Sc) are varied,

are examined in this section, for the DD flow configuration.

The results are first validated with those obtained by Schmid

and Henningson39 (SH) for Poiseuille flow of a single fluid

in a rigid pipe for ReSH = 2000. Schmid and Henningson39

have employed the centerline velocity as a characteristic scale,

while the average velocity is used in the present computations.

As a result, Re = 2ReSH and c = 2cSH . The eigenspectrum is

obtained by setting δ = 1 and Rs = Rf = 0. The results obtained

for different values of axial and azimuthal wavenumbers (α,

β) = (1, 0), (0.5, 1), and (0.25, 2) are in good agreement with

SH results for the rigid pipe case, namely, the flow is linearly

stable at ReSH = 2000. Note that SH have reported that the

flow is linearly stable for all Reynolds numbers. Further, the

growth rates are negative in a slippery pipe (βs = 0.05, 0.1)

indicating that the flow is also stable for the parameter values

mentioned above.

In the case of miscible two-fluid (DD) channel flow with

no slip10/slip12 at the walls, the configuration with less vis-

cous fluid near the walls has a stabilizing influence as the base
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velocity profile goes away from the inflection profile. This

is also true for the SC channel flow systems without or with

slip.5,13 But, the scenario is different in DD rigid pipe flow

configurations,8,11 where the axisymmetric mode and/or swirl

mode is/are unstable above a critical viscosity ratio, when the

annular fluid is less viscous. It is of interest to see the influ-

ence of slip on the instabilities exhibited by the axisymmetric

and swirl modes in the DD flow configuration in a rigid pipe.

In Sec. V, the results are presented for miscible DD flow in

a slippery pipe. Further, the results for both the axisymmetric

mode (β = 0) and the swirl mode (β = 1) are presented since

one of these modes dominates and is more unstable than the

higher order modes (β > 1).

Preliminary results of the DD flow show that it may be

possible to either enhance or suppress the growth rates of

the axisymmetric modes in the presence of slip (figure not

shown); this is true not only when less viscous fluid is in the

annular region (Rf + Rs < 0) but also when more viscous

fluid is in the annular region (Rf + Rs > 0). Swirl modes

also display similar scenarios in the presence of slip. This

motivates us to explore the details of the slip effects in the

present study. Further, it is important to understand the phys-

ical mechanism that is responsible for different scenarios that

are observed in the DD flow system in a slippery pipe, and the

explanations are provided through the energy budget analysis

(Sec. IV).

A. Influence of location of the mixed layer

The growth rates of the axisymmetric mode (β = 0) when

Re = 150 are presented for a flow system with less viscous

fluid occupying the annular region (Rf = ☞1.1, Rs = 1.0) in

Fig. 3(a). The mixed layer is located at R1 = 0.75 and is closer

to the pipe wall. The other parameters are fixed as Sc = 10,

q = 0.1, and δ = 20. The DD flow in a rigid pipe (βs = 0, solid

line) is stable. The presence of slip (βs = 0.05, 0.07, and 0.1)

destabilizes the flow system for moderate wavenumbers. At

this Re(=150), there is a window of unstable wavenumbers, in

the presence of slip. The bandwidth of unstable wavenumbers

increases with an increase in the slip parameter (βs).

Why does slip at the wall promote instabilities in the above

configuration? Table I presents the details of the energy budget

analysis performed for the DD miscible flow system in rigid

(βs = 0) and slippery (βs = 0.05, 0.07, 0.1) pipes for the

above flow configuration. The contributions from the differ-

ent terms in the energy budget analysis as obtained at points

A1, B1, C1, and D1 in Fig. 3(a) are presented. These are the

points on the growth rate curves at which the growth rate is

FIG. 3. Growth rates (ωi) as a function of wavenumber (α) in rigid/slippery pipes with less viscous fluid in the annular region. [(a) and (b)] Axisymmetric

mode (β = 0); [(c) and (d)] swirl mode (β = 1). In (a) and (c), R1 = 0.75. In (b), R1 = 0.425, and in (d), R1 = 0.49. The other parameters are fixed as Re = 150,

δ = 20, Sc = 10, Rs = 1, Rf = ☞1.1, and q = 0.1. The solid lines without symbols represent the results in a rigid pipe (βs = 0); the solid lines with symbols display

the results in a slippery pipe (βs = 0.05, βs = 0.07, βs = 0.1). The SC equivalent flow [Sceq = 2Sc/(δ + 1), Rs = ☞0.1, and Rf = 0] is stable (ωi < 0) in this

parameter regime. The points A1, B1, C1, and D1 in (a) correspond to α = 1.95, 1.8, 1.7, and 1.6, respectively. The points A2, B2, C2, and D2 in (b) correspond

to α = 1.61, 1.56, 1.56, and 1.51, respectively. The points A3, B3, C3, and D3 in (c) correspond to α = 1.56, 1.56, 1.46, and 1.31, respectively. The points A4,

B4, C4, and D4 in (d) correspond to α = 2.21, 2.16, 2.16, and 2.16, respectively.
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TABLE I. Energy budget for the points A1, B1, C1, and D1 in Fig. 3(a).

Points α ωi Ė P −D A Br Bz C

A1 1.95 ☞0.033 51 ☞0.0040 ☞0.0017 ☞0.1596 0.0003 0.1671 ☞0.0058 ☞0.0043

B1 1.80 0.003 33 0.0100 ☞0.0025 ☞0.1415 0.0003 0.1617 ☞0.0051 ☞0.0028

C1 1.70 0.008 83 0.0124 ☞0.0034 ☞0.1351 0.0003 0.1577 ☞0.0046 ☞0.0024

D1 1.60 0.014 21 0.0149 ☞0.0044 ☞0.1281 0.0002 0.1532 ☞0.0040 ☞0.0020

maximum for that value of βs. The wavenumber at which it

occurs is αA1
= 1.95, αB1

= 1.8, αC1
= 1.7, and αD1

= 1.6.

The faster diffusing species has a stabilizing role (Rf = ☞1.1);

it diffuses faster leaving the slower diffusing species (Rs = 1).

The net stratification (Rs + Rf = ☞0.1) is negative for the DD

flow in a rigid pipe. Note that the positive contribution from

Br almost balances the contribution from viscous dissipation

of energy of perturbation (D) for DD flow in a rigid pipe.

The contribution from the rate of energy of the perturbation

due to mean viscosity gradients (A), the perturbation energy

associated with the viscosity gradient perturbation in the axial

direction (Bz), and the perturbation energy that arises due to

viscosity perturbation (C) are negligibly small both for DD

flow in a rigid pipe and in a slippery pipe. However, the rate of

transfer of energy from the basic flow to the perturbations (P,

namely, the Reynolds stress) contributes to the temporal rate

of change of the perturbation KE which is therefore negative

(i.e., Ė is negative) for DD flow in a rigid pipe. As a result, the

DD flow in a rigid pipe (βs = 0) remains stable for the set of

parameters considered [see Fig. 3(a)]. However, in the case of a

DD flow in a slippery pipe, the positive contribution from Br ,

the rate of perturbation energy associated with the gradient

of viscosity perturbation in the radial direction dominates

the negative contribution from D (the rate of viscous dissipa-

tion energy of the perturbation) and is thus responsible for the

destabilization in this flow system [see Fig. 3(a), βs = 0.05,

0.07, 0.1]. It is worth mentioning here that the contribution

from Br in the energy budget which causes destabilization is

due to the nonzero value of
∂Uz

∂r
at the slippery wall. Observe

also that an increase in velocity slip corresponds to a decrease

in Br which results in a reduction in the flow resistance pro-

vided by viscous drag. This causes significant enhancement in

the primary flow distribution near the wall, and this paves the

way for the flow to become unstable in a slippery pipe. In the

case of a rigid pipe, Br is positive as for a flow configuration

in a slippery pipe but is large enough to offer flow resistance

arising due to viscous drag, thereby suppresses the base flow

distribution near the wall and hence remains stable for the set

of parameters considered in this figure. The radial variations

of Ė, D, Pd , and Br are also presented in Figs. 4(a)–4(d), and

FIG. 4. Radial variations of (a) the rate of change of kinetic energy, Ė, (b) the negative of the dissipation rate (☞D), (c) the production rate, Pd , and (d) Br of the

most dangerous modes at A1 B1, C1, and D1 in Fig. 3(a) for different values of βs, respectively. The rest of the parameter values are the same as in Fig. 3(a).
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TABLE II. Energy budget for the points A2, B2, C2, and D2 in Fig. 3(b).

Points α ωi Ė P −D A Br Bz C

A2 1.61 0.003 24 0.0005 ☞0.0020 ☞0.0739 0.0000 0.0726 ☞0.0026 0.0063

B2 1.56 ☞0.002 03 0.0011 ☞0.0034 ☞0.0712 0.0000 0.0718 ☞0.0026 0.0065

C2 1.56 ☞0.004 06 0.0008 ☞0.0038 ☞0.0698 0.0000 0.0705 ☞0.0026 0.0064

D2 1.51 ☞0.006 84 0.0003 ☞0.0042 ☞0.0661 0.0000 0.0668 ☞0.0024 0.0062

they clearly show for βs , 0, the gradient of viscosity pertur-

bations in the radial direction (Br) gain energy from the mean

flow, which results in a destabilization of the flow system in a

slippery pipe.

When the location of the interface is moved closer to the

centerline [R1 = 0.425; Fig. 3(b)], the slip has a stabilizing

effect on the axisymmetric mode. The DD flow in a slippery

pipe is more stable than that in a rigid pipe in which the axisym-

metric mode exhibits a positive growth rate. Why does slip

play a different role in this case? The answer to this is inferred

from Table II and Figs. 5(a)–5(d). The rate of viscous dissipa-

tion (D) which represents the rate of energy transfer from the

perturbation to the mean flow is negative at the mixed layer,

near the pipe wall, and also near the centerline [Fig. 5(b)]. The

rate of energy transfer from the basic flow to the perturbation

P is negative in the mixed layer [Fig. 5(c)]. However, the rate

of energy production associated with the gradient of viscosity

perturbation in the radial direction (Br) is positive [Fig. 5(d),

Table II] in the mixed layer and it almost balances the contribu-

tion from D. It is seen from Table II that the transfer of energy

from base flow to perturbation (P) is negative and it decreases

with an increase in βs. Further, the negative contribution from

Bz is almost the same at all slip parameter values considered.

The positive contributions to Ė coming from C decrease with

an increase in βs. In this case, there is not only positive con-

tribution to the energy budget from the perturbation energies

associated with the gradient of viscosity perturbation (Br) in

the radial direction but also from the perturbation energies due

to viscosity perturbation (C). This suppresses the basic flow

distribution near the wall, and the resistance to flow offered

by viscous drag increases, resulting in stabilization of the flow

in a slippery pipe. It is again the contribution from Br . That

FIG. 5. Radial variations of (a) the rate of change of kinetic energy, Ė, (b) the negative of the dissipation rate (☞D), (c) the production rate, Pd , and (d) Br

of the most dangerous modes at A2 B2, C2, and D2 in Fig. 3(b) for different values of βs, respectively. The rest of the parameter values are the same as in

Fig. 3(b).
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TABLE III. Energy budget for the points A3, B3, C3, and D3 in Fig. 3(c).

Points α ωi Ė P −D A Br Bz C

A3 1.56 0.020 32 0.0068 0.0745 ☞0.1263 0.0004 0.0529 ☞0.0012 0.0067

B3 1.56 0.021 44 0.0098 0.0641 ☞0.1199 0.0004 0.0585 ☞0.0010 0.0078

C3 1.46 0.020 05 0.0094 0.0551 ☞0.1048 0.0003 0.0516 ☞0.0007 0.0079

D3 1.31 0.019 88 0.0093 0.0445 ☞0.0851 0.0002 0.0421 ☞0.0003 0.0079

is responsible for stabilization of DD flow in a slippery pipe

for the configuration in which the mixed layer is closer to the

centerline.

Figure 3(c) shows that the swirl mode (β = 1) is unstable

for the DD configuration with less viscous fluid in the annu-

lar region in a rigid pipe. The other parameters are the same

as in Fig. 3(a). The growth rates are more for the swirl mode

than for the axisymmetric mode in a rigid as well as in a slip-

pery pipe. There is a critical wavenumber α (around α = 1.4)

below which the DD flow in a slippery pipe has a higher growth

rate than that in a rigid pipe. Above this critical α, the growth

rates exhibit a non-monotonic trend. The physical mechanism

responsible for the scenarios displayed in Fig. 3(c) for the swirl

mode can be similarly understood from Table III. The other

parameters in Table III are the same as in Table I. Note from

Table III that when Rs = 1, Rf = ☞1.1, and the mixed layer is

nearer the pipe wall, the largest positive contributor to Ė comes

from the energy transfer from base flow to perturbations (P).

P decreases with an increase in slip. The total positive contri-

bution (P + Br) dominates the rate of dissipation energy of the

perturbations, and hence Br and P are responsible for desta-

bilization of DD flow in a rigid as well as in a slippery pipe.

When the mixed layer location is moved closer to the cen-

terline (R1 = 0.425), the swirl mode remains stable in a rigid

as well as in a slippery pipe (figure not shown). However,

when R1 = 0.49, the scenario is different as seen in Fig. 3(d),

namely, the swirl mode for DD flow in a rigid pipe displays a

positive growth rate while that in a slippery pipe is stable. In

this case (R1 = 0.49), both P(>0) and Br(>0) decrease with

an increase in slip for the swirl mode(β = 1) but dominate the

viscous dissipation energy of the perturbation, thus resulting

in a destabilization of DD flow in a rigid pipe. However, in

a slippery pipe, the total contribution from Br + P is insuf-

ficient to generate significant base flow distribution near the

wall which enhances the resistance to flow by viscous drag,

resulting in stabilization of flow in this case. The results in

Tables III and IV are also confirmed by the radial variation of

Ė, D, Br , and P but are not shown.

The results show that DD flow in a rigid pipe can be

destabilized (stabilized) by wall slip accordingly as the mixed

layer is located closer to the wall (nearer the centerline),

when the less viscous fluid occupies the annular region, when

Re = 150.

B. Effects of relative rate of diffusion

It is of interest to know the critical value of Re at which the

instability sets in first in the presence of slip and how this crit-

ical Reynolds number is affected by changes in the ratio of the

diffusion coefficients of the species (δ). With this in view, the

neutral stability boundaries in the α-Re plane are presented in

Fig. 6(a) for Sc = 10, q = 0.1, Rs = 1, Rf = ☞1.1, δ = 20,

and R1 = 0.75. The slip effects are incorporated (βs = 0,

solid line; βs = 0.05, dashed line). The long and short waves

are stabilized (axisymmetric mode, β = 0) for DD flow con-

figurations in a rigid as well as in a slippery pipe, when the less

viscous fluid occupies the annular region and the mixed layer

is closer to the pipe wall (R1 = 0.75). The unstable region lies

inside the enclosed curves. It is clear that finite viscosity con-

trast and inertial effects are required for the first occurrence of

instability in a rigid as well as in a slippery pipe. We observe

from Fig. 4 and Table I that at δ = 20, the combined contribu-

tion from Br and P is positive and is more than the negative

viscous dissipation (−D) in the mixed layer. This enhances the

rate of energy transfer from the base flow to the perturbations

which is responsible for destabilization of the axisymmetric

mode in a DD system. As δ is decreased (δ = 10), the combined

positive (figure and table not shown) contribution from Br , P,

and −D decreases, thereby, increasing the critical Reynolds

number of the axisymmetric mode. This effect reveals that an

increase in the relative diffusion rate δ enhances instability in

a DD system (for rigid as well as slippery pipes). The critical

Reynolds number is less for DD flow in a slippery pipe than

that in a rigid pipe, indicating the destabilizing role of slip for

this set of parameters. In fact, an increase in slip at the wall

increases the slope of the base flow profile, thereby suppresses

the resistance offered to the flow by viscous forces, resulting in

destabilization of the flow system. The bandwidth of unstable

wavenumbers is larger for the axisymmetric mode for flow in

a slippery pipe as compared to that in a rigid pipe, resulting in

a larger unstable region in the α-Re plane.

TABLE IV. Energy budget for the points A4, B4, C4, and D4 in Fig. 3(d).

Points α ωi Ė P −D A Br Bz C

A4 2.21 0.008 095 0.0009 0.0304 ☞0.0835 0.0002 0.0445 ☞0.0008 0.0101

B4 2.16 0.000 069 ☞0.0003 0.0269 ☞0.0792 0.0002 0.0424 ☞0.0006 0.0101

C4 2.16 ☞0.002 607 ☞0.0007 0.0260 ☞0.0786 0.0002 0.0422 ☞0.0006 0.0102

D4 2.16 ☞0.006 190 ☞0.0014 0.0247 ☞0.0778 0.0002 0.0419 ☞0.0006 0.0102
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FIG. 6. Effects of slip and the diffusion ratio (δ) on the neutral stability curves in the α-Re plane. The less viscous fluid (Rs = 1, Rf = ☞1.1) is nearer to the pipe

wall. The mixed layer is located at R1 = 0.75. The other parameters are fixed as Sc = 10, q = 0.1. [(a) and (c)] Axisymmetric mode (β = 0); [(b) and (d)] swirl

mode (β = 1) δ = 20 in (a) and (b); δ = 10 in (c) and (d). The solid lines represent the results in a rigid pipe (βs = 0); the dashed lines are for flow in a slippery

pipe (βs = 0.05).

The same scenario is displayed by the swirl mode [β = 1;

Fig. 6(b)]; however, the critical Reynolds number for the swirl

mode is lesser than that for the axisymmetric mode; this is

so both for the DD flow in a rigid as well as in a slippery

pipe. This clearly shows that the swirl mode is more unsta-

ble than the axisymmetric mode for the set of parameters

considered.

As the diffusivity ratio δ decreases (δ = 10), the axisym-

metric mode in the DD flow in a rigid/slippery pipe becomes

stable as indicated by the increase in the critical Reynolds

number [Fig. 6(c), (R)1 = 0.75]; however, an interesting phe-

nomenon occurs, as seen in Fig. 6(d) for the swirl mode (β = 1,

δ = 10). In this case, the critical Reynolds number in a rigid

pipe is smaller than that in a slippery pipe, showing the sta-

bilizing role of slip for the swirl mode. Further, the range of

unstable wavenumbers is less for the swirl mode in a slippery

pipe.

In what follows, we examine how the location of the mixed

layer influences the instability characteristics of the axisym-

metric and the swirl modes, in the presence of slip, when

the less viscous fluid is nearer to the pipe wall (Rs = 1 and

Rf = ☞1.1). Figure 7 gives the critical Reynolds number as a

function of radial location of the mixed layer (R1) for different

values of δ [δ = 10 in Figs. 7(a) and 7(b); δ = 20 in Figs. 7(c)

and 7(d); and δ = 100 in Figs. 7(e) and 7(f)]. The slip effects are

incorporated. Figures 7(a), 7(c), and 7(e) present the details for

the axisymmetric mode (β = 0), and Figs. 7(b), 7(d), and 7(f)

show the results for the swirl mode (β = 1). The other parame-

ters are fixed as Sc = 10, q = 0.1. The critical Reynolds number

(Recr) decreases as the mixed layer is shifted away from the

centerline [Figs. 7(a)–7(f)]. Beyond a certain location (say

R1cr), which depends on the diffusivity ratio δ, Recr begins

to increase. This demonstrates that the intermediate interface

location is the most unstable; the critical Reynolds number

is more in a slippery pipe than in a rigid pipe up to R1cr for

both the axisymmetric and the swirl modes [Figs. 7(a)–7(f)].

This indicates that when the mixed layer is located nearer to

the centerline, the two modes in a slippery pipe are more sta-

ble than the corresponding ones in a rigid pipe. Beyond R1cr ,

the critical Reynolds numbers for the two modes in a rigid

pipe are larger than those in a slippery pipe [Figs. 7(a) and

7(c)–7(f)]. Thus, when the mixed layer is located nearer to the

pipe wall, slip at the wall tends to destabilize the flow system by

advancing the onset of instability. An exception to the above

scenario is observed for the swirl mode [Fig. 7(b); δ = 10]

when Recr is more in a slippery pipe than in a rigid pipe for

any location of the mixed layer. An increase in the diffusivity

ratio results in a decrease in Recr for both the axisymmetric and

the swirl modes, for any location R1 of the mixed layer which

is less than R1cr (that is, when the mixed layer is closer to the
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FIG. 7. The critical Reynolds number (Recr ) as a function of the location of the mixed layer (R1), when the less viscous fluid is nearer to the pipe wall (Rs = 1,

Rf = ☞1.1). The slip effects are presented (lines with symbols; βs = 0.05, βs = 0.1). Solid lines show the results in a rigid pipe (βs = 0.0). The other parameters

are Sc = 10, q = 0.1. (a), (c), and (e) show the results for the axisymmetric mode β = 0, and (b), (d), and (f) show the results for the swirl mode β = 1.

centerline) which shows the destabilizing effect of the diffu-

sivity ratio δ. But, when the mixed layer is located closer to

the pipe wall and with R1 > R1cr , the reverse trend is observed

(with an exception for δ = 10 as mentioned earlier). At any δ,

slip destabilizes (stabilizes) both the modes when R1 > R1cr

(R1 < R1cr) by decreasing (increasing) the critical Reynolds

numbers (with an exception for δ = 10, β = 1; in this case,

slip always stabilizes the swirl mode).

C. Role of mixed layer thickness

One is curious to know if the stability characteristics

are affected by the thickness of the mixed layer and some

information in this regard is presented in Fig. 8 and Table V.

The dispersion relation for the axisymmetric mode [β = 0;

Fig. 8(a)] and the swirl mode [β = 1; Fig. 8(b)] is presented

for non-zero thickness of the interface, when the mixed layer is

located nearer the slippery wall (R1 = 0.75). The other param-

eters are fixed at Sc = 10, δ = 20, and Re = 500 with Rf = ☞1.1

and Rs = 1. The slip effects are incorporated [βs = 0, no sym-

bol; and βs = 0.07 (△)]. The solid (dashed) lines present the

growth rates for q = 0.1 (q = 0.05). An increase in the mixed

layer thickness results in shifting of the maximum growth rate

to longwaves, in a rigid as well as in a slippery pipe; the short-

waves are stabilized and the growth rates are decreased. An
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FIG. 8. The destabilizing effect of the thinner mixed layer (q) and the effect of wall slip (βs) when the less viscous fluid is in the annular region (Rf = ☞1.1, Rs

= 1), [(a) and (b)] dispersion curves for Re = 500, [(c) and (d)] neutral boundaries for the axisymmetric mode (β = 0) and the swirl mode (β = 1), respectively,

with the rest of the parameters R1 = 0.75, Sc = 10, δ = 20. The △ represents βs = 0.07. The solid and dashed lines without symbols represent the results for

βs = 0. βs(=0, 0.07) effects alter with the Reynolds number (Re).

increase in slip suppresses the maximum growth rate; the band-

width of unstable wavenumbers is smaller for a thicker mixed

layer. The swirl mode displays slightly higher growth rates

[Fig. 8(b)].

The neutral stability curves plotted in the α-Re plane for

β = 0 [Fig. 8(c)] and β = 1 [Fig. 8(d)] clearly show the

destabilizing effect of the thinner mixed layer. The mixed layer

is located closer to the slippery wall (R1 = 0.75). Table V

presents the critical Reynolds numbers for a thinner (q = 0.05)

and thicker (q = 0.1) mixed layer as the slip varies (βs = 0,

0.05, and 0.07). The critical Reynolds number is higher for

the axisymmetric mode (β = 0) then for the swirl mode (β

= 1) for q = 0.05 and q = 0.1. An increase in slip decreases

the critical Reynolds number for the axisymmetric and swirl

modes, indicating the destabilizing role of slip for the set of

parameters considered.

TABLE V. Effects of the mixed layer thickness (q) on the critical Reynolds

number (Recr ) for flow in a rigid/slippery pipe. Values are obtained from

Fig. 8.

q = 0.1, q = 0.05, q = 0.1, q = 0.05,

β = 0 β = 1 β = 0 β = 1

βs = 0 201.73 121.77 133.38 87.30

βs = 0.05 143.86 91.06 105.212 70.02

βs = 0.07 131.38 78.94 99.43 62.24

D. Role of Schmidt number on DD instability

We now consider the effects of the Schmidt number (Sc)

on the growth rates of the axisymmetric modes (β = 0) for

DD flow in a rigid pipe (βs = 0) and in a slippery pipe (βs

= 0.05). Figure 9 presents the growth rates as a function of α

FIG. 9. Effects of the Schmidt number (Sc) on the growth rate of axisymmet-

ric modes (β = 0) as a function of wavenumber (α) with the other parameters

as Re = 150, q = 0.1, Rs = 1, Rf = ☞1.1, R1 = 0.75, δ = 20. Solid and dashed

curves represent the case of rigid (βs = 0) and slippery (βs = 0.05) pipes,

respectively. The points a5, b5, and c5 correspond to α = 1.95, 2.61, and 1.11,

respectively, when βs = 0. The points A5, B5, and C5 correspond to α = 1.8,

2.81, and 1.51, respectively, when βs = 0.05.
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TABLE VI. Energy budget for the points a5, b5, c5, A5, B5, and C5 in Fig. 9.

Points α ωi Ė P −D A Br Bz C

a5 1.95 ☞0.033 51 ☞0.0040 ☞0.0017 ☞0.1596 0.0003 0.1671 ☞0.0058 ☞0.0043

c5 2.61 0.050 98 0.0043 0.0094 ☞0.2830 0.0003 0.2860 ☞0.0062 ☞0.0023

b5 1.11 0.016 94 ☞0.0013 0.0029 ☞0.5162 0.0000 0.5149 ☞0.0008 ☞0.0021

A5 1.80 0.003 33 0.0100 ☞0.0025 ☞0.1415 0.0003 0.1617 ☞0.0051 ☞0.0028

C5 2.81 0.071 06 0.0116 0.0129 ☞0.2865 0.0004 0.2943 ☞0.0080 ☞0.0015

B5 1.51 0.028 36 0.0026 0.0045 ☞0.5446 0.0001 0.5461 ☞0.0017 ☞0.0018

for different values of Sc; the other parameters are same as in

Fig. 3(a). It is observed that the Schmidt number has a non-

monotonic effect for a DD flow in rigid as well as in slippery

pipes.

At higher Sc(=1000), the long-waves are destabilized for

DD flow in a pipe (rigid and slippery). At any Sc, the growth

rate is higher and the bandwidth of unstable wavenumbers is

larger for flow in a slippery pipe. This non-monotonic behavior

with respect to Sc can be clearly understood through the energy

budget analysis, and this is presented in Table VI for Re = 150,

q = 0.1, Rs = 1, Rf = ☞1.1, R1 = 0.75, δ = 20, βs = 0, and βs

= 0.05. At this Re, the contributions from Br and D almost

cancel out; A, Bz, and C are negligible. The contribution from

P is seen to be responsible for the non-monotonic behavior of

Sc which is exhibited in Fig. 9. This is displayed by DD flow

in a rigid as well as in a slippery pipe.

At a fixed Reynolds number, as Sc increases, diffusion

slows down. There are some intermediate Schmidt numbers

beyond which when Sc increases, the growth rate of the domi-

nant mode of instability is suppressed. This can be attributed to

the non-monotonic behavior displayed by the Reynolds stress

term, P (see Table VI). It can be seen that with the increase

in Sc, P increases initially but beyond some Sc, it begins

to decrease due to the insufficient rate of energy transferred

from base flow to the perturbations. As a result, growth rate

exhibits non-monotonic behavior as Sc is increased. This may

FIG. 10. The terms of the energy equation for flow in a slippery pipe

(βs = 0.05) as a function of Reynolds number (Re) with Sc = 10, q

= 0.1, Rs = 1, Rf = ☞1.1, δ = 20, β = 0, and R1 = 0.75. The dominant con-

tributing term is the Reynolds stress term (P); the terms Br and D almost

cancel each other. Solid line represents Ė, dashed line represents P, dashed-

dotted line represents A, ^ represents C, △ represents Bz , � represents Br ,

o represent −D.

be attributed to the contribution from the shear stress that arises

due to slip.

Note from Table VI that for a fixed Re and Sc, the rate

of energy transfer from the base flow to the perturbations

is enhanced with slip which results in a higher growth rate

in a slippery duct. Further, as Sc increases, the contribu-

tion from P is higher in a slippery pipe than that in a rigid

pipe.

Figures 10 and 11 also confirm the above conclusions.

The contribution from all the terms to the energy budget are

presented as a function of Re, when Sc = 10 and βs = 0.05

in a slippery pipe and all the other parameters are as in Table

VI. The above results for Sc = 100 and Sc = 1000 are also

obtained but are not shown here as the trend is observed to

be similar to that for Sc = 10. From Fig. 10, it is observed

that, at any Re, the positive and negative contributions from

Br and D almost cancel out each other and P is the domi-

nant contributing term. Figure 11 presents the effects of the

Schmidt number on the contribution to energy budget from

the Reynolds stress term that determines the rate of transfer

of energy to the perturbation from the basic flow (P). Note

that the contribution to the Reynolds stress production is from

the derivative of base flow velocity. It is clear that there is a

window of Reynolds numbers where P is non-monotonic with

respect to Sc (150 < Re < 700 for flow in a rigid pipe and

150 < Re < 900 for flow in a slippery pipe), and beyond this

FIG. 11. The Reynolds stress term P as a function of the Reynolds number

(Re) for different values of Sc with other parameters same as in Fig. 10. P is

non-monotonic with respect to Sc in the window 150 < Re < 700 for DD flow

in a rigid pipe (solid lines; βs = 0) and in the window 150 < Re < 900 for

DD flow in a slippery pipe (dashed lines; βs = 0.05). The solid or dashed lines

without symbols correspond to Sc = 10 and with triangles (△) and squares (�)

correspond to Sc = 100 and Sc = 1000, respectively.
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Re ≃ 700 (Re ≃ 900), P is monotonically decreasing for the

rigid (slippery) case.

In this manuscript, the effects of slip on core annular pipe

flows are considered. The slip boundary condition comes into

action not only in micro- or nanofluidics but also in large

scale systems involving hydrophobic walls. The experiment

carried out by Watanabe et al.41 reports that a drag reduction

phenomenon takes place for water flowing in a pipe with water-

repellent walls of a fixed diameter. They showed that the shear

stress is directly proportional to the wall slip. The maximum

reduction occurs at Reynolds number 2 × 105 approximately.

The velocity profiles in highly water-repellent wall pipe ware

presented for the Reynolds number of the order of 1000 (in

their Fig. 9). Their calculated and experimental values of the

friction factor over the laminar flow range showed an excel-

lent agreement. The shift in the velocity profile observed in

this study was also observed by Tretheway and Meinhart.42 for

hydrophobic microchannels. This suggests that in the case of

a significantly larger hydrophobic duct, the Reynolds number

may rise up to O(1000) or even O(10 000).

VI. CONCLUSIONS

The present investigation addresses the temporal insta-

bility of viscosity stratified miscible core-annular flows (DD

systems) in a slippery pipe. The results demonstrate that mis-

cible core-annular flows in a slippery pipe are linearly unstable

towards longwave and intermediate wave disturbances, for a

wide range of governing parameters. When the less viscous

fluid is in the annular region and the mixed layer is closer to the

slippery wall, then, while the DD flow is unstable, the equiva-

lent SC flow is stable, showing that the stability characteristics

are analogous to that in a rigid pipe (Fig. 3). Further, an increase

in the relative diffusion rate (δ) enhances the instability of an

axisymmetric mode in a DD system with more destabiliza-

tion due to slip effects. At moderate to high diffusivity ratios,

the swirl mode displays the same scenario, but at small dif-

fusion ratios, slip has a stabilizing effect on the swirl mode

(Fig. 7). Diffusion effects are observed to be non-monotonic

(as in the rigid wall case) for the DD system (Fig. 9), whereas

in a SC system, its effects are monotonic (not shown). The

energy transfer from base flow to the perturbation, namely, the

Reynolds stress is responsible for this non-monotonic effect

of Sc. The source of instability in this configuration is due

to an increase in the slope of base flow velocity. The loca-

tion of the mixed layer also has a non-monotonic effect on the

stability characteristics; slip has a dual role of stabilizing or

destabilizing depending on whether the mixed layer is nearer

the centerline or closer to the pipe wall (Figs. 3 and 7). The DD

flow in a plane slippery channel is more stable than that in core-

annular flow in a slippery pipe [Fig. 9 in the work of Ghosh

et al.;13 Fig. 6(a) in the present study]. The energy budget anal-

ysis reveals clearly that the mechanism of energy transfer from

the base flow to the disturbance depends on the Schmid num-

ber (Sc) and slip (βs). The transfer of energy may be through

the Reynolds stress term (Figs. 9–11) or through stresses due

to gradient of viscosity perturbation in the radial direction

(Fig. 3). Note that the preliminary DNS computations, (Fig. 1),

not only confirm the linear stability results but provide

information in the nonlinear regime. The results show that

the slip delays the occurrence of instability in a DD core-

annular flow for some range of parameter values while it does

the reverse for other range of parameters of interest in the

present study. Slip plays a dual role of stabilizing or destabi-

lizing the miscible core annular DD flow in a pipe. For the

flow configuration with a mixed layer closer to the wall when

the faster diffusing scalar is stabilizing and the slower diffus-

ing scalar is destabilizing, we observe that an increase in the

slip length (which arises due to slip at the wall) decreases the

critical Reynolds number. It is possible to further destabilize

the flow configuration by decreasing the mixed layer thick-

ness (Table V). This clearly shows that both the slip length

and the mixed layer thickness play a crucial role on the stabil-

ity characteristics of the DD miscible core annular flow in a

pipe.

The present study has relevance in micro-electro mechan-

ical systems, in which the velocity slip boundary condition

is more appropriate than the no-slip condition, to describe

the flow dynamics. For example, rarefied gas flows can be

observed in MEMS where the characteristic size of the system

is around or less than a few micrometers. The characteristic

length in such systems is very small resulting in the range

of Knudsen numbers, characterizing velocity slip to be small

(10−3 < Kn < 0.1), in spite of the gas being dense and the

mean free path of the gas molecules being very small. Slip

flows are governed by Navier-Stokes equations with a slip

velocity between the gas and the solid boundary43 in these

systems. Pan et al.43 have carried out a qualitative analysis

for the above system and have calculated the slip coefficient

which is very useful for slip flow analyses in MEMS, using

Navier-Stokes equations.

The study also gains its significance due to the dual role

played by slip at the wall, as it suggests an effective way of con-

trolling miscible core-annular flow in a rigid pipe. The study

can be extended to consider the non-modal stability analysis

for core-annular flows so that there is a possibility for quantify-

ing the wall slip effects of the present study on the non-modal

stability analysis.
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APPENDIX A: BASE STATE

The base state (Uz, µ0) corresponds to a steady locally

parallel, fully developed flow [Ur = 0, Uθ = 0, Uz = Uz(r) and

P is linear in z] satisfying

1

r

∂

∂r

[

rµ0

∂Uz

∂r

]

= Re
dP

dz
(A1)

and the boundary conditions

Uz = −βs

∂Uz

∂r
on r = 1, (A2)

∂Uz

∂r
= 0 on r = 0. (A3)
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The condition ∫ 1
0 Uzrdr = 1 is used to fix the pressure gradi-

ent dP/dz. Here µ0 = exp(Rss0 + Rf f0), where the scalars s0

and f 0 are chosen to be of fifth degree polynomials10,11 and

this assumes the continuity up to the second derivative for the

concentration of the scalars at r = R1 and r = R1 + q,

s0 = f0 = 0, 0 ≤ r ≤ R1,

s0 = f0 =

6
∑

i=1

air
i−1, R1 ≤ r ≤ R1 + q,

s0 = f0 = 1, R1 + q ≤ r ≤ 1, (A4)

where ai(i = 1–6) are given by

a1 = −R1
3

q5

(

6R2
1 + 15R1q + 10q2

)

, a2 =
30R1

2

q5
(R1 + q)2,

a3 = −30R1

q5
(R1 + q)(2R1 + q), a4 =

10

q5

(

6R2
1 + 6R1q + q2

)

,

a5 = −15

q5
(2R1 + q) , and a6 =

6

q5
. (A5)

Sahu11 has remarked that the base state profiles generated by

using sufficiently smooth concentration profiles with s0 = f 0

= 0.5 + 0.5 erf
(

r−R1−0.5q

0.25q

)

considered by Selvam et al.8 are

similar to those obtained using (A4) and (A5). The validity of

the choice of Eqs. (A4) and (A5) is presented in Appendix C

in the work of Sahu.11

The base velocity profiles are plotted in Fig. 12 for DD

flow configurations with Rs = 1, when the mixed layer of thick-

ness q = 0.1 is located near the pipe wall (R1 = 0.7). The

presence of slip provokes larger velocities near the pipe wall.

The axial velocity in the mixed layer (0.7 < r < 0.8) is more

for the DD flow system with less viscous fluid (Rf = ☞1.1, Rs

= 1; dashed line) as compared to that with more viscous fluid

(Rf = ☞0.9, Rs = 1; solid line) in the annular region. This is

observed for flow in a rigid (βs = 0) as well as in a slippery

(βs , 0) pipe. Slip at the wall enhances this axial velocity in

the mixed layer. The results for a rigid pipe (βs = 0) agree with

those in Fig. 2 in the work of Sahu.11 The centerline velocity

for the DD flow system in a rigid pipe exceeds that in a slippery

pipe; it is more when the high viscous fluid is in the annular

FIG. 12. Basic velocity profiles in a DD flow configuration when R1 = 0.7

and q = 0.1 with less viscous fluid (Rf = ☞1.1, Rs = 1; dashed line) and more

viscous fluid (Rf = ☞0.9, Rs = 1; solid line) in the annular region.

region than when the less viscous fluid is in the annular region.

The wall shear is more in a rigid pipe than in a slippery pipe.

Further, the wall shear in a slippery pipe (βs = 0.05, βs = 0.1)

is less for a configuration with the less viscous fluid occupying

the annular region than the one with more viscous fluid in the

annular region.

APPENDIX B: ENTRIES IN MATRIX A AND B

A11 = αUz +
iµ0

Re

{

D
2 +

D

r
−

(

β2 + 1

r2
+ α2

)}

+
2iµ′

0

Re
D,

A12 = −2iβµ0

r2Re
, A14 = −D,

A15 =
iU ′zα

R
µ0Rs,A16 =

iU ′zα
R
µ0Rf ,

A21 = −2iβµ0

r2Re
− iβµ′

0

rRe
,

A22 = αUz +
iµ0

Re

{

D
2 +

D

r
−

(

β2 + 1

r2
+ α2

)}

+
iµ′

0

Re

(

D − 1

r

)

,A24 =
β

r
,

A31 = U ′z −
iµ′

0
α

Re
,A33 = αUz +

iµ0

Re

{

D
2 +

D

r

−
(

β2

r2
+ α2

)}

+
iµ′

0

Re
D,A34 = α,

A35 =
iU ′z
Re

(

Rsµ0 + Rsµ
′
0

)

+
iRsµ0

Re

(

U ′′z +
U ′z
r

)

,

A36 =
iU ′z
Re

(

Rf µ0 + Rf µ
′
0

)

+
iRf µ0

Re

(

U ′′z +
U ′z
r

)

,

A41 = rD + 1,A42 = β,A43 = rα,

A51 = s′0,A55 = αUz +
i

ReSc

{

D
2 +

D

r
−

(

β2

r2
+ α2

)}

,

A61 = f ′0 ,A66 = αUz +
iδ

ReSc

{

D
2 +

D

r
−

(

β2

r2
+ α2

)}

,

B11 = B22 = B23 = B55 = B66 = 1.

Here D = d/dr.
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