
 25

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 19, No 3

Sofia  2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081
DOI: 10.2478/cait-2019-0024

Course Sequence Recommendation with Course Difficulty Index
Using Subset Sum Approximation Algorithms

M. Premalatha, V. Viswanathan

School of Computing Science & Engineering, Vellore Institute of Technology, Chennai 600027, India

E-mails: premalatha.m@vit.ac.in viswanathan.v@vit.ac.in

Abstract: Choice Based Course Selection (CBCS) allows students to select courses

based on their preferred sequence. This preference in selection is normally bounded

by constraints set by a university like pre-requisite(s), minimum and maximum

number of credits registered per semester. Unplanned course sequence selection

affects the performance of the students and may prolong the time to complete the

degree. Course Difficulty Index (DI) also contributes to the decline in the

performance of the students. To overcome these difficulties, we propose a new Subset

Sum Approximation Problem (SSAP) aims to distribute courses to each semester with

approximately equal difficulty level using Maximum Prerequisite Weightage (MPW)
Algorithm, Difficulty Approximation (DA) algorithm and Adaptive Genetic Algorithm

(AGA). The three algorithms have been tested using our university academic dataset

and DA algorithm outperforms with 98% accuracy than the MPW and AGA

algorithm during course distribution.

Keywords: Course sequence recommendation, Course credits, Course difficulty, Pre-

requisite weight, Approximation Algorithm.

1. Introduction

University Grant Commission (UGC) of India has instructed the universities of India
to implement the Choice Based Credit System (CBCS) in the order issued during
2015 [1]. In CBCS, students have the freedom to select courses of their interests and
help them to pursue courses at different times in different semesters [2]. Vellore
Institute of Technology (VIT) is the first university in India to introduce the Fully
Flexible Credit System (FFCS) [3] in which 87% of our university students are
comfortable with the choice of selecting the courses, timings, and the respective
instructors [3, 4]. For four-year engineering graduation in VIT, as per the, a student
needs to register a minimum of 4 courses (16 credits) per semester from the university
curriculum with approximately 30 mandatory courses leaving the elective courses
behind. Unplanned course selection without a clear plan increases the graduation
duration of a student [5]. A personalized recommendation helps the student to register
the desired course in a proper sequence, which will help them to complete their

 26

courses without delay [5]. Apart from course selection, the difficulty of a course also
affects the students’ performance, lowers their grades, and sometimes leads to course
dropout [6]. Students who register for courses with high difficulty index, however,
tend to earn lower Grade Point Average (GPA) and experience lower retention [7].
Any effect of credit load on retention appears to work through GPA. Researchers
have found that students find some required information technology programme
courses to be quite difficult, e.g., mathematics and programming. Such types of
difficult courses could lower students’ grades, which in turn could lower their
motivation to study, thus causing dropout [8].

This paper considers only mandatory courses from our university undergraduate
computer science and engineering curriculum for personalized recommendations,
and elective courses are not considered for the proposed method. For n set of
mandatory courses in VIT curriculum, there are 35% of university core and 65% of
programme core courses. With n courses and with a minimum of 1 prerequisite
course, a student has 𝑛𝑛−1 course sequence combinations out of which every student
has the freedom to complete the required courses in any sequence at each semester,
with constraints which are identified by its course code, course credits, course
prerequisite(s), course difficulty index (assumed since estimating course difficulty
index itself is our part of our future research work) and course prerequisite weight.
Student registers a set of courses for a semester and completes the same by getting
the required grades, and the set of completed courses will be added to the students’
academic history with the acquired grades and Cumulative Grade Point Average
(CGPA). Curriculum courses which are not completed by a student are considered
for further recommendations for the respective semesters. The students are
recommended with the course(s) until the students complete all the required courses
and credits.

A personalized course sequence recommendation at each semester of the degree
programme hence hit as to be computed by adhering to the following constraints.

Course Prerequisites: The courses have to be registered in sequence if a course
has the prerequisite(s). A prerequisite is a course which has to be registered before a
specific course is registered. If a course has a set of prerequisite(s), all prerequisites
should be completed before registering that particular course.

Course Credits: Every course 𝐶𝑖 is specified by a course credit cci based on the
number of lecture hours needed per week to complete the course. There are 𝑘
semesters {𝑠1, 𝑠2, … , 𝑠𝑘} and every semester has a Credit Limit (CL) such that the
sum of credits of all the courses selected in a semester should be less than or equal to
CL.

Course Difficulty: Mundfrom et al. recorded the course difficulty index in the
Likert-type scale of 9 points from very easy to very difficult [9]. As a reference, this
paper considers the Likert-type scale of 5 points for recording the course difficulty as
very easy, easy, moderate, difficult, and very difficult from 1-5, respectively. Every
course 𝐶𝑖 is assumed with a course Difficulty DC𝑖 . Courses are distributed to 𝑘
semesters such that the average course difficulty of every semester is approximately
equal to the Average Difficulty (AD) of all the courses.

 27

Course Prerequisite Weight: The number of courses for which a course is been
identified as a prerequisite is specified as prerequisite weight. Let say if C1 is the
prerequisite course for C2, C4, and C5, the prerequisite weight pw1 for C1=3.

During the course registration process, there is a possibility of any student
selecting very difficult courses for a semester or very easy courses for another.
Students grades increase when the courses are easy and decreased when the courses
are more difficult [6, 7]. Since the above issues related to course planning and course
difficulty affects the student’s performance, the course distribution recommendation
must consider difficulty index as the main factor such that distribution of courses to
each semester should have approximately equal difficulty index. This helps the
students to score good grades and complete the courses on time.

A Subset Sum Approximation Problem (SSAP) is proposed to distribute the
courses using two methodologies. The first method initially subgroups the curriculum
courses based on the hierarchy level and solves the problem by considering two
algorithms named Maximum Prerequisite Weightage (MPW) Algorithm and
Difficulty Approximation (DA) Algorithm. The second method considers the
curriculum course list, constructs a dependency matrix based on the prerequisite
courses and uses a disagreement fitness function to distribute the courses using
Adaptive Genetic Algorithm (AGA).

The paper is organized as follows: Section 2 discusses the related work
Section 3 discusses the motivation behind the proposed work. Section 4 discusses the
results of the work done. Section 5 summarizes the overall work as a conclusion.

2. Related works

The related works analyzes the impact of course difficulty on student’s performance,
course planning, and course sequencing. The difficulty of a course is estimated by
considering the average grades awarded, rank correlation coefficient (rho) – means,
scaling analysis and cluster analysis as factors [9, 10]. A study of item difficulty
assessment depends on any of the factors like the learners’ course contents, students’
scores, and subject matter expert using the Apriori Algorithm [11]. Impact of course
difficulty in students’ performance is studied by L i u et al. [13], analyses by the
previous students’ results and predicts the results of the existing student’s using the
bagging algorithms. Based on the learning dependency, difficulty of knowledge units
are ranked with respect to subjective difficulty and objective difficulty [13]. Some
research discusses on what way the rating of instructors [14] and feedback [15] by
student helps the instructors to improve their performance in examinations. Bloom’s
taxonomy is used for evaluating the cognitive level of a question paper with respect
to the action words and based on which course’s difficulty level and the student’s
cognitive skills can be identified [16]. Students’ course outcomes are used for
assessing the performance of a student in their examination based on the difficulty
index of a course. With the help of bloom’s taxonomy, final exam papers are
evaluated and a difficulty index is identified [17]. A cognitive map [18] is provided
to the research scholars, which gives them a clear picture of how to start and to
proceed with their research. Course difficulty is evaluated using the factors like

 28

student’s learning skills; course contents’ difficulty, student’s feedback on the course
and the faculty handled in the existing research. The proposed method doesn’t
consider any of the said factors for the course difficulty index and the values used are
mere assumptions. The algorithm proposed works the same even when the difficulty
of a course is static or dynamic for various semesters. The difficulty of a course
depends on various factors and hence is considered for our future scope of research.

In terms of course recommendation, courses are recommended in sequence
automatically for each student using a Bayesian approach [19, 20]. W a n g and
Y u a n [21] recommend the courses based on user profiles from users’ interest
description, browse log and subscriptions. Learning objects are recommended
sequentially [22] in which a personalized learning route is suggested to learn the
sequence of learning object and if the student fails in the assessment during the
learning process, the route will be modified/repaired and recommended with new
objectives. The research work proposed by X u, X i n g and V a n d e r S c h a a r [5]
recommends personalized course sequence recommendation such that time to
graduation is reduced along with an improvement in the student’s grades. The courses
were ranked and the best sets of courses with prerequisites were recommended in
sequence [23] using breadth-first pickings, greedy-value pickings, and top-down
pickings. Along with ranking and recommending courses with constraints,
P a r a m e s w a r a n, V e n e t i s and G a r c i a-M o l i n a [24] have developed a
model which checks for requirements which have to be satisfied as the students have
to five math course using Integer Linear Programming Algorithm and Max-Flow
Algorithm. B e t a n c u r et al. [25] assess the course sequencing recommendation
analytically, evaluate them by applying research questions about the student
achievement and their relationship with psychology courses, and analyze the
recommendation of taking the psychology courses before and after the
methodological courses using regression techniques. A personalized learning
pathway is been recommended for e-Learning courses in which the course contents
are recommended in sequence using item response theory methodology [26]. Based
on the student’s history of grades and on the performance of the student at each state,
a directed structure with the state transitions has been constructed and the courses are
recommended such that the grades are always balanced in each state [27]. An
optimized course sequence recommendation with prerequisite constraints is solved
using multiple integer linear programming algorithms and used structure-based
heuristics for reducing the time to a degree [28]. Courses are ranked and optimal
course sequences are recommended based on the student population’s performance
using a rank aggregation framework [29]. Multi-Armed bandits Personalization for
Learning Environment (MAPLE) is an approach which considers the difficulty of the
educational content and personalizes them for the student in such a way that the
student’s performance is increased with maximum grades [30]. Complexity of
optimizing the sequencing problem is greatly reduced when it is initially subdivided
and then sequenced. G u n j i et al. [31] solved this optimal sequencing problem using
Teaching Learning-Based Optimization (TLBO) Algorithm that subdivides the
helicopter parts and then sequentially assembles the same, which hugely reduced the
number of iterations by optimally assembling through subsets. One such method is

 29

followed in the proposed method, which initially divides the curriculum courses into
subsets based on their hierarchy level and then the courses are distributed to each
semester which has greatly reduced the number of iterations during the course
distribution.

The credit system for four-year graduation has 15-16 Semester Credit Hours
(SCH) for a semester and 30 SCH for a year and a student have to complete 120
credits for four-year graduation. A course might have 3 to 4 credits based on the
number of Contact Hours per week. The existing research has recommended 4 to 5
courses with 15-16 SCH per semester and has not considered credit limit, course
difficulty for sequencing the courses in the curriculum. Unlike the commonly used
credit system, our university uses flexible credit selection in which the courses have
different credits based on the number of contact hours of a course, credit limit as
minimum 16 and maximum 27 per semester and require a total of 180 credits to
complete four-year graduation. Since the courses have different credits, the credit-
based course sequence is recommended in the proposed method, which distributes
courses based on constraints like course prerequisites, credit limit and average
difficulty.

3. Proposed work

A course sequencing methodology uses our proposed Subset Sum Approximation
Problem (SSAP), which is the extension of Subset Sum Problem (SSP). In SSP, with
a given set 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛} of positive integers and 𝑠𝑠, all possible subsets 𝑆′are
formed such that the sum of each subset is equal to ss:

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ = ss}.
For example, let a set S = {1, 2, 3, 4, 5, 6} and ss = 6. The data items in S are

positive integers and are independent of each other. The subsets are of S are formed
as {1, 2, 3}, {2, 4}, {1, 5}, and {6} in which the sum of items in each subset is equal
to 6. A Multiple Subset Sum Problem (MSSP) discussed by C a p r a r a, K e l l e r e r
and P f e r s c h y [32], [33] has added a knapsack feature to SSP in which the subset
sum is less than or equal to ss.

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ ≤ ss}.
Here, subsets are formed as {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, and {1, 2, 3} in which the sum of items in the each subset is
less than or equal to 6. But in SSAP there exists a set of positive numbers such that
the sum of items of each subset is equal to 𝑠𝑠 with an error quotient added or
subtracted to it as in (2). Unlike the SSP, SSAP considers all the possible positive
numbers. There exists a dependency among the items in the set and the subsets are
formed sequentially one after the other. When there is a dependency for a data item,
it should satisfy certain constraints to form a subset that is approximately equal to ss.

The SSAP with constraints involves steps like course hierarchy estimation,
course distribution using MPW, DA Algorithm by considering the estimated
hierarchy and an evolutionary AGA algorithm without considering the estimated
hierarchy.

 30

In Figs 1 and 2, the courses specified in green rectangle boxes are prerequisite
courses. Courses specified in blue rectangle boxes are post requisite courses and are
not prerequisites for any other courses. Courses specified with orange rectangle boxes
are both prerequisite and post requisite courses. A course specified in red dotted
rectangle box is neither a prerequisite course nor a post requisite course. A course
dependency structure represents the prerequisite among the courses as specified in
Fig. 1. The dependency of a course represented as MAT101→MAT105 specifies that
MAT101 is the prerequisite course of MAT105, i.e., MAT105 should be registered
by the students only if they have completed MAT101. The introductory courses
without prerequisites are first level courses. Level two represents courses with one
level of prerequisites and so on. For example, MAT101, MAT106, CSE101, and
MAT206 are first level courses. MAT105, MAT202, CSE202, and CSE220 have
prerequisites in level one and are represented as level two courses. MAT207,
MAT203 have two levels of prerequisite courses that are represented as level three
courses. The course recommendation initially selects courses from level one and
continues its recommendation to further levels until all courses are recommended at
each level. The hierarchy for each course is estimated based on the number of level
of prerequisite a course has and it is validated through Algorithm 1.

Fig. 1. Course dependency structure

As specified in Table 1, let {c1, c2,…, cn} be the set of courses, {cc1, cc2,…, ccn}
be the set of course credits, {dc1, dc2,…, dcn} be the set of course difficulties and
{pw1, pw2,…, pwn} be the set of prerequisite weights. The duration of the degree
program is specified as k semesters and the curriculum courses are distributed to j
semesters where j = 1, 2,…, N. If a student completes all the required courses within
the duration of the degree program, N will be equal to k otherwise the value of N is
greater than k. Every semester Sj is distributed with a set of courses {ci}, set of course
credits specified as SCj = {cci}, set of course difficulty specified as SDj = {dci}, set
of prerequisite weight specified as SPWj = {pwi}. The number of courses for Sj is
specified as ncj.

Level 1

Level 2

Level 3

Level 4

 31

Table 1. Notations

Notation Description

t Number of students

x Student x = 1, 2,…, t

C Set of all courses

n Number of courses

i Counter variable for courses: i = 1, 2,…, n

ci i-th course

p(ci) Set of all prerequisites of ci

cci, dci, pwi, hci Course credit, course difficulty index, course prerequisite weight, and course
hierarchy level of the i-th course respectively

N Number of semesters

j Counter variable for semester: j = 1, 2,…, N

ncj Number of courses in the j-th semester

r Counter variable for r = 1, 2,…, ncj

max_l Number of hierarchies

h Counter variable for hierarchy level: h = 1, 2,…, max_l

Sj Set of all courses of the j-th semester

SCj, SDj, SPWj, Course credits, course difficulty index and course prerequisite weight of j-th
semester, respectively

SCCj Sum of credits of j-th semester

SDCj The average difficulty of j-th semester

CLh, CCLh, DCLh,
PWCLh

Set of all courses, course credits, course difficulty index and course
prerequisite weight of h-th hierarchy level, respectively

nch Number of courses in each hierarchy

cm, ccm, dcm, pwm Course name, course credits, course difficulty index and course prerequisite
weight of m-th course in h-th hierarchy, respectively

m Counter variable for courses in each hierarchy:
m = 1, 2,…, nch

p(cm) Set of all prerequisites of cm

CCl All possible course combinations using SSAP

CCCl, CDCl,
CPWl

Sum of course credits, average difficulty index and the sum of the
prerequisite weight of CCl

l 𝑙 = 2ncℎ

k Minimum number of semester required for the completion of the degree
program

mk Maximum number of semesters

TC Total Credits of all the courses

AD The average difficulty of all the courses

CL The credit limit for each semester

e Error threshold

Algorithm 1. Algorithm for finding the Hierarchy Level of a course
def recLevelCheck(prereq):
 for cor in prereq:
 if(cor == “None”):
 val=0

 32

 else: val = max(recLevelCheck(corz[cor]), l)
 val = val+1
return val
for i in corz.keys():
 if(i != “None”): print(i+”\t”+str(recLevelCheck(corz[i])))
As a result of Algorithm 1, the hierarchy level of each course hci is estimated as

{hc1, hc2,…,hcn} and the total number of hierarchies max_l in which the curriculum
courses are divided into is estimated as specified in the next equation:
(1) max_l = max{hc𝑖},
max_l in (1) denotes the maximum number of levels the courses have with respect to
their prerequisite dependencies. The course dependency structure has four levels as
specified in Fig. 1 and hence the value of max_l is 4. Let CLh be the set of all courses
falling under level h with corresponding credits, difficulty, the prerequisite weight of
the courses specified as CCLh, DCLh, PWCLh respectively. Hierarchy of each course
as per algorithm 1 and the prerequisite weights are specified in Table 4.

The proposed Subset Sum Approximation Problem (SSAP) is an optimization
problem in which the sum of elements of a subset is approximately equal to ss with
an error quotient e as specified in (2). The proposed algorithms were tested for the
value of e from ±0.1 till ±0.5 and were analyzed with the number of iterations,
percentage of loss attained and the numbers of semesters the courses are distributed.
Based on which, it is finalized with ±0.4, SSAP = (𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that
(2) ∑ 𝑠𝑠∈𝑆′ = ss + 𝑒.

The objective of the proposed method is to minimize the loss function during
course distribution that is calculated in terms of the Root Mean Square Error (RMSE)
as in (3). A credit constraint is that the sum of credits of a semester should always be
less than CL as in (4). AD is specified as the average difficulty of all the courses in
the curriculum as specified in (5).

During course recommendation, this paper proposes SSAP in each semester. It
is recommended with a set of courses with average difficulty constraint such that the
average difficulty of a semester should be approximately equal to AD with an error
quotient as specified in (6). TC is specified as the total credits of all the courses in
the curriculum as in (7). A disjoint constraint states that the course distributed to a
semester should not be distributed to any other semester as in (8) and the subset union
constraint states that the union of all semester courses should be equal to the set of
all courses in the curriculum as specified in (9).

Objective Function:
Minimize the loss function

(3) min 𝑍 = 1𝑁 ∑ (AD − SDC𝑗)2,𝑁𝑗=1

subject to the following constraints:

(4) SCC𝑗 = ∑ cc𝑖 ≤ CL cc𝑟∈ SC𝑗

(Credit Constraint),

(5) AD = 1𝑛 ∑ dc𝑖
(Average Difficulty),

 33

(6) SDC𝑗 = 1 nc𝑗 (∑ dc𝑖) = AD ± 𝑒,dc𝑟 ∈ SD𝑗

where e is the error threshold value set between –0.4 to +0.4
(Difficulty constraint),
(7) ∑ SCC𝑗 = TC

(Total Credit constraint),
(8) {S1} Ռ {S2} Ռ… Ռ{SN} = {Ø}
(Disjoint set constraint),
(9) {S1} Ս {S2} Ս… Ս {SN} = {C}
(Subset union constraint).

Educational organizations have a curriculum of courses. Suppose, if its students
have the liberty to choose (flexible course selection) their courses for each semester
at the beginning of the program, they might not have a clear idea of how to choose
the courses and in what sequence the courses have to be selected. To solve this
problem the proposed method recommends the sequence of courses to be taken in
each semester. This paper proposes two methods for solving the Subset Sum
Approximation Algorithm (SSAP). The first method considers the parameter
hierarchy level of each course for distributing the courses across the semesters and
uses Maximum Prerequisite Weight (MPW) Algorithm and Difficulty
Approximation (DA) Algorithm. The second method does not consider the
hierarchical level of each course and uses Adaptive Genetic Algorithm (AGA). Each
algorithm is represented in the sections below.

3.1. MPW Algorithm

During course distribution, this algorithm distributes a set of courses to each semester
with approximately equal difficulty level by considering the course combinations
with maximum prerequisite weight and maximum credits. This helps the students to
register all possible prerequisite courses during the prior semesters with maximum
credits within CL.

Algorithm 2. MPW Algorithm
Step 1. Let picked_courses[x] = {Ø}
Step 2. Initialize N=1, mk=12, j=1, h=1
Step 3. Sub divide C into CLh based on hierarchy h
Step 4. Compute CL as CL = TC/max_l
Step 5. Compute AD as

 AD = 1𝑛 (∑ dc𝑖)
Step 6. for h=1 ≤ mk loop 𝐒𝐭𝐞𝐩 𝟕. ∀ 𝑐𝑚 in CLℎ ≠ {0}
Step 8. if (𝑝(𝑐𝑚) not in picked_courses[𝑥])then

a. Add cm to CLh+1
b. Delete cm from CLh

Step 9. else
compute all possible CCl using SSAP such that CCC𝑙 = ∑ cc𝑚 ≤ CL cc𝑚 ∈ CLℎ

 34

CDC𝑙 = 1nc𝑗 ∑ dc𝑚 = AD ± 𝑒 dc𝑚 ∈ CLℎ CPW𝑙 = ∑ pw𝑚 pw𝑚 ∈ CLℎ

Step 10. for j=1 to N ≤ mk loop
Step 11. Select CCl max(CPWl)

a. if count(CCl) == 1 then distribute it to semester Sj
b. else if count(CCl) > 1

i. if count(CCl) with max(CCCl) == 1 then distribute it to semester
Sj

ii. else if count (CCl) with max(CCCl) > 1 then
a. if count(CCl) with ≈ CDCl == 1, distribute it to Sj
b. else if count(CCl) with ≈ CDCl > 1, then select CCl in

random
Step 12. End for j
Step 13. Set the state of cm in CLh to 1 or 0 otherwise
Step 14. Add Cm with state 0 to CLh+1
Step 15. Increment j, h
Step 16. N=j
Step 17. End for h
The MPW algorithm prioritizes course distribution based on the maximum

prerequisite weight followed by maximum credits and the approximate course
difficulty for the combination of courses, which are selected for a semester. Course
combinations with high prerequisite weights are prerequisites for more number of
courses. Courses with no prerequisite weight are not prerequisites for any courses and
courses with less prerequisite weight are prerequisites for fewer courses. Since the
post requisite courses are more difficult than prerequisite courses [34, 35], a better
sequencing has to be recommended to balance the difficulty index throughout the
degree program. MPW gives higher priority for prerequisite weight (pwi) in which
courses with more pwi are distributed in the early semesters and less pwi are
distributed in the later semesters. This balances the difficulty of prerequisite courses
along with the post requisite courses whose prerequisites are already distributed in
the previous semesters.

3.2. Difficulty Approximation (DA) Algorithm

During course distribution, this algorithm distributes a set of courses to each semester
with approximately equal difficulty level by considering the course combinations
with approximate difficulty such that the loss value for the difficulty index is
decreased. This helps the students to have a balanced workload throughout the
semesters.

Algorithm 3. DA Algorithm
Step 1. Consider steps 1-9 from Algorithm 2
Step 2. for j=1 to N ≤ mk loop
Step 3. Select CCl with ≈ CDCl

a. if count(CCl) == 1 then distribute it to semester Sj

 35

b. else if count(CCl) > 1
i. if count(CCl) with max(CPWl) == 1 then distribute it to

semester Sj
ii. else if count (CCl) with max(CPWl) > 1 then

a. if count(CCl) with max(CCCl) == 1, distribute it to Sj
b. else if count(CCl) with max(CCCl) > 1, then select CCl

in random
Step 4. end for j
Step 5. Set the state of cm in CLh to 1 or 0 otherwise.
Step 6. Add Cm with state 0 to CLh+1.
Step 7. Increment j, h
Step 8. N=j
Step 9. end for h till CLh = {0}
The proposed DA algorithm prioritizes the difficulty index for selecting courses

for a semester such that the average difficulty of the semester is approximately equal
to AD so that the loss function is greatly reduced.

3.3. Adaptive Genetic Algorithm (AGA)

The proposed AGA has an initial set of the population with courses and their
respective prerequisites for which a dependency matrix is constructed as per Fig. 1
and as specified in Table 2. In Table 2, the prerequisite(s) of a course is specified
with 1. Disagreement is a function specified for the presence and absence of course
prerequisites. A fitness function with a disagreement value is generated by adding all
the prerequisite values set for a particular course. The courses with disagreement
value as null as specified in Table 2 alone are considered for course distribution since
those are the courses which don’t have prerequisites.

MAT101, MAT106, CSE101, and MAT206 are the courses with disagreement
value 0 as per Table 2. With these course combinations, the Adaptive Genetic
Algorithm selects a set of courses with a sum of credits less than or equal to CL and
the average difficulty approximately equal to AD. After the distribution of courses
with disagreement value 0 to the initial semester in iteration 1, the course dependency
structure is reconstructed as specified in Fig. 2 by removing the courses which are
already distributed. Corresponding dependency matrix is specified in Table 3.
Courses with the disagreement value 0 are again considered for further course
distribution for further semesters.

Algorithm 4. Algorithm AGA
Step 1. Initial population with a set of courses, its prerequisites represented as a

dependency matrix
Step 2. Set RandomPairs=0
Step 3. Maximum RandomPairs= max(default=10)
Step 4. Threshold Disagreement=0
Step 5. For each combination pri ≤ CL

a. Compute the sum of disagreement
b. Disagreement=0

Step 6. End for

 36

Step 7. Sort population in decreasing order with disagreement 0
Step 8. Sample population with pri≤CL and SDCj = AD ± e use MPW or DA

algorithm to select course combination for semester j
Step 9. Crossover population with evolutionary computing
Step 10. Update population by filtering the courses distributed to semester j
Step 11. For the filtered courses, draw a dependency matrix
Step 12. Repeat steps 1-11 till all the courses are distributed and no courses left.

Table 2. Dependency matrix for courses with prerequisites

CCODE MAT101 MAT106 MAT105 MAT202 MAT203 CSE101 Disagreement

MAT101 0

MAT106 0

MAT105 1

MAT202 1 1

MAT203 1

MAT207 1 1

CSE220 1 1

CSE101 0

CSE205 1

CSE208 1

CSE327 1 0

CSE418 1

MAT206 0

MEE437 1

Prereq Weight 3 3 2 3 1 1

Fig. 2. Course Dependency Structure after iteration 1 of AGA

AGA can be used with either MPW or DA logic for the selection of courses for
a semester based on the requirement of the student. For students with great CGPA,
MPW works better and for students with less CGPA and backlogs can be
recommended with the DA Algorithm.

Level 1

Level 2

Level 3

 37

The course dependency structure and the dependency matrix are reconstructed
with further iterations until all the courses are distributed to the semesters and the
course dependency structure and the corresponding dependency matrix is left with
null courses.

Table 3. Dependency matrix for courses with prerequisites after iteration 1 of AGA

CCODE MAT105 MAT202 MAT203 Disagreement

MAT105 0

MAT202 0

MAT203 1

MAT207 1

CSE220 0

CSE205 1

CSE208 0

CSE327 1

CSE418 1

MAT206 0

MEE437 1

4. Results and discussions

This section discusses the experimental analysis of SSAP algorithms, which use the
curriculum courses of the undergraduate computer science and engineering from our
university as the dataset. The sample data includes a set of all dependent courses of
mathematics and set of all dependent courses of CSE101 with their course credit and
course prerequisite(s). The parameters such as difficulty index, hierarchy level and
pre-requisite weight of each course are also being considered for each course as
specified in Table 4. Fig. 3 depicts the course dependency structure, which specifies
the required prerequisite courses for the corresponding course that is to be completed.
Considering these parameters, hierarchy estimation algorithm clusters the courses
with respect to their prerequisite(s) and lists the courses in different hierarchy levels
(level 1, 2, 3,…, etc.,) as specified in Fig. 4.

Fig. 3. Dependency course tree

Course dependency Trees:
MAT101 ['MAT101']
MAT106 ['MAT106']
MAT105 ['MAT101', 'MAT105']
MAT202 ['MAT106', 'MAT101', 'MAT202']
MAT203 ['MAT101', 'MAT105', 'MAT203']
MAT207 ['MAT101', 'MAT105', 'MAT207']
CSE220 ['MAT106', 'CSE101', 'CSE220']
CSE101 ['CSE101']
CSE205 ['MAT106', 'MAT101', 'MAT202', 'CSE205']
CSE208 ['MAT106', 'CSE208']
CSE327 ['MAT106', 'MAT101', 'MAT202', 'CSE327']
CSE418 ['MAT106', 'MAT101', 'MAT202', 'CSE418']
MAT206 ['MAT206']
MEE437 ['MAT101', 'MAT105', 'MAT207', 'MEE437']

 38

Fig. 4. Course hierarchy level

Random distribution method distributes courses to each semester in random
only by considering prerequisite and credit constraints. In MPW and DA, once the
courses are sub grouped, the first level courses are selected for course distribution
such that the course combinations satisfies the credit limit constraint as in (4) and
also the difficulty approximation constraint as specified in (6). MPW and DA
algorithms are quite similar with few variations in the course selection procedures.
The Average Difficulty (AD) of all the courses is calculated as 4.07 which is
considered as the expected Difficulty Index (DI). From the first level of courses, the
two combinations such as combination1 {MAT101, MAT106, MAT206} and
combination 2 {MAT101, MAT106, CSE101} are taken which yield the maximum
sum of credits as 11, average difficulty as 4, 3.65, and prerequisite weight as 8, 9
respectively. The MPW chooses combination 2 since it selects the maximum credits
with maximum prerequisite weights whereas; DA selects combination 1 since it has
more approximate average difficulty. The MPW algorithm considers maximum
credits initially and checks for maximum prerequisites whereas DA Algorithm
considers course combination with lesser credits combination than maximum credit
value which gives approximate average difficulty.

Table 5 specifies the list of courses recommended for each semester using
Random Distribution (RD), MPW Algorithm and DA Algorithm and Table 6
specifies the corresponding total credits per semester and the average difficulty index
per semester when RD, MPW, and DA methodologies were used. The analysis
depicts that when MPW is used, each semester has the maximum credits and the final
semester has least credits and when DA is used, all the semesters have approximately
equal difficulty index.

MPW Algorithm gives priorities to maximize the credits while distributing the
course to a semester. In the case of course combinations with the same credits, the
course combinations with maximum prerequisite weights are chosen. If there are
more combinations available for the same maximum prerequisite, the course
combinations with approximate average difficulty are predicted SDCj as specified in
Table 6. DA Algorithm gives priority only for the approximation of the course
difficulty of all the semesters. When the course combinations SDCi are same, the next
priority will be given to the prerequisite weight else the course combinations are
distributed in random. Initially, course combination with maximum credits is taken
into consideration. In case if the course combination has fewer SDCj than the course
combined with max(SCj) – 1, then the DA considers course combined with fewer
credits with more approximate average difficulty. The loss value of the DA
Algorithm will be comparatively less than MPW algorithm since the course
distribution is purely based on approximate difficulty. The loss function for the DA
Algorithm is calculated based on the expected AD and the predicted SDCj as

Level 1 Courses offered: {'CSE101', 'MAT101', 'MAT206', 'MAT106'}
Level 2 Courses offered: {'CSE208', 'MAT202', 'CSE220', 'MAT105'}
Level 3 Courses offered: {'CSE418', 'CSE327', 'MAT207', 'CSE205', 'MAT203'}
Level 4 Courses offered: {'MEE437'}

 39

specified in Table 6 and hence the objective function is attained with a minimum loss
function.

Abbreviations:
NB – No Backlog
OB – One Backlog
TB – Two Backlogs
TCP – Total Credits per Semester
ADP – Average Difficulty Index per Semester

Table 4. Course list with hierarchy and prerequisite weight
Course code Credits Difficulty Index (DI) Pre-requisite(s) Hierarchy level Prerequisite weight

MAT101 4 4 None 1 3

MAT106 4 4 None 1 5

MAT105 4 4 MAT101 2 2

MAT202 4 4 MAT101, MAT106 2 4

MAT203 3 4 MAT105 3 0

MAT207 4 4 MAT101, MAT105 3 1

CSE220 5 4 CSE101, MAT106 2 0

CSE101 3 3 None 1 1

CSE205 4 4 MAT202 3 0

CSE208 4 5 MAT106 2 0

CSE327 3 4 MAT202 3 0

CSE418 4 5 MAT202 3 0

MAT206 3 4 None 1 0

MEE437 3 4 MAT207 4 0

Table 5. Recommended course list with RD vs MPW and DA Algorithm
Semester RD MPW DA

1 MAT101, MAT106, CSE101 MAT101, MAT106, CSE101 MAT101, MAT106, MAT206

2
MAT206, MAT105,

MAT202
MAT105, MAT202, CSE220 MAT202, CSE208, CSE101

3 CSE220, CSE208, MAT203 MAT207, CSE205, CSE418 MAT207, MAT105, CSE220

4 MAT207, CSE327, CSE418
MAT203, CSE327, CSE208,

MAT206
MAT203, CSE327, CSE418,

MEE437

5 MEE437, CSE205 MEE437 CSE205

Table 6. Loss function for RD vs MPW and DA Algorithm

Semester
RD MPW DA RD MPW DA RD MPW DA

Total Credits per
semester

Total Difficulty per
semester

Expected DI – Predicted DI per
semester

1 11 11 11 3.66 3.67 4 0.168 0.16 0.005

2 11 13 11 4 4 4 0.005 0.005 0.005

3 9 12 13 3.66 4.33 4 0.168 0.068 0.005

4 11 13 13 4.33 4.33 4 0.068 0.068 0.005

5 7 3 4 4 4 4 0.005 0.005 0.005

 Loss Function 0.049 0.037 0.002

Table 7. Credit comparison with and without backlogs

TCP NB - RD NB -MPW NB -DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA

Sem 1 11 11 11 11 11 11 11 11 11

Sem 2 11 13 11 11 13 11 10 11 11

Sem 3 9 12 13 13 11 13 13 13 13

Sem 4 11 13 13 11 12 11 11 12 11

Sem 5 7 3 4 10 9 10 11 12 11

Sem 6 0 0 0 0 0 0 3 0 3

 40

Table 8. Difficulty index comparison with and without backlogs

ADP NB-RD NB-MPW NB-DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA

Sem 1 3.67 3.67 4 3.67 3.67 4 3.67 3.67 4

Sem 2 4 4 4 4 4.33 4 3.67 4 3.67

Sem 3 3.67 4.33 4 3.67 4 4 4.33 4 4

Sem 4 4.33 4.33 4 4.33 4.33 4 4 4.33 4

Sem 5 4 4 4 4 4 4.33 4.33 4 4.67

Sem 6 4 4

If a student is supposed he/she wishes to complete the entire course in the
curriculum within the duration of the degree of study, MPW is used. When a student
wishes to have a balanced workload with balanced credits and difficulty index, the
course distribution with approximate difficulty index throughout the degree of study
using the DA Algorithm is followed. The results of the RD, MPW and the DA
algorithms are validated with the loss function as specified in (2).

Fig. 5. Total credit per semester with no backlog

Fig. 6. Total credit per semester with one backlog

Fig. 7. Total credit per semester with two backlogs

Fig. 8. Average difficulty index per semester with no

backlog

11 11 1111

13

11

9

12

13

11

13 13

7

3

4

0 0 0

0

2

4

6

8

10

12

14

NB - RD NB -MPW NB -DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

11 11 1111

13

11

13

11

13

11

12

11

10

9

10

0 0 0

0

2

4

6

8

10

12

14

OB-RD OB-MPW OB-DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

11 11 11

10

11 11

13 13 13

11

12

1111

12

11

3

0

3

0

2

4

6

8

10

12

14

TB-RD TB-MPW TB-DA

T
o

ta
l
C

re
d

it
s

 p
e

r
s

e
m

e
s

te
r

Comparison of RD, MPW and DA
Algorithm wrt Credits

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

3.67 3.67

44 4 4

3.67

4.33

4

4.33
4.33

44 4 4

3.2

3.4

3.6

3.8

4

4.2

4.4

NB - RD NB -MPW NB -DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt to DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

 41

Fig. 9. Average difficulty index per semester with one

backlog

Fig. 10. Average difficulty index per semester with

two backlogs

Accuracy with respect to loss function of DA Algorithm is more appropriate
with 98% than the values during the usage of RD and MPW methodologies. All above
scenarios work when the student completes each recommended course in all the
semester without any deviation. From the recommended courses in Table 4, from
semester 1, if a student fails in any of the semesters with 1 backlog or 2 backlogs, the
scenario totally changes and this is analyzed with RD, MPW, and DA as specified in
Table 7 and Table 8. The number of semesters N to which the courses are distributed
depends on the students’ pass/fail ratio. As per the example, the value of N is 5, i.e.,
the list of courses in Table 4 are distributed to 5 semesters. The value of N increases
when a student fails again in the same course or different courses and the same is
specified in Table 7 and 8. With no backlogs and one backlog, the courses were
distributed to five semesters and when the backlog is increased to two, the courses
were distributed to six semesters. If a student fails in a course, again and again, the
course will be appended to the courses to be distributed and it automatically prolongs
their duration of the degree. A minimum number of semesters required to distribute
a course is max_l and maximum duration is MDD semesters. Our proposed algorithm
stops distributing courses to a particular student until he passes all the required
courses from the curriculum or when MDD is attained. Table 7 depicts the credit
comparison and Table 8 depicts the difficulty index comparison among RD, MPW,
and DA methodologies. When credits are considered, MPW algorithm works better
as specified in Figs 5-7 and when the difficulty index is considered, the DA
Algorithm works better as specified in Figs 8-10. By comparing the loss functions of
MPW and DA Algorithms, DA Algorithm has given more accuracy with least loss
value while distributing the courses to semesters with approximate difficulty. The
adaptive genetic algorithm works better with DA Algorithm where the input to this
algorithm does not consider the hierarchy level of a course but uses the disagreement
function for filtering the courses for the combinations and a fitness function is used
to validate the constraints specified in the objective function of the proposed
methodology. For n courses, the complexity of SSP with brute force method is 2n and
since the proposed SSAP divides n courses into max_l subsets based on the hierarchy,
the complexity is 2mal_l.

3.67 3.67

44

4.33

4

3.67

4 4

4.33 4.33

44 4

4.33

3.2

3.4

3.6

3.8

4

4.2

4.4

OB-RD OB-MPW OB-DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

3.67 3.67

4

3.67

4

3.67

4.33

4 44

4.33

4

4.33

44 4

3.2

3.4

3.6

3.8

4

4.2

4.4

TB-RD TB-MPW TB-DA

A
v
e

ra
g

e
 D

if
fi

c
u

lt
y
 I
n

d
e

x
 p

e
r

S
e

m
e

s
te

r

Comparison of RD, MPW and DA
Algorithms wrt DI

Sem 1

Sem 2

Sem 3

Sem 4

Sem 5

Sem 6

 42

5. Conclusion

In this paper, the factors affecting student’s performance and the problems of the
existing course sequence recommendation algorithms are studied and examined.
Credit-based course selections with constraints are considered for recommending
curriculum courses in sequence using the proposed MPW, DA and AGA algorithms.
These personalized course recommendation algorithms are elaborated based on the
individual’s academic records which in turn helps the students to graduate on time
with a balanced workload. These algorithms are analyzed and evaluated based on the
loss function. The loss function is compared for the Random Distribution (RD)
Algorithm, Maximum Prerequisite Weight (MPW) Algorithm and Difficulty
Approximation (DA) Algorithm. Hence, every semester is distributed with a balanced
workload with approximately equal difficulty index using the DA Algorithm, which
gives minimum loss function compared with MPW Algorithm. Assuming the
difficulty index for the courses is a limitation of the proposed method. Since the
course difficulty index estimation relies on factors like course content difficulty, the
difficulty of the question paper, feedback of the instructors/students, the same is
adapted for our future research. Moreover, the proposed algorithm works the same
for assumptions or adaptions of the existing course difficulty index methodologies

R e f e r e n c e s

1. U. G. C. Guidelines on Adaptation of the Choice Based Credit System. University Grants
Commission Bahadurshah Zafar Marg, New Delhi, 110 002.

2. H a s a n, M., M. P a r v e z. Choice-Based Credit System in India: Pros and Cons. – Journal of
Education and Practice, Vol. 6, 2015, No 25, pp. 30-33.

3. http://www.vit.ac.in/academics/ffcs
4. Z a f a r, S., B. M a n j u r e k a r, N. P. K u m a r, Z. A. K h a n. Effects of FFCS (Fully Flexible

Credit System) on Learning Experience and Academic Performance. – Procedia-Social and
Behavioral Sciences, Vol. 143, 2014, pp. 4-7.

5. X u, J., T. X i n g, M. V a n d e r S c h a a r. Personalized Course Sequence Recommendations. –
IEEE Transactions on Signal Processing, Vol. 64, October 2016, No 20, pp. 5340-5352.

6. P a u r a, L., I. A r h i p o v a. Student Dropout Rate in Engineering Education Study Program. –
In: Proc. of 15th International Scientific Conference Engineering for Rural Development,
Jelgava, Latvia, May 2016, pp. 641-646.

7. S z a f r a n, R. F. The Effect of Academic Load on Success for New College Students: Is Lighter
Better? – Research in Higher Education, Vol. 42, 2001, No 1, pp. 27-50.

8. K o r i, K., M. P e d a s t e, H. A l t i n, E. T õ n i s s o n, T. P a l t s. Factors that Influence Students’
Motivation to Start and to Continue Studying Information Technology in Estonia. – IEEE
Transactions on Education, Vol. 59, 2016, No 4, pp. 255-262.

9. M u n d f r o m, D. J. Estimating Course Difficulty. Ph.D. Dissertation, Statistics, Iowa State Univ.,
Ames, USA, 1991.

10. B a s s i r i, D., E. M. S c h u l z. Constructing a Universal Scale of High School Course Difficulty.
– Journal of Educational Measurement, Vol. 40, 2003, No 2, pp. 147-161.

11. B a n e r j e e, S., N. J. R a o, C. R a m a n a t h a n. Rubrics for Assessment Item Difficulty in
Engineering Courses. – In: Proc. of Frontiers in Education Conference (FIE), IEEE, 2015,
pp. 1-8.

12. K a u r, K., K. K a u r. Analyzing the Effect of Difficulty Level of a Course on Students Performance
Prediction Using Data Mining. – In: Proc. of 1st International Conference on Next Generation
Computing Technologies (NGCT), IEEE, September 2015, pp. 756-761.

 43

13. L i u, J., S. S h a, Q. Z h e n g, L. C h e n. Ranking Difficulty of Knowledge Units Based on Learning
Dependency. – In: Proc. of 7th International Conference on e-Business Engineering, IEEE,
November 2010, pp. 77-82.

14. S a f a v i, S. A., K. A. B a k a r, R. A. T a r m i z i, N. H. A l w i. What Do Higher Education
Instructors Consider Useful Regarding Student Ratings of Instruction? Limitations and
Recommendations. – Procedia-Social and Behavioral Sciences, Vol. 31, 2012, pp. 653-657.

15. C o r e l l i, A. Direct Vs. Anonymous Feedback: Teacher Behavior in Higher Education, with Focus
on Technology Advances. – Procedia-Social and Behavioral Sciences, Vol. 195, 2015,
pp. 52-61.

16. Z a i n u d i n, S., K. A h m a d, N. M. A l i, N. F. A. Z a i n a l. Determining Course Outcomes
Achievement through Examination Difficulty Index Measurement. – Procedia-Social and
Behavioral Sciences, Vol. 59, 2012, pp. 270-276.

17. S w a r t, A. J. Evaluation of Final Examination Papers in Engineering: A Case Study Using Bloom’s
Taxonomy. – IEEE Transactions on Education, Vol. 53, 2010, No 2, pp. 257-264.

18. Y a n g, F., F. W. L i, R. W. L a u. A Fine-Grained Outcome-Based Learning Path Model. – IEEE
Transactions on Systems, Man, and Cybernetics: Systems, Vol. 44, 2014, No 2, pp. 235-245.

19. P u m p u a n g, P., A. S r i v i h o k, P. P r a n e e t p o l g r a n g, S. N u m p r a s e r t c h a i. Using
Bayesian Network for Planning Course Registration Model for Undergraduate Students. –
In: Proc. of 2nd IEEE International Conference on Digital Ecosystems and Technologies,
IEEE, February 2008, pp. 492-496.

20. P u m p u a n g, P., A. S r i v i h o k, P. P r a n e e t p o l g r a n g. Comparisons of Classifier
Algorithms: Bayesian Network, C4. 5, Decision Forest and NBTree for Course Registration
Planning Model of Undergraduate Students. – In: Proc. of IEEE International Conference on
Systems, Man and Cybernetics, IEEE, October 2008, pp. 3647-3651.

21. W a n g, X., F. Y u a n. Course Recommendation by Improving BM25 to Identity Students’ Different
Levels of Interests in Courses. – In: Proc. of 2009 International Conference on New Trends in
Information and Service Science, IEEE, June 2009, pp. 1372-1377.

22. G a r r i d o, A., L. M o r a l e s. e-Learning and Intelligent Planning: Improving Content
Personalization. – IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, Vol. 9, 2014,
No 1, pp. 1-7.

23. P a r a m e s w a r a n, A. G., H. G a r c i a-M o l i n a, J. D. U l l m a n. Evaluating, Combining and
Generalizing Recommendations with Prerequisites. – In: Proc. of 19th ACM International
Conference on Information and Knowledge Management, ACM, October 2010, pp. 919-928.

24. P a r a m e s w a r a n, A., P. V e n e t i s, H. G a r c i a-M o l i n a. Recommendation Systems with
Complex Constraints: A Course Recommendation Perspective. – ACM Transactions on
Information Systems (TOIS), Vol. 29, 2011, No 4, Art. No 20.

25. B e t a n c u r, L., B. M. R o t t m a n, E. V o t r u b a-D r z a l, C. S c h u n n. Analytical Assessment
of Course Sequencing: The Case of Methodological Courses in Psychology. – Journal of
Educational Psychology, Vol. 111, 2019, No 1, pp. 91-103.

26. C h e n, C. M., C. Y. L i u, M. H. C h a n g. Personalized Curriculum Sequencing Utilizing Modified
Item Response Theory for Web-Based Instruction. – Expert Systems with Applications,
Vol. 30, 2006, No 2, pp. 378-396.

27. B r i d g e s, C., J. J a r e d, J. W e i s s m a n n, A. M o n t a n e z-G a r a y, J. S p e n c e r, C. G.
B r i n t o n. Course Recommendation as Graphical Analysis. – In: Proc. of 52nd Annual
Conference on Information Sciences and Systems (CISS), IEEE, March 2018, pp. 1-6.

28. M o r r o w, T., A. R. H u r s o n, S. S. S a r v e s t a n i. A Multi-Stage Approach to Personalized
Course Selection and Scheduling. – In: Proc. of 2017 IEEE International Conference on
Information Reuse and Integration (IRI), San Diego, CA, 2017, pp. 253-262.

29. C u c u r i n g u, M., C. Z. M a r s h a k, D. M o n t a g, P. R o m b a c h. Rank Aggregation for Course
Sequence Discovery. – In: Proc. of International Workshop on Complex Networks and Their
Applications, Springer, Cham., November 2017, pp. 139-150.

30. S e g a l, A., Y. B. D a v i d, J. J. W i l l i a m s, K. G a l, Y. S h a l o m. Combining Difficulty
Ranking with Multi-Armed Bandits to Sequence Educational Content. – In: Proc. of
International Conference on Artificial Intelligence in Education, Springer, Cham., June 2018,
pp. 317-321.

 44

31. G u n j i, A. B., B. B. B. V. L. D e e p a k, C. R. B a h u b a l e n d r u n i, D. B. B. B i s w a l. An
Optimal Robotic Assembly Sequence Planning by Assembly Subsets Detection Method Using
Teaching Learning-Based Optimization Algorithm. – IEEE Transactions on Automation
Science and Engineering, Vol. 15, 2018, No 3, pp. 1369-1385.

32. C a p r a r a, A., H. K e l l e r e r, U. P f e r s c h y. The Multiple Subset Sum Problem. – SIAM
Journal on Optimization, Vol. 11, 2000, No 2, pp. 308-319.

33. C a p r a r a, A., H. K e l l e r e r, U. P f e r s c h y. A PTAS for the Multiple Subset Sum Problem
with Different Knapsack Capacities. – Information Processing Letters, Vol. 73, 2000, No 3-4,
pp. 111-118.

34. W i s n e s k i, J. E., G. O z o g u l, B. A. B i c h e l m e y e r. Investigating the Impact of Learning
Environments on Undergraduate Students’ Academic Performance in a Prerequisite and Post-
Requisite Course Sequence. – The Internet and Higher Education, Vol. 32, 2017, pp. 1-10.

35. A d j e i, S. A., A. F. B o t e l h o, N. T. H e f f e r n a n. Predicting Student Performance on Post-
Requisite Skills Using Prerequisite Skill Data: An Alternative Method for Refining
Prerequisite Skill Structures. – In: Proc. of 6th International Conference on Learning Analytics
& Knowledge, April 2016, ACM, pp. 469-473.

Received: 11.04.2019; Second Version: 10.08.2019; Accepted: 22.08.2019

