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Abstract: Choice Based Course Selection (CBCS) allows students to select courses 

based on their preferred sequence. This preference in selection is normally bounded 

by constraints set by a university like pre-requisite(s), minimum and maximum 

number of credits registered per semester. Unplanned course sequence selection 

affects the performance of the students and may prolong the time to complete the 

degree. Course Difficulty Index (DI) also contributes to the decline in the 

performance of the students. To overcome these difficulties, we propose a new Subset 

Sum Approximation Problem (SSAP) aims to distribute courses to each semester with 

approximately equal difficulty level using Maximum Prerequisite Weightage (MPW) 
Algorithm, Difficulty Approximation (DA) algorithm and Adaptive Genetic Algorithm 

(AGA). The three algorithms have been tested using our university academic dataset 

and DA algorithm outperforms with 98% accuracy than the MPW and AGA 

algorithm during course distribution.  

Keywords: Course sequence recommendation, Course credits, Course difficulty, Pre-

requisite weight, Approximation Algorithm. 

1. Introduction 

University Grant Commission (UGC) of India has instructed the universities of India 
to implement the Choice Based Credit System (CBCS) in the order issued during 
2015 [1]. In CBCS, students have the freedom to select courses of their interests and 
help them to pursue courses at different times in different semesters [2]. Vellore 
Institute of Technology (VIT) is the first university in India to introduce the Fully 
Flexible Credit System (FFCS) [3] in which 87% of our university students are 
comfortable with the choice of selecting the courses, timings, and the respective 
instructors [3, 4]. For four-year engineering graduation in VIT, as per the, a student 
needs to register a minimum of 4 courses (16 credits) per semester from the university 
curriculum with approximately 30 mandatory courses leaving the elective courses 
behind. Unplanned course selection without a clear plan increases the graduation 
duration of a student [5]. A personalized recommendation helps the student to register 
the desired course in a proper sequence, which will help them to complete their 
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courses without delay [5]. Apart from course selection, the difficulty of a course also 
affects the students’ performance, lowers their grades, and sometimes leads to course 
dropout [6]. Students who register for courses with high difficulty index, however, 
tend to earn lower Grade Point Average (GPA) and experience lower retention [7]. 
Any effect of credit load on retention appears to work through GPA. Researchers 
have found that students find some required information technology programme 
courses to be quite difficult, e.g., mathematics and programming. Such types of 
difficult courses could lower students’ grades, which in turn could lower their 
motivation to study, thus causing dropout [8].  

This paper considers only mandatory courses from our university undergraduate 
computer science and engineering curriculum for personalized recommendations, 
and elective courses are not considered for the proposed method. For n set of 
mandatory courses in VIT curriculum, there are 35% of university core and 65% of 
programme core courses. With n courses and with a minimum of 1 prerequisite 
course, a student has 𝑛𝑛−1 course sequence combinations out of which every student 
has the freedom to complete the required courses in any sequence at each semester, 
with constraints which are identified by its course code, course credits, course 
prerequisite(s), course difficulty index (assumed since estimating course difficulty 
index itself is our part of our future research work) and course prerequisite weight. 
Student registers a set of courses for a semester and completes the same by getting 
the required grades, and the set of completed courses will be added to the students’ 
academic history with the acquired grades and Cumulative Grade Point Average 
(CGPA). Curriculum courses which are not completed by a student are considered 
for further recommendations for the respective semesters. The students are 
recommended with the course(s) until the students complete all the required courses 
and credits.  

A personalized course sequence recommendation at each semester of the degree 
programme hence hit as to be computed by adhering to the following constraints. 

Course Prerequisites: The courses have to be registered in sequence if a course 
has the prerequisite(s). A prerequisite is a course which has to be registered before a 
specific course is registered. If a course has a set of prerequisite(s), all prerequisites 
should be completed before registering that particular course.  

Course Credits: Every course 𝐶𝑖 is specified by a course credit cci based on the 
number of lecture hours needed per week to complete the course. There are 𝑘 
semesters {𝑠1, 𝑠2, … , 𝑠𝑘} and every semester has a Credit Limit (CL) such that the 
sum of credits of all the courses selected in a semester should be less than or equal to 
CL.  

Course Difficulty: Mundfrom et al. recorded the course difficulty index in the 
Likert-type scale of 9 points from very easy to very difficult [9]. As a reference, this 
paper considers the Likert-type scale of 5 points for recording the course difficulty as 
very easy, easy, moderate, difficult, and very difficult from 1-5, respectively. Every 
course  𝐶𝑖  is assumed with a course Difficulty DC𝑖 . Courses are distributed to 𝑘 
semesters such that the average course difficulty of every semester is approximately 
equal to the Average Difficulty (AD) of all the courses. 
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Course Prerequisite Weight: The number of courses for which a course is been 
identified as a prerequisite is specified as prerequisite weight. Let say if C1 is the 
prerequisite course for C2, C4, and C5, the prerequisite weight pw1 for C1=3. 

During the course registration process, there is a possibility of any student 
selecting very difficult courses for a semester or very easy courses for another. 
Students grades increase when the courses are easy and decreased when the courses 
are more difficult [6, 7]. Since the above issues related to course planning and course 
difficulty affects the student’s performance, the course distribution recommendation 
must consider difficulty index as the main factor such that distribution of courses to 
each semester should have approximately equal difficulty index. This helps the 
students to score good grades and complete the courses on time. 

A Subset Sum Approximation Problem (SSAP) is proposed to distribute the 
courses using two methodologies. The first method initially subgroups the curriculum 
courses based on the hierarchy level and solves the problem by considering two 
algorithms named Maximum Prerequisite Weightage (MPW) Algorithm and 
Difficulty Approximation (DA) Algorithm. The second method considers the 
curriculum course list, constructs a dependency matrix based on the prerequisite 
courses and uses a disagreement fitness function to distribute the courses using 
Adaptive Genetic Algorithm (AGA).  

The paper is organized as follows: Section 2 discusses the related work  
Section 3 discusses the motivation behind the proposed work. Section 4 discusses the 
results of the work done. Section 5 summarizes the overall work as a conclusion.  

2. Related works 

The related works analyzes the impact of course difficulty on student’s performance, 
course planning, and course sequencing. The difficulty of a course is estimated by 
considering the average grades awarded, rank correlation coefficient (rho) – means, 
scaling analysis and cluster analysis as factors [9, 10]. A study of item difficulty 
assessment depends on any of the factors like the learners’ course contents, students’ 
scores, and subject matter expert using the Apriori Algorithm [11]. Impact of course 
difficulty in students’ performance is studied by L i u  et al. [13], analyses by the 
previous students’ results and predicts the results of the existing student’s using the 
bagging algorithms. Based on the learning dependency, difficulty of knowledge units 
are ranked with respect to subjective difficulty and objective difficulty [13]. Some 
research discusses on what way the rating of instructors [14] and feedback [15] by 
student helps the instructors to improve their performance in examinations. Bloom’s 
taxonomy is used for evaluating the cognitive level of a question paper with respect 
to the action words and based on which course’s difficulty level and the student’s 
cognitive skills can be identified [16]. Students’ course outcomes are used for 
assessing the performance of a student in their examination based on the difficulty 
index of a course. With the help of bloom’s taxonomy, final exam papers are 
evaluated and a difficulty index is identified [17]. A cognitive map [18] is provided 
to the research scholars, which gives them a clear picture of how to start and to 
proceed with their research. Course difficulty is evaluated using the factors like 
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student’s learning skills; course contents’ difficulty, student’s feedback on the course 
and the faculty handled in the existing research. The proposed method doesn’t 
consider any of the said factors for the course difficulty index and the values used are 
mere assumptions. The algorithm proposed works the same even when the difficulty 
of a course is static or dynamic for various semesters. The difficulty of a course 
depends on various factors and hence is considered for our future scope of research. 

In terms of course recommendation, courses are recommended in sequence 
automatically for each student using a Bayesian approach [19, 20]. W a n g  and 
Y u a n  [21] recommend the courses based on user profiles from users’ interest 
description, browse log and subscriptions. Learning objects are recommended 
sequentially [22] in which a personalized learning route is suggested to learn the 
sequence of learning object and if the student fails in the assessment during the 
learning process, the route will be modified/repaired and recommended with new 
objectives. The research work proposed by X u, X i n g  and V a n  d e r  S c h a a r  [5] 
recommends personalized course sequence recommendation such that time to 
graduation is reduced along with an improvement in the student’s grades. The courses 
were ranked and the best sets of courses with prerequisites were recommended in 
sequence [23] using breadth-first pickings, greedy-value pickings, and top-down 
pickings. Along with ranking and recommending courses with constraints, 
P a r a m e s w a r a n, V e n e t i s  and G a r c i a-M o l i n a  [24] have developed a 
model which checks for requirements which have to be satisfied as the students have 
to five math course using Integer Linear Programming Algorithm and Max-Flow 
Algorithm. B e t a n c u r  et al. [25] assess the course sequencing recommendation 
analytically, evaluate them by applying research questions about the student 
achievement and their relationship with psychology courses, and analyze the 
recommendation of taking the psychology courses before and after the 
methodological courses using regression techniques. A personalized learning 
pathway is been recommended for e-Learning courses in which the course contents 
are recommended in sequence using item response theory methodology [26]. Based 
on the student’s history of grades and on the performance of the student at each state, 
a directed structure with the state transitions has been constructed and the courses are 
recommended such that the grades are always balanced in each state [27]. An 
optimized course sequence recommendation with prerequisite constraints is solved 
using multiple integer linear programming algorithms and used structure-based 
heuristics for reducing the time to a degree [28]. Courses are ranked and optimal 
course sequences are recommended based on the student population’s performance 
using a rank aggregation framework [29]. Multi-Armed bandits Personalization for 
Learning Environment (MAPLE) is an approach which considers the difficulty of the 
educational content and personalizes them for the student in such a way that the 
student’s performance is increased with maximum grades [30]. Complexity of 
optimizing the sequencing problem is greatly reduced when it is initially subdivided 
and then sequenced. G u n j i  et al. [31] solved this optimal sequencing problem using 
Teaching Learning-Based Optimization (TLBO) Algorithm that subdivides the 
helicopter parts and then sequentially assembles the same, which hugely reduced the 
number of iterations by optimally assembling through subsets. One such method is 
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followed in the proposed method, which initially divides the curriculum courses into 
subsets based on their hierarchy level and then the courses are distributed to each 
semester which has greatly reduced the number of iterations during the course 
distribution.  

The credit system for four-year graduation has 15-16 Semester Credit Hours 
(SCH) for a semester and 30 SCH for a year and a student have to complete 120 
credits for four-year graduation. A course might have 3 to 4 credits based on the 
number of Contact Hours per week. The existing research has recommended 4 to 5 
courses with 15-16 SCH per semester and has not considered credit limit, course 
difficulty for sequencing the courses in the curriculum. Unlike the commonly used 
credit system, our university uses flexible credit selection in which the courses have 
different credits based on the number of contact hours of a course, credit limit as 
minimum 16 and maximum 27 per semester and require a total of 180 credits to 
complete four-year graduation. Since the courses have different credits, the credit-
based course sequence is recommended in the proposed method, which distributes 
courses based on constraints like course prerequisites, credit limit and average 
difficulty. 

3. Proposed work 

A course sequencing methodology uses our proposed Subset Sum Approximation 
Problem (SSAP), which is the extension of Subset Sum Problem (SSP). In SSP, with 
a given set 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑛} of positive integers and 𝑠𝑠, all possible subsets 𝑆′are 
formed such that the sum of each subset is equal to ss:  

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ = ss}. 
For example, let a set S = {1, 2, 3, 4, 5, 6} and ss = 6. The data items in S are 

positive integers and are independent of each other. The subsets are of S are formed 
as {1, 2, 3}, {2, 4}, {1, 5}, and {6} in which the sum of items in each subset is equal 
to 6. A Multiple Subset Sum Problem (MSSP) discussed by C a p r a r a, K e l l e r e r 
and P f e r s c h y  [32], [33] has added a knapsack feature to SSP in which the subset 
sum is less than or equal to ss. 

{(𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that ∑ 𝑠𝑠∈𝑆′ ≤ ss}. 
Here, subsets are formed as {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {1, 4}, 

{1, 5}, {2, 3}, {2, 4}, and {1, 2, 3} in which the sum of items in the each subset is 
less than or equal to 6. But in SSAP there exists a set of positive numbers such that 
the sum of items of each subset is equal to 𝑠𝑠 with an error quotient added or 
subtracted to it as in (2). Unlike the SSP, SSAP considers all the possible positive 
numbers. There exists a dependency among the items in the set and the subsets are 
formed sequentially one after the other. When there is a dependency for a data item, 
it should satisfy certain constraints to form a subset that is approximately equal to ss.  

The SSAP with constraints involves steps like course hierarchy estimation, 
course distribution using MPW, DA Algorithm by considering the estimated 
hierarchy and an evolutionary AGA algorithm without considering the estimated 
hierarchy. 
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In Figs 1 and 2, the courses specified in green rectangle boxes are prerequisite 
courses. Courses specified in blue rectangle boxes are post requisite courses and are 
not prerequisites for any other courses. Courses specified with orange rectangle boxes 
are both prerequisite and post requisite courses. A course specified in red dotted 
rectangle box is neither a prerequisite course nor a post requisite course. A course 
dependency structure represents the prerequisite among the courses as specified in 
Fig. 1. The dependency of a course represented as MAT101→MAT105 specifies that 
MAT101 is the prerequisite course of MAT105, i.e., MAT105 should be registered 
by the students only if they have completed MAT101. The introductory courses 
without prerequisites are first level courses. Level two represents courses with one 
level of prerequisites and so on. For example, MAT101, MAT106, CSE101, and 
MAT206 are first level courses. MAT105, MAT202, CSE202, and CSE220 have 
prerequisites in level one and are represented as level two courses. MAT207, 
MAT203 have two levels of prerequisite courses that are represented as level three 
courses. The course recommendation initially selects courses from level one and 
continues its recommendation to further levels until all courses are recommended at 
each level. The hierarchy for each course is estimated based on the number of level 
of prerequisite a course has and it is validated through Algorithm 1. 

 

Fig. 1. Course dependency structure 
 

As specified in Table 1, let {c1, c2,…, cn} be the set of courses, {cc1, cc2,…, ccn} 
be the set of course credits, {dc1, dc2,…, dcn} be the set of course difficulties and 
{pw1, pw2,…, pwn} be the set of prerequisite weights. The duration of the degree 
program is specified as k semesters and the curriculum courses are distributed to j 
semesters where j = 1, 2,…, N. If a student completes all the required courses within 
the duration of the degree program, N will be equal to k otherwise the value of N is 
greater than k. Every semester Sj is distributed with a set of courses {ci}, set of course 
credits specified as SCj = {cci}, set of course difficulty specified as SDj = {dci}, set 
of prerequisite weight specified as SPWj = {pwi}. The number of courses for Sj is 
specified as ncj.  

 

Level 1 
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Table 1. Notations 

Notation Description 

t Number of students 

x Student x = 1, 2,…, t 

C Set of all courses 

n Number of courses 

i Counter variable for courses: i = 1, 2,…, n 

ci i-th course  

p(ci) Set of all prerequisites of ci 

cci, dci, pwi, hci Course credit, course difficulty index, course prerequisite weight, and course 
hierarchy level of the i-th course respectively 

N Number of semesters 

j Counter variable for semester: j = 1, 2,…, N 

ncj Number of courses in the j-th semester 

r Counter variable for r = 1, 2,…, ncj 

max_l Number of hierarchies 

h Counter variable for hierarchy level: h = 1, 2,…, max_l 

Sj Set of all courses of the j-th semester 

SCj, SDj, SPWj, Course credits, course difficulty index and course prerequisite weight of j-th 
semester, respectively 

SCCj Sum of credits of j-th semester 

SDCj The average difficulty of j-th semester 

CLh, CCLh, DCLh, 
PWCLh 

Set of all courses, course credits, course difficulty index and course 
prerequisite weight of h-th hierarchy level, respectively 

nch Number of courses in each hierarchy 

cm, ccm, dcm, pwm Course name, course credits, course difficulty index and course prerequisite 
weight of m-th course in h-th hierarchy, respectively 

m Counter variable for courses in each hierarchy:            
m = 1, 2,…, nch 

p(cm) Set of all prerequisites of cm 

CCl All possible course combinations using SSAP 

CCCl, CDCl, 
CPWl 

Sum of course credits, average difficulty index and the sum of the 
prerequisite weight of CCl   

l 𝑙 = 2ncℎ 

k Minimum number of semester required for the completion of the degree 
program 

mk Maximum number of semesters 

TC Total Credits of all the courses 

AD The average difficulty of all the courses  

CL The credit limit for each semester 

e Error threshold 

 

Algorithm 1. Algorithm for finding the Hierarchy Level of a course 
def recLevelCheck(prereq): 
    for cor in prereq: 
        if(cor == “None”): 
            val=0 
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        else: val = max(recLevelCheck(corz[cor]), l) 
            val = val+1 
return val 
for i in corz.keys(): 
    if(i != “None”): print(i+”\t”+str(recLevelCheck(corz[i]))) 
As a result of Algorithm 1, the hierarchy level of each course hci is estimated as 

{hc1, hc2,…,hcn} and the total number of hierarchies max_l in which the curriculum 
courses are divided into is estimated as specified in the next equation:   
(1)   max_l =  max{hc𝑖}, 
max_l in (1) denotes the maximum number of levels the courses have with respect to 
their prerequisite dependencies. The course dependency structure has four levels as 
specified in Fig. 1 and hence the value of max_l is 4. Let CLh be the set of all courses 
falling under level h with corresponding credits, difficulty, the prerequisite weight of 
the courses specified as CCLh, DCLh, PWCLh respectively. Hierarchy of each course 
as per algorithm 1 and the prerequisite weights are specified in Table 4. 

The proposed Subset Sum Approximation Problem (SSAP) is an optimization 
problem in which the sum of elements of a subset is approximately equal to ss with 
an error quotient e as specified in (2). The proposed algorithms were tested for the 
value of e from ±0.1 till ±0.5 and were analyzed with the number of iterations, 
percentage of loss attained and the numbers of semesters the courses are distributed. 
Based on which, it is finalized with ±0.4,  SSAP = (𝑆, ss), there exists a subset 𝑆′ ⊆ 𝑆 such that 
(2)   ∑ 𝑠𝑠∈𝑆′ = ss + 𝑒. 

The objective of the proposed method is to minimize the loss function during 
course distribution that is calculated in terms of the Root Mean Square Error (RMSE) 
as in (3). A credit constraint is that the sum of credits of a semester should always be 
less than CL as in (4). AD is specified as the average difficulty of all the courses in 
the curriculum as specified in (5).  

During course recommendation, this paper proposes SSAP in each semester. It 
is recommended with a set of courses with average difficulty constraint such that the 
average difficulty of a semester should be approximately equal to AD with an error 
quotient as specified in (6). TC is specified as the total credits of all the courses in 
the curriculum as in (7). A disjoint constraint states that the course distributed to a 
semester should not be distributed to any other semester as in (8) and the subset union 
constraint states that the union of all semester courses should be equal to the set of 
all courses in the curriculum as specified in (9). 

Objective Function: 
Minimize the loss function 

(3)   min 𝑍 = 1𝑁 ∑ (AD − SDC𝑗)2,𝑁𝑗=1  

subject to the following constraints: 

(4)   SCC𝑗 = ∑ cc𝑖  ≤  CL cc𝑟∈ SC𝑗  

(Credit Constraint), 

(5)   AD = 1𝑛 ∑ dc𝑖 
(Average Difficulty), 
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(6)   SDC𝑗 =  1 nc𝑗 (∑ dc𝑖)  =  AD ±  𝑒,dc𝑟 ∈ SD𝑗  

where e is the error threshold value set between –0.4 to +0.4  
(Difficulty constraint), 
(7)   ∑ SCC𝑗 = TC 

(Total Credit constraint), 
(8)   {S1} Ռ {S2} Ռ… Ռ{SN} = {Ø} 
(Disjoint set constraint), 
(9)   {S1} Ս {S2} Ս… Ս {SN} = {C} 
(Subset union constraint). 

Educational organizations have a curriculum of courses. Suppose, if its students 
have the liberty to choose (flexible course selection) their courses for each semester 
at the beginning of the program, they might not have a clear idea of how to choose 
the courses and in what sequence the courses have to be selected. To solve this 
problem the proposed method recommends the sequence of courses to be taken in 
each semester. This paper proposes two methods for solving the Subset Sum 
Approximation Algorithm (SSAP). The first method considers the parameter 
hierarchy level of each course for distributing the courses across the semesters and 
uses Maximum Prerequisite Weight (MPW) Algorithm and Difficulty 
Approximation (DA) Algorithm. The second method does not consider the 
hierarchical level of each course and uses Adaptive Genetic Algorithm (AGA). Each 
algorithm is represented in the sections below. 

3.1. MPW Algorithm 

During course distribution, this algorithm distributes a set of courses to each semester 
with approximately equal difficulty level by considering the course combinations 
with maximum prerequisite weight and maximum credits. This helps the students to 
register all possible prerequisite courses during the prior semesters with maximum 
credits within CL. 

Algorithm 2. MPW Algorithm 
Step 1. Let picked_courses[x] = {Ø} 
Step 2. Initialize N=1, mk=12, j=1, h=1 
Step 3. Sub divide C into CLh based on hierarchy h 
Step 4. Compute CL as CL = TC/max_l 
Step 5. Compute AD as 

   AD = 1𝑛 (∑ dc𝑖)    
Step 6. for h=1 ≤ mk loop 𝐒𝐭𝐞𝐩 𝟕. ∀ 𝑐𝑚  in CLℎ ≠ {0} 
Step 8.  if (𝑝(𝑐𝑚) not in picked_courses[𝑥])then  

a. Add cm to CLh+1 
b. Delete cm from CLh 

Step 9. else  
compute all possible CCl using SSAP such that CCC𝑙 = ∑ cc𝑚 ≤ CL cc𝑚 ∈ CLℎ  
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CDC𝑙 = 1nc𝑗  ∑ dc𝑚 = AD ± 𝑒 dc𝑚 ∈ CLℎ  CPW𝑙 =    ∑ pw𝑚 pw𝑚 ∈ CLℎ  

Step 10. for j=1 to N ≤ mk loop 
Step 11. Select CCl max(CPWl)  

a. if count(CCl) == 1 then distribute it to semester Sj  
b. else if count(CCl) > 1  

i. if count(CCl) with max(CCCl) == 1 then distribute it to semester 
Sj 

ii. else if count (CCl) with max(CCCl) > 1 then  
a. if count(CCl) with ≈ CDCl == 1, distribute it to Sj 
b. else if count(CCl) with ≈ CDCl > 1, then select CCl in 

random 
Step 12. End for j 
Step 13. Set the state of cm in CLh to 1 or 0 otherwise 
Step 14. Add Cm with state 0 to CLh+1 
Step 15. Increment j, h 
Step 16. N=j 
Step 17. End for h  
The MPW algorithm prioritizes course distribution based on the maximum 

prerequisite weight followed by maximum credits and the approximate course 
difficulty for the combination of courses, which are selected for a semester. Course 
combinations with high prerequisite weights are prerequisites for more number of 
courses. Courses with no prerequisite weight are not prerequisites for any courses and 
courses with less prerequisite weight are prerequisites for fewer courses. Since the 
post requisite courses are more difficult than prerequisite courses [34, 35], a better 
sequencing has to be recommended to balance the difficulty index throughout the 
degree program. MPW gives higher priority for prerequisite weight (pwi) in which 
courses with more pwi are distributed in the early semesters and less pwi are 
distributed in the later semesters. This balances the difficulty of prerequisite courses 
along with the post requisite courses whose prerequisites are already distributed in 
the previous semesters.   

3.2. Difficulty Approximation (DA) Algorithm  

During course distribution, this algorithm distributes a set of courses to each semester 
with approximately equal difficulty level by considering the course combinations 
with approximate difficulty such that the loss value for the difficulty index is 
decreased. This helps the students to have a balanced workload throughout the 
semesters. 

Algorithm 3. DA Algorithm 
Step 1. Consider steps 1-9 from Algorithm 2 
Step 2. for j=1 to N ≤ mk loop 
Step 3. Select CCl with ≈ CDCl 

a. if count(CCl) == 1 then distribute it to semester Sj  
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b. else if count(CCl) > 1  
i. if count(CCl) with max(CPWl) == 1 then distribute it to 

semester Sj 
ii. else if count (CCl) with max(CPWl) > 1 then  

a. if count(CCl) with max(CCCl) == 1, distribute it to Sj 
b. else if count(CCl) with max(CCCl) > 1, then select CCl 

in random 
Step 4. end for j 
Step 5. Set the state of cm in CLh to 1 or 0 otherwise. 
Step 6. Add Cm with state 0 to CLh+1. 
Step 7. Increment j, h 
Step 8. N=j 
Step 9. end for h till CLh = {0} 
The proposed DA algorithm prioritizes the difficulty index for selecting courses 

for a semester such that the average difficulty of the semester is approximately equal 
to AD so that the loss function is greatly reduced.  

3.3. Adaptive Genetic Algorithm (AGA) 

The proposed AGA has an initial set of the population with courses and their 
respective prerequisites for which a dependency matrix is constructed as per Fig. 1 
and as specified in Table 2. In Table 2, the prerequisite(s) of a course is specified 
with 1. Disagreement is a function specified for the presence and absence of course 
prerequisites. A fitness function with a disagreement value is generated by adding all 
the prerequisite values set for a particular course. The courses with disagreement 
value as null as specified in Table 2 alone are considered for course distribution since 
those are the courses which don’t have prerequisites. 

MAT101, MAT106, CSE101, and MAT206 are the courses with disagreement 
value 0 as per Table 2. With these course combinations, the Adaptive Genetic 
Algorithm selects a set of courses with a sum of credits less than or equal to CL and 
the average difficulty approximately equal to AD. After the distribution of courses 
with disagreement value 0 to the initial semester in iteration 1, the course dependency 
structure is reconstructed as specified in Fig. 2 by removing the courses which are 
already distributed. Corresponding dependency matrix is specified in Table 3. 
Courses with the disagreement value 0 are again considered for further course 
distribution for further semesters.  

Algorithm 4. Algorithm AGA  
Step 1. Initial population with a set of courses, its prerequisites represented as a 

dependency matrix 
Step 2. Set RandomPairs=0 
Step 3. Maximum RandomPairs= max(default=10) 
Step 4. Threshold Disagreement=0 
Step 5. For each combination pri ≤ CL 

a. Compute the sum of disagreement 
b. Disagreement=0 

Step 6. End for 
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Step 7. Sort population in decreasing order with disagreement 0 
Step 8. Sample population with pri≤CL and SDCj = AD ± e use MPW or DA 

algorithm to select course combination for semester j 
Step 9. Crossover population with evolutionary computing 
Step 10. Update population by filtering the courses distributed to semester j 
Step 11. For the filtered courses, draw a dependency matrix 
Step 12. Repeat steps 1-11 till all the courses are distributed and no courses left. 

 

Table 2. Dependency matrix for courses with prerequisites 

CCODE MAT101 MAT106 MAT105 MAT202 MAT203 CSE101 Disagreement 

MAT101       0 

MAT106       0 

MAT105 1       

MAT202 1 1      

MAT203   1     

MAT207 1  1     

CSE220  1    1  

CSE101       0 

CSE205    1    

CSE208  1      

CSE327    1   0 

CSE418    1    

MAT206       0 

MEE437     1   

Prereq Weight 3 3 2 3 1 1  

 

 
Fig. 2. Course Dependency Structure after iteration 1 of AGA 

AGA can be used with either MPW or DA logic for the selection of courses for 
a semester based on the requirement of the student. For students with great CGPA, 
MPW works better and for students with less CGPA and backlogs can be 
recommended with the DA Algorithm. 

 
 
Level 1 
 

 
 

 
 
 
 

Level 2 
 

 
Level 3 
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The course dependency structure and the dependency matrix are reconstructed 
with further iterations until all the courses are distributed to the semesters and the 
course dependency structure and the corresponding dependency matrix is left with 
null courses. 

Table 3. Dependency matrix for courses with prerequisites after iteration 1 of AGA 

CCODE MAT105 MAT202 MAT203 Disagreement 

MAT105    0 

MAT202    0 

MAT203 1    

MAT207 1    

CSE220    0 

CSE205  1   

CSE208    0 

CSE327  1   

CSE418  1   

MAT206    0 

MEE437   1  

4. Results and discussions 

This section discusses the experimental analysis of SSAP algorithms, which use the 
curriculum courses of the undergraduate computer science and engineering from our 
university as the dataset. The sample data includes a set of all dependent courses of 
mathematics and set of all dependent courses of CSE101 with their course credit and 
course prerequisite(s). The parameters such as difficulty index, hierarchy level and 
pre-requisite weight of each course are also being considered for each course as 
specified in Table 4. Fig. 3 depicts the course dependency structure, which specifies 
the required prerequisite courses for the corresponding course that is to be completed. 
Considering these parameters, hierarchy estimation algorithm clusters the courses 
with respect to their prerequisite(s) and lists the courses in different hierarchy levels 
(level 1, 2, 3,…, etc.,) as specified in Fig. 4. 

 

 
 

Fig. 3. Dependency course tree 
 

Course dependency Trees:  
MAT101   ['MAT101'] 
MAT106   ['MAT106'] 
MAT105   ['MAT101', 'MAT105'] 
MAT202   ['MAT106', 'MAT101', 'MAT202'] 
MAT203   ['MAT101', 'MAT105', 'MAT203'] 
MAT207   ['MAT101', 'MAT105', 'MAT207'] 
CSE220   ['MAT106', 'CSE101', 'CSE220'] 
CSE101   ['CSE101'] 
CSE205   ['MAT106', 'MAT101', 'MAT202', 'CSE205'] 
CSE208   ['MAT106', 'CSE208'] 
CSE327   ['MAT106', 'MAT101', 'MAT202', 'CSE327'] 
CSE418   ['MAT106', 'MAT101', 'MAT202', 'CSE418'] 
MAT206   ['MAT206'] 
MEE437   ['MAT101', 'MAT105', 'MAT207', 'MEE437'] 
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Fig. 4. Course hierarchy level 

Random distribution method distributes courses to each semester in random 
only by considering prerequisite and credit constraints. In MPW and DA, once the 
courses are sub grouped, the first level courses are selected for course distribution 
such that the course combinations satisfies the credit limit constraint as in (4) and 
also the difficulty approximation constraint as specified in (6). MPW and DA 
algorithms are quite similar with few variations in the course selection procedures. 
The Average Difficulty (AD) of all the courses is calculated as 4.07 which is 
considered as the expected Difficulty Index (DI). From the first level of courses, the 
two combinations such as combination1 {MAT101, MAT106, MAT206} and 
combination 2 {MAT101, MAT106, CSE101} are taken which yield the maximum 
sum of credits as 11, average difficulty as 4, 3.65, and prerequisite weight as 8, 9 
respectively. The MPW chooses combination 2 since it selects the maximum credits 
with maximum prerequisite weights whereas; DA selects combination 1 since it has 
more approximate average difficulty. The MPW algorithm considers maximum 
credits initially and checks for maximum prerequisites whereas DA Algorithm 
considers course combination with lesser credits combination than maximum credit 
value which gives approximate average difficulty. 

Table 5 specifies the list of courses recommended for each semester using 
Random Distribution (RD), MPW Algorithm and DA Algorithm and Table 6 
specifies the corresponding total credits per semester and the average difficulty index 
per semester when RD, MPW, and DA methodologies were used. The analysis 
depicts that when MPW is used, each semester has the maximum credits and the final 
semester has least credits and when DA is used, all the semesters have approximately 
equal difficulty index. 

MPW Algorithm gives priorities to maximize the credits while distributing the 
course to a semester. In the case of course combinations with the same credits, the 
course combinations with maximum prerequisite weights are chosen. If there are 
more combinations available for the same maximum prerequisite, the course 
combinations with approximate average difficulty are predicted SDCj as specified in 
Table 6. DA Algorithm gives priority only for the approximation of the course 
difficulty of all the semesters. When the course combinations SDCi are same, the next 
priority will be given to the prerequisite weight else the course combinations are 
distributed in random. Initially, course combination with maximum credits is taken 
into consideration. In case if the course combination has fewer SDCj than the course 
combined with max(SCj) – 1, then the DA considers course combined with fewer 
credits with more approximate average difficulty. The loss value of the DA 
Algorithm will be comparatively less than MPW algorithm since the course 
distribution is purely based on approximate difficulty. The loss function for the DA 
Algorithm is calculated based on the expected AD and the predicted SDCj as 

Level  1 Courses offered:  {'CSE101', 'MAT101', 'MAT206', 'MAT106'} 
Level  2 Courses offered:  {'CSE208', 'MAT202', 'CSE220', 'MAT105'} 
Level  3 Courses offered:  {'CSE418', 'CSE327', 'MAT207', 'CSE205', 'MAT203'} 
Level  4 Courses offered:  {'MEE437'} 
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specified in Table 6 and hence the objective function is attained with a minimum loss 
function. 

Abbreviations: 
NB – No Backlog 
OB – One Backlog 
TB – Two Backlogs 
TCP – Total Credits per Semester 
ADP – Average Difficulty Index per Semester 

 

Table 4. Course list with hierarchy and prerequisite weight 
Course code Credits Difficulty Index (DI) Pre-requisite(s) Hierarchy level Prerequisite weight 

MAT101 4 4 None 1 3 

MAT106 4 4 None 1 5 

MAT105 4 4 MAT101 2 2 

MAT202 4 4 MAT101, MAT106 2 4 

MAT203 3 4 MAT105 3 0 

MAT207 4 4 MAT101, MAT105 3 1 

CSE220 5 4 CSE101, MAT106 2 0 

CSE101 3 3 None 1 1 

CSE205 4 4 MAT202 3 0 

CSE208 4 5 MAT106 2 0 

CSE327 3 4 MAT202 3 0 

CSE418 4 5 MAT202 3 0 

MAT206 3 4 None 1 0 

MEE437 3 4 MAT207 4 0 

 

Table 5. Recommended course list with RD vs MPW and DA Algorithm 
Semester RD MPW DA 

1 MAT101, MAT106, CSE101 MAT101, MAT106, CSE101 MAT101, MAT106, MAT206 

2 
MAT206, MAT105, 

MAT202 
MAT105, MAT202, CSE220 MAT202, CSE208, CSE101 

3 CSE220, CSE208, MAT203 MAT207, CSE205, CSE418 MAT207, MAT105, CSE220 

4 MAT207, CSE327, CSE418 
MAT203, CSE327, CSE208, 

MAT206 
MAT203, CSE327, CSE418, 

MEE437 

5 MEE437, CSE205 MEE437 CSE205 

 

Table 6. Loss function for RD vs MPW and DA Algorithm 

Semester 
RD MPW DA RD MPW DA RD MPW DA 

Total Credits per 
semester 

Total Difficulty per 
semester 

Expected DI – Predicted DI per 
semester 

1 11 11 11 3.66 3.67 4 0.168 0.16 0.005 

2 11 13 11 4 4 4 0.005 0.005 0.005 

3 9 12 13 3.66 4.33 4 0.168 0.068 0.005 

4 11 13 13 4.33 4.33 4 0.068 0.068 0.005 

5 7 3 4 4 4 4 0.005 0.005 0.005 

 Loss Function  0.049 0.037 0.002 

 
Table 7.  Credit comparison with and without backlogs 

TCP NB - RD NB -MPW NB -DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA 

Sem 1 11 11 11 11 11 11 11 11 11 

Sem 2 11 13 11 11 13 11 10 11 11 

Sem 3 9 12 13 13 11 13 13 13 13 

Sem 4 11 13 13 11 12 11 11 12 11 

Sem 5 7 3 4 10 9 10 11 12 11 

Sem 6 0 0 0 0 0 0 3 0 3 
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Table 8. Difficulty index comparison with and without backlogs 

ADP NB-RD NB-MPW NB-DA OB-RD OB-MPW OB-DA TB-RD TB-MPW TB-DA 

Sem 1 3.67 3.67 4 3.67 3.67 4 3.67 3.67 4 

Sem 2 4 4 4 4 4.33 4 3.67 4 3.67 

Sem 3 3.67 4.33 4 3.67 4 4 4.33 4 4 

Sem 4 4.33 4.33 4 4.33 4.33 4 4 4.33 4 

Sem 5 4 4 4 4 4 4.33 4.33 4 4.67 

Sem 6       4  4 
 

If a student is supposed he/she wishes to complete the entire course in the 
curriculum within the duration of the degree of study, MPW is used. When a student 
wishes to have a balanced workload with balanced credits and difficulty index, the 
course distribution with approximate difficulty index throughout the degree of study 
using the DA Algorithm is followed. The results of the RD, MPW and the DA 
algorithms are validated with the loss function as specified in (2). 
 

Fig. 5. Total credit per semester with no backlog 
 

Fig. 6. Total credit per semester with one backlog 
 

 
Fig. 7. Total credit per semester with two backlogs 

 

 
Fig. 8. Average difficulty index per semester with no 

backlog 
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Fig. 9. Average difficulty index per semester with one 

backlog 
 

 
Fig. 10. Average difficulty index per semester with 

two backlogs 
 

Accuracy with respect to loss function of DA Algorithm is more appropriate 
with 98% than the values during the usage of RD and MPW methodologies. All above 
scenarios work when the student completes each recommended course in all the 
semester without any deviation. From the recommended courses in Table 4, from 
semester 1, if a student fails in any of the semesters with 1 backlog or 2 backlogs, the 
scenario totally changes and this is analyzed with RD, MPW, and DA as specified in 
Table 7 and Table 8. The number of semesters N to which the courses are distributed 
depends on the students’ pass/fail ratio. As per the example, the value of N is 5, i.e., 
the list of courses in Table 4 are distributed to 5 semesters. The value of N increases 
when a student fails again in the same course or different courses and the same is 
specified in Table 7 and 8. With no backlogs and one backlog, the courses were 
distributed to five semesters and when the backlog is increased to two, the courses 
were distributed to six semesters. If a student fails in a course, again and again, the 
course will be appended to the courses to be distributed and it automatically prolongs 
their duration of the degree. A minimum number of semesters required to distribute 
a course is max_l and maximum duration is MDD semesters. Our proposed algorithm 
stops distributing courses to a particular student until he passes all the required 
courses from the curriculum or when MDD is attained. Table 7 depicts the credit 
comparison and Table 8 depicts the difficulty index comparison among RD, MPW, 
and DA methodologies. When credits are considered, MPW algorithm works better 
as specified in Figs 5-7 and when the difficulty index is considered, the DA 
Algorithm works better as specified in Figs 8-10. By comparing the loss functions of 
MPW and DA Algorithms, DA Algorithm has given more accuracy with least loss 
value while distributing the courses to semesters with approximate difficulty. The 
adaptive genetic algorithm works better with DA Algorithm where the input to this 
algorithm does not consider the hierarchy level of a course but uses the disagreement 
function for filtering the courses for the combinations and a fitness function is used 
to validate the constraints specified in the objective function of the proposed 
methodology. For n courses, the complexity of SSP with brute force method is 2n and 
since the proposed SSAP divides n courses into max_l subsets based on the hierarchy, 
the complexity is 2mal_l.  
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5. Conclusion 

In this paper, the factors affecting student’s performance and the problems of the 
existing course sequence recommendation algorithms are studied and examined. 
Credit-based course selections with constraints are considered for recommending 
curriculum courses in sequence using the proposed MPW, DA and AGA algorithms. 
These personalized course recommendation algorithms are elaborated based on the 
individual’s academic records which in turn helps the students to graduate on time 
with a balanced workload. These algorithms are analyzed and evaluated based on the 
loss function. The loss function is compared for the Random Distribution (RD) 
Algorithm, Maximum Prerequisite Weight (MPW) Algorithm and Difficulty 
Approximation (DA) Algorithm. Hence, every semester is distributed with a balanced 
workload with approximately equal difficulty index using the DA Algorithm, which 
gives minimum loss function compared with MPW Algorithm. Assuming the 
difficulty index for the courses is a limitation of the proposed method. Since the 
course difficulty index estimation relies on factors like course content difficulty, the 
difficulty of the question paper, feedback of the instructors/students, the same is 
adapted for our future research. Moreover, the proposed algorithm works the same 
for assumptions or adaptions of the existing course difficulty index methodologies 
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