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Abstract

Hydrogen production using novel catalysts is regarded as one of the most needed technology for the
future economic needs and water splitting to give H, gas, which is a challenging task for large-scale
production. This work reports the synthesis of Meso-Cu-BTC metal organic framework and further
used for understanding its role in electrochemical hydrogen evolution reaction (HER) in 1 M NaOH
solution. Meso-Cu-BTC electrocatalyst showed a less overpotential of 89.32 mV and an onset potential
of 25 mV with an appreciable current density. Results show a low Tafel slope of 33.41 mVdec ™' and
long-term durability. Thus, the overall results show that Meso-Cu-BTC acted as a good candidate for
electrocatalysis towards hydrogen evolution.

1. Introduction

With an increase in population and industrialization, there is huge energy demand. Use of fossil fuels creates
many issues like environmental pollution, anthropogenic CO, emission leading to climatic change and global
warming [ 1-3]. To avoid these issues, hydrogen fuel is the only way to replace the burning hydrocarbon fuels and
an eco-friendly source of energy towards building clean and sustainable energy technology [4, 5]. Hydrogen
economy will require an efficient and sustainable H, production method. However, challenges to produce
hydrogen in large scale and its storage have its obstacles in the application towards renewable energy [6, 7].
Currently water splitting process via electrochemical and photoelectrochemical are effective methods to
produce large-scale hydrogen energy with zero emission of carbon [8, 9]. These are advantageous of sustainable
energy source, but the other and main critical requirement is a catalyst. Among the various methods, electrolysis
water splitting is the simplest route to produce large scale H, from water and is extensively been investigated as a
promising conversion system. Electrochemical water splitting is a source to harness renewable energy to
produce H,. However a substantial overpotential is needed to overcome the huge energy barrier to drive
hydrogen evolution, which is a high energy process and hence an efficient electrocatalyst is desirable to reduce
the activation. The electrochemical water splitting is generally investigated in two types of electrolytes such as
alkaline and acid medium; numerous electrocatalyst has been tested in acidic medium for HER. Research has
been shifting towards the alkaline environment to reduce the effects of corrosion and allowing an extension of
the choice of electrode materials. An efficient electrocatalyst possessing superior catalytic properties for
hydrogen evolution reaction should have less overpotential, stability with a low Tafel slope. Pt and Pt group
metals are mostly investigated as electrocatalysts towards HER, due to its near-zero onset potential, high activity,
low overpotential and excellent stability but its usage is limited for hydrogen production because of its high cost
and scarcity. Hence a catalyst alternative to Pt is essential to produce cost-effectiveness and high-performance
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electrocatalytic activity for HER. Non-metallic catalysts include transition metal phosphides, metal sulfides and
its alloys [10—14]. For instance, Vikraman et al demonstrated heterostructured MoS,-WS; electrocatalyst for
HER activity in acid medium. Results displayed that it follows Heyrovsky mechanism at an overpotential of

120 mV with Tafel slope being 72 mVdec ™' [15]. Fulong Wang et al described FeP as a good catalyst showing
excellent durability in basic medium and a good catalyst for electrolysis. It was observed that the HER activity of
FeP powder showed a Tafel slope of 93 mVdec ™', overpotential of 24 mV and controlled by Volmer reaction
[16]. Liang Ma and group demonstrated that Mo,C and Mo,N are efficient catalysts for electrochemical
hydrogen evolution with 100 mVdec ™ Tafel slope, an overpotential of 353 mV for the nitride whereas, for
Mo,C, 56 mVdec ' was observed with an overpotential of 293 mV respectively. Hence the results exhibit that
Mo, C is more electrochemically active than Mo, N towards hydrogen evolution reaction. Though the above-said
catalysts showed good performance, there is yet a lot of space to synthesize cost effective catalysts without
compromising on the performance for hydrogen evolution reaction towards commercial systems. Porous class
materials have attractive applications in energy both for storage and conversion. A very recent material of
interest are the metal organic frameworks also abbreviated as MOFs, which are porous based materials and the
same are synthesized, designed by assembling organic ligands and metal nodes, wherein the organic ligands
come from the ligand linkers used during the synthesis. Metal organic framework (MOF) is an interesting class
of porous crystalline compounds and is an organic-inorganic hybrid material [15-17]. MOFs are known for its
unique structural features like porous nature, large specific surface area with tunable pores. MOF materials are
ions or cationic metal oxo clusters, which are coordinated with anionic organic linkers especially carboxylates or
phosphonates, but also imidazolate ions and sulfonates due to its inherent structural properties such as
uniformity but tunable cavities, attracting optical, electrical, physiochemical properties with tailorable
chemistry and large surface area. MOFs have been used for a variety of applications viz. separation of gases, gas
sensing, optical devices, photocatalytic degradation, biomimetic applications, magnetism and organic molecule
adsorption [18-24]. Recently, MOFs are exploited for H, fuels and have also been utilized as HER
electrocatalysts via electrochemical water splitting. Qin and group developed POM based MOF for HER activity
[25]. 2D ordered MOF film with cobalt dithiolene catalytic centres achieved high catalytic efficiency for HER
under acidic medium [26]. Around 20,000 metal organic frameworks are known to date and amongst it, the class
of HKUST-1 or Cu-BTC compounds was reported by Chuiand group [24]. Cu-BTC is a paddle-wheel shaped
structure with Cu metal corners linked by benzene 1,3,5-tricarboxylate organic linkers. In Cu-BTC structure,
two Cu atoms are found in each metal corners, which are further bonded to the four oxygen atoms from BTC
linker with a formation of four connected square-planar vertexes and another axial coordination sites are
regarded as open metal sites [27-29]. Copper-based MOFs and derived porous carbon catalyst is easy to
synthesize. It has numerous properties such as high chemical stability, redox activity, electro and photochemical
properties and biocompatibility and widely investigated with diverse applications such as photovoltaics,
hydrogen storage, ammonia sensing, absorption, HER and CO, reduction [30—-34]. For instance, Jahan-Bakhsh
Raoof et al developed the MOF derived nanoporous carbon/Cu as an electro-catalysts for HER in acid medium,
which exhibited a Tafel slope of 34.0 mV per decade with an exchange current density of 1.2 mAcm ™ > [35].
Sakineh Mandegarzad and group demonstrated the use of Cu-Pd bimetallic nanoparticle supported
nanoporous carbon composite as electrocatalyst towards HER in acid medium. Results showed 200 mV as
overpotential with 28.2 Vdec ' as Tafel slope [36]. Ting Song et al demonstrated copper (II) organic framework
with high stability towards improved visible light photocatalysis towards hydrogen evolution. Results show that
the Cu based MOF produces maximum hydrogen evolution rate (5.7 mmolh ') along with long-term stability
under visible light irradiation [37]. Herein, a simple route was used for the facile synthesis of Meso-Cu-BTC
MOF and was further used as electrocatalyst towards the outstanding performance of HER in alkaline medium.
Asaresult, the catalysts showed a low overpotential 89.32 mV, onset potential (25 mV), low Tafel slope

(33.41 mVdec ") with a high current density and long-term durability.

2. Experimental section

2.1. Materials

The chemicals and reagents used in this work are of analytical grade and used as received without the need for
any further purification. Copper nitrate hemipentahydrate (Cu(NO3),.2.5H,0), benzene 1,3,5 tricarboxylic
acid (H3;BTC), N, N Dimethylformamide (DMF), ethanol, dichloromethane were procured from Sigma-Aldrich
and deionized water was used in the preparation.

2.2. Preparation of Meso-Cu-BTC
Meso Cu-BTC was synthesized under solvothermal conditions as per the literature report with a slight
modification [38]. Typically, 24 mmol of benzene 1,3,5 tricarboxylic acid, 43 mmol copper (II) nitrate
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Scheme 1. A Schematic diagram of preparation of Cu-BTC Metal organic Framework.

hemipentahydrate were dissolved in 250 ml solvents consisting equal ratio of N, N dimethylformamide, ethanol
and deionized water respectively. The reactant was further agitated for 15 min under ambient conditions and the
mixture was further transferred, heated in an oven at 85 °C for 20 h. Later it was thoroughly washed with DMF
and then kept in dichloromethane (50 ml) for 3 continuous days and exchanged once every 12 h to finally get the
blue coloured Meso-Cu-BTC MOF crystals, which was dried at 170 °C under vacuum for 8 h. A schematic of the
preparation Meso-Cu-BTC is given in scheme 1.

2.3.Material characterization

Powder x-ray diffraction pattern was obtained with a Rigaku Miniflex x-ray diffractometer with Cu Ko

(1.5406 A) 20 range from (5° to 60°). Functional group analyses were done by FTIR - (Shimadzu Affinity-1). To
understand the thermal stability of the sample, the experiments were maintained under N, at a rate of

5°C min~ ! with a SDT Q600 (TGA Instruments, Korea). The samples were heated from ambient temperature to
500 °C. N, adsorption/desorption BET isotherms were obtained using a Micrometrics ASAP 2020 analyser at
196 °C. Further the surface area was calculated using Brunauer—-Emmett—Teller method. The degassing was
done at 180 °C overnight under vacuum before the measurement. The surface morphology was analysed by FE-
SEM, model-Hitachi SU6600. Raman measurements were done by the Horiba Olympus plus with 532 nm green
laser.

2.4. Electrochemical details

Electrochemical hydrogen evolution was performed by a traditional three electrode probe in a CHI-660C
instrument. The GCE was used as a working electrode with geometric surface area being 0.071 cm? and polished
with 0.05 micron alumina, rinsed with double distilled water, further sonicated in ethanol and water for its
activation, which was further dried at room temperature. Before the experiments, the electrodes were
electrochemically subjected to several cycling from 0.1 to 0.4 V versus Ag/AgCl. Meso-Cu-BTC slurry catalyst
was then drop casted onto the well-cleaned GCE, which was further dried at ambient temperature for 12 h. Asa
reference, the electrocatalytic activity of commercial Pt electrode was evaluated under the same testing
conditions. All the potentials were measured with respect to RHE (reversible hydrogen electrode) as per the
below equation

ERHE = E.,(Ag/AgCl) + 0.059.pH + 0.199(V)

Linear sweep voltammetry (LSV) was recorded in the electrolyte solution and from the same, Tafel slopes were
calculated. To further understand the stability, the same was evaluated by the polarization test.

3. Results and discussion

3.1. Structure, morphological analysis of the catalyst

The well crystalline nature of Meso-Cu-BTC octahedral crystals was further confirmed using XRD
measurements [39] and the same is given in figure 1. Results confirmed that the experimental XRD pattern is
congruous with those reported in the literature [40], which revealed that the solvothermal conditions has
rendered a good crystalline phase and no other phase crystallinity could be detected. Thus, the XRD results
confirm that a pure Meso-Cu-BTC phase is formed. In the spectrum, the main diffraction peaks were seen at
6.6°,9.44°,11.76°,13.71°,15.14°,16.73° and 19.23°, which could be assigned to (200), (220), (222), (400), (331)
and (440) crystalline planes of MOF. The highest intense peak was observed at 11.76°, which referred to a high
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Figure 1. X-ray diffraction pattern of Cu-BTC metal organic framework (inset shows the expanded view).

degree of crystallinity. Some low intense weak peaks are observed in the range of 35.4° to 43.0°, which indicates a
minor presence of Cu,O phase (inset of the figure 1(a)). Reports suggest that high temperature could produce
Cu, 0O during the formation of Meso-Cu-BTC MOFs [41, 42]. The morphology and the textural structure was
further analyzed by FE-SEM, optical analysis and the same is given in figure 2 and figure 3. As could be seen from
the images, the prepared MOF possessed cubic crystals with octahedral geometry with the length of each
octahedral edge around 10-20 pm [43]. The EDX spectrum was further used to confirm the element present in
Meso-Cu-BTC MOF (figure 2(d)), which revealed the presence of Cuand O further confirming the formation of
Cu-BTC in accordance with the literature [44].

3.2. Elemental and surface analysis

FT-IRis a useful tool to understand the functional groups and analyze the molecular structure of Meso-Cu-BTC
MOF [45]. Figure 4 shows the band at 480 and 720 cm ™" attributed to the bending and stretching vibrational
modes of Cu—O [46]. The minor peaks between 660—760 cm ' are due to the bending vibration in and out plane
of the aromatic ring. The bands from 800-1150 cm " are due to the symmetric and asymmetric modes of O—
C=0 and C-O stretching vibrations of moieties. Further, the strong absorption bands are assigned at 1375, 1432
and 1625 cm ™', which could be due to the vibrations of carboxylate group of Meso-Cu-BTC. These are similar
to the asymmetric, symmetric types of C=0 and stretching mode of C-O respectively due to the binding of
carboxylate (COOH groups) with Cuions [47, 48]. The band at 1542 cm ™" is due to water coordinated within
the Cu-MOF framework. The peak at 3309 cm ™ is due to the surface adsorbed water and OH group in the
Meso-Cu-BTC framework and the peak at 1719 cm ™' is due to benzene tricarboxylic acid in the catalyst thereby
proving the formation of Meso-Cu-BTC framework. Raman spectrum is an advanced analytical technique to
identify the organic bonding of Meso-Cu-BTC MOF to give further insights about the framework structure
(figure 5). As seen in the spectrum, the peaks till 600 cm ' is due to vibrational modes involving Cu** ions. The
peaks from 200 to 270 cm ™' correspond to the stretching mode due to Cu—Cu dimer moieties and Cu—O, where
‘O’ corresponds to the oxygen from water adsorbed on Cu®" ions. A minor peak at 450 cm ™' relates to the
stretching modes of Cu—O related to the oxygen of the carboxylate bridges.

The bending vibration modes of C—H are observed at 742 cm ™' and 820 cm ™' respectively. The next peak
observed around 1006 cm ! is caused by the symmetric stretching mode of C=C moieties. The region from
1400 to 1600 cm ™ is attributed to the vibrational mode of carboxylate groups wherein the peak at 1547 cm ™ is
due to the stretching asymmetric vibration of C~O, and 1458 cm ™~ is due to the stretching symmetric
vibrational frequency of C-O, along with bending vibration peak. Hence, results confirm the Meso-Cu-BTC
formation in accordance with the literature report [49].

Thermogravimetric investigation was further done to understand the stability of the Meso-Cu-BTC
framework and to cater the same, TGA analysis was done from room temperature to 800 °C under N,
atmosphere (figure 6).

During the Ist stage, a weight loss of 19.2% was observed from 20 °C-100 °C, which is due to the lack of
physically adsorbed H,O molecules and organic solvents. This peak is well complemented with DSC results,
wherein an endothermic peak (100 °C-290 °C) was seen as a result of dehydration of Meso-Cu-BTC molecules.
A further second stage weight loss of 60% was observed from 200 °C—400 °C, which might be due to the loss of
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Figure 2. (a)—(c) FE-SEM images of Cu-BTC metal organic framework at different magnifications and (d) EDX.

Figure 3. Optical microscopical images of Cu-BTC Metal organic framework at different magnifications.
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Figure 4. FTIR spectrum of Cu-BTC metal organic framework.

BTCligand molecules and finally, a weight loss of 7.1% around 450 °C occurred due to the remaining linkers
and decomposition of the sample with 26.5% remaining due to Cu metal and the degraded sample. In the DSC
analysis, two exothermic peaks after 280 °C were observed, which are due to the formation of Cu,O [50] and the
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Figure 5. Raman spectrum of Cu-BTC metal organic framework.
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Figure 6. TGA/DSC curves of Cu-BTC Metal organic framework.

phase transformation of Cu,O to CuO as per the earlier reports [51]. The theoretical weight loss percentage of
water molecules is 16.2%, which is agreeable with the experimental weight loss around 17.2% due to the entire
water molecules coordinated.

To further investigate the surface textural properties, N, adsorption-desorption of Meso-Cu-BTC MOF is
taken and the corresponding result is given in figure 7. The synthesized catalyst exhibits a type IV IUPAC
isotherm showing the presence of mesopores [52]. The surface area was calculated to be 540.2 m*> g~ ' by
Brunauer—-Emmett-Teller Model. Further to understand the pore structure, the pore size distribution of the
catalyst was assessed from the adsorption curve isotherm by BJH method with an average diameter calculated to
be 3.95 nm with a total pore volume calculated as 0.069 cc g . Hence, these results indicate that the synthesized
Meso-Cu-BTC catalyst have a high surface area, which could be a factor to enhance the electrocatalytic activity.

3.3. Hydrogen evolution reaction measurements

In view of investigating the electrocatalytic activity of Meso-Cu-BTC catalysts towards hydrogen evolution, the
same was done using a standard three probe system (figures 8(a) and (b)) in alkaline medium [53]. LSV curves of
the Meso-Cu-BTC electrocatalyst for hydrogen evolution reaction were recorded at 2 mVs ™' within a potential
window of —0.4 to 0.4 V with reference to RHE electrode The onset potential of Meso-Cu-BTC was observed to
be 0.025 Vand —0.002 V for Pt wire. Results show that Meso-Cu-BTC catalyst has proven to show fast electron
capabilities towards HER. The good HER activity was further investigated by understanding the Tafel slopes of
Cu-BTCelectrode (figure 8(b)). To investigate the HER kinetics, overpotential versus log j was plotted (Tafel
curve) and were further fitted into the linear portion of Tafel equation as follows

6
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Figure 8. (a) LSV steady-state polarization plots of Meso CuBTC and Pt electrode and (b) Tafel plot for Meso Cu-BTC and Pt electrode
in1 M NaOH.

n=a+ blogj

where j is the current density, 77is the overpotential; b represents the Tafel slope (figure 8(b)). A small Tafel slope
value represents the excellent activity as a low overpotential is needed to reach the equal current density.

Tafel slope value of Meso-Cu-BTC and Pt electrode, 33.41 and 29.0 mVdec™ ! Besides, another important
factor in HER is the exchange current density (j,), the same could be estimated by extrapolating the Tafel plot. It
is found that Meso-Cu-BTC exhibited a j, of 6 mAcm 2 with overpotential of 89.32 mV, whereas for
conventional Pt, it was found to be 6.8 mAcm 2 with overpotential of 79.0 mV. As observed from the results, it is
clear that Meso-Cu-BTC exhibited near slope as Pt, which means faster reaction kinetics as conventional Pt. In
the Tafel plot, three reaction steps are observed in alkaline medium, a primary discharge step (Volmer
mechanism with Tafel slope of 120 mVdec ™) - the cathodic reaction of proton, which produced H ions to
generate the hydrogen molecules and Heyrovsky mechanism with 40 mVdec ™' Tafel slope as the second step of
electrochemical desorption or discharge reaction of Hand H' from the surface of the catalyst to form hydrogen
and Tafel reaction mechanism with a Tafel slope ~30 mVdec " is the last step to produce hydrogen [50, 54, 55].

H,O + M + e~ — M — Hys + OH (Volmer)
H,O + M — Hygs + ¢ — H, + M + OH™ (Heyrovsky)
IM — H,g — 2M + Hy(Tafel)
where MH, 4 is the absorbed H; atom over the metal surface and M is the active free catalytic sites available for
HER. In the case of Tafel plots, a slope of 33.41 mVdec ™, 29.0 mVdec ™' was observed, which is lower than
40mVdec ™! indicating a Tafel controlled reaction. Thus, based on the slope obtained, it clear that the HER

reaction mechanism is controlled by Tafel mechanism. The observed results given in table 1 show that Cu-BTC
catalyst is comparable to Pt electrode proving to be a good electrocatalyst for HER. An overall table of

7




I0P Publishing

Mater. Res. Express7 (2020) 114001 R Nivethaetal

0.034
0.02
& 0.01-4
= .
jg 0.00 -
E r
= -0.014

-0.02 4

-0.03 4

00 01 02 03 04 05 06 20 40 6 8 100
Scan Rate (mVs)

Figure 9. (a) Cyclic voltammetry analysis of Cu-BTC at various scan rates (b) the corresponding capacitive current densities as a
function of scan rate.

4 (a)
— a i
e (b)
g 1<
v 8 1
~ ]
4 24 3,
g g
~ 1 -y
—
~
;‘ 04 215 010 005 nio\ni-s
E E/V (vs. RHE) }_
@ E :
. :
-
= 2- |
o ]
= 1
-] ) 1
&

-4 ¥ T " L] s

1 o L] » T L L} L
.04 -03 -02 -0.1 0.0 01 02 03
E/V (vs. RHE)

Figure 10. Polarization curves for Cu-BTC electrode for initial and after 1000 cyclesin 1 M NaOH.

comparison is given in table S1, which shows that the prepared Meso-Cu-BTC catalyst exhibits excellent activity
than the reported one.

Long term durability test is an important parameter for HER catalyst and in this regard, polarization was
carried out for 1000 cycles. The prepared Meso-Cu-BTC catalyst was tested for its stability over 1000 cycles from
—0.4t00.4 Vat2 mV s~ ' scan rate and the same is given in figure 10. The polarization curves show that no
significant decay was observed even after 1000 cycles indicating that Meso-Cu-BTC catalyst has excellent
stability and durability towards HER. The electrochemical active surface area of Meso-Cu-BTC electrode gives
the surface area accessible and the same could be calculated by the double-layer capacitance (Cdl) using the cyclic
voltammetric technique. ECSA was estimated by CV curves at various scan rates (100-20 mV s~ ') in the non-
faradic region and the double layer capacitance was calculated as per the Mccory’s theory (figure 9(a) and 9(b)).
As per the theory, the EDLC calculated from the capacitive current at different scan rates serves as an assessment
of the active electrochemical active surface area of the solid-liquid interface [56]. The cyclic voltammetry was run
between a region of 0 to 0.6 V, where the characteristic Faradic process was seen. The measured Cdl value from
20-100 mV s~ scan rate is given figure 9(b) and from the graphs, Cdl was calculated to be 2.4 mF cm ™%, which
shows that Meso-Cu-BTC are electrochemically active in alkaline medium. Moreover, high active surface area
and electrical conductivity of Meso-Cu-BTC suggest the high electrochemical activity for HER.
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Table 1. Tafel slope and Exchange current densities of HER using Meso-
Cu-BTC Metal organic framework.

S.no Catalyst logjomA cm ™2 bmV dec ™! o
1 PtElectrode 6.8 29.0 2.05
2 CuBTC 6.0 33.41 1.78

To further understand the nature of the catalytic process and to reveal the interfacial interaction and kinetics
of Meso-Cu-BTC electrode, electrochemical impedance spectroscopy (EIS) was done (figure 11). The diameter
of the semicircle at the high-frequency range is due to the porous nature of the electrode surface whereas the line
with potential dependent properties at low frequencies is associated with the HER kinetics [57]. In the
electrochemical reaction process at the surface of the electrode, catalytic kinetics was determined by Rct,
wherein a smaller Rct value shows faster kinetics. The Rct value for Meso-Cu-BTC electrode was found to
15.8 ohm. This lower charge transfer resistance Rct value enhances the electrochemical properties towards
hydrogen evolution reaction, owing to its high conductivity surface and well hydrogen adsorption capacity [58].
Hence, results conclude that Meso-Cu-BTC catalyst has a lower resistance due to the fast electron transport rate
between the interface and exhibiting an excellent hydrogen evolution reaction activity in alkaline medium.

4, Conclusion

In conclusion, a simple and facile solvothermal route was used for the synthesis of Meso-Cu-BTC MOFsl and
further used for the efficient electrocatalysis of HER in alkaline medium. The Meso-Cu-BTC electrocatalyst
exhibited 25 mV onset potential, 89.32 mV overpotential, 33.41 mVdec ! Tafel slope value, 6.0 mA cm 2
exchange current density and no significant decay even after 1000 cycles. Further, the Tafel slope for Meso-Cu-
BTC catalyst suggests the recombination step in the electrocatalysis of HER. These results are mainly associated
with a highly porous network of Meso-Cu-BTC octahedral MOF for fast electronic and ionic transfer from the
surface of the electrocatalyst particles. This work paves the way for the development of low-cost electrocatalyst
for HER with high efficiency and stability.
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